diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 2be21e825ae1b028eefe820e4e152a0666d67f10..1afc5242081e7f7b12527a15d29421cebeb3d3b8 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -45,8 +45,9 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op) +cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor) -cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog) +cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog lod_rank_table) cc_library(prune SRCS prune.cc DEPS framework_proto) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 52fefe4ea30899880cd386587340d691ee97547b..c1a009f131c803f7881faf2e322eecf3e6e8ea05 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -21,6 +21,7 @@ limitations under the License. */ #include #include "paddle/framework/feed_fetch_type.h" +#include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/scope.h" @@ -70,10 +71,12 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) { var->GetMutable(); } else if (var_type == VarDesc::STEP_SCOPES) { var->GetMutable>(); + } else if (var_type == VarDesc::LOD_RANK_TABLE) { + var->GetMutable(); } else { PADDLE_THROW( "Variable type %d is not in " - "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST]", + "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE]", var_type); } } diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index 8f2df3dc0e29f96b3aea58b6761d1ccb4cd7c624..54ce461ce81955c9c3b550998e4a1df32c201ab3 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -116,6 +116,7 @@ message VarDesc { FEED_MINIBATCH = 3; FETCH_LIST = 4; STEP_SCOPES = 5; + LOD_RANK_TABLE = 6; } required string name = 1; required VarType type = 2; diff --git a/paddle/framework/lod_rank_table.cc b/paddle/framework/lod_rank_table.cc new file mode 100644 index 0000000000000000000000000000000000000000..f9abf902a13f3ebe5ea75c7456b117462cec8da5 --- /dev/null +++ b/paddle/framework/lod_rank_table.cc @@ -0,0 +1,43 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/lod_rank_table.h" + +namespace paddle { +namespace framework { +void LoDRankTable::Reset(const LoD& lod, size_t level) { + this->coarse_lod_.clear(); + this->items_.clear(); + PADDLE_ENFORCE(level < lod.size(), + "Cannot rank lod since the level %d is less than lod size %d", + level, lod.size()); + coarse_lod_.reserve(level); + for (size_t i = 0; i < level; ++i) { + coarse_lod_.push_back(lod[i]); + } + auto& vec = lod[level]; + for (size_t i = 0; i < vec.size() - 1; ++i) { + TableItem item; + item.index = i; + item.length = vec[i + 1] - vec[i]; + items_.emplace_back(item); + } + std::sort(items_.begin(), items_.end(), + [](const TableItem& a, const TableItem& b) { + return a.length > b.length; + }); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/lod_rank_table.h b/paddle/framework/lod_rank_table.h new file mode 100644 index 0000000000000000000000000000000000000000..9faa3a4d7bdc55ab7b24e31f5e5434dacc0a4b36 --- /dev/null +++ b/paddle/framework/lod_rank_table.h @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/lod_tensor.h" + +namespace paddle { +namespace framework { + +// LoD Rank Table stores the `level` of `lod` which is ordered by sequence +// length in descending order. It is useful when implement dynamic RNN and is +// shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice +// output operators. +// +// The table item contains two element. The length of sequence and the index of +// sequence in that level. +// +// LoDRankTable also stores the coarse_lod, which is the lod information whose +// level is less than input level, in order to restore the output LoD +// information. +class LoDRankTable { + public: + struct TableItem { + size_t index; + size_t length; + }; + + LoDRankTable() {} + + void Reset(const LoD& lod, size_t level); + + const std::vector& items() const { return this->items_; } + + const LoD& coarse_lod() const { return this->coarse_lod_; } + + size_t level() const { return coarse_lod_.size(); } + + private: + LoD coarse_lod_; + std::vector items_; +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index b8a7040ed024fc7b19980beef3d8b367dfdd7f50..5c1989c26b68413ea52b97128313609e5d917fd1 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -408,7 +408,6 @@ class OperatorWithKernel : public OperatorBase { // indicate kernel DataType by input data. Defaultly all input data must be // same. virtual DataType IndicateDataType(const ExecutionContext& ctx) const { - VLOG(3) << "Default IndicateDataType " << this->Type(); auto& scope = ctx.scope(); int data_type = -1; for (auto& input : this->inputs_) { @@ -425,7 +424,6 @@ class OperatorWithKernel : public OperatorBase { } if (t != nullptr) { int tmp = static_cast(ToDataType(t->type())); - VLOG(3) << "Input " << ipt_name << " with data_type " << tmp; PADDLE_ENFORCE(tmp == data_type || data_type == -1, "DataType of Paddle Op %s must be the same.", Type()); diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 70daa20e8d99abc5759655adf538a8c197e9ec6a..5cf4608944c5011d798fbde060002a57be8f6102 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include +#include "glog/logging.h" #include "paddle/framework/framework.pb.h" namespace paddle { diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index a84ca8e3b821693baa6469462ef466447fae235a..e44b755ecd1c2bdbf0c60618f285ede70ff995c6 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -141,6 +141,7 @@ set(DEPS_OPS pool_with_index_op nccl_op sequence_conv_op + lod_rank_table_op lstm_op gru_op) @@ -150,6 +151,7 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) op_library(sum_op DEPS net_op selected_rows_functor) op_library(pool_op DEPS pooling) op_library(pool_with_index_op DEPS pooling) +op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table) if(WITH_GPU) op_library(nccl_op DEPS nccl_common) endif() diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 2a2a1e9cfd680ff983f54e4c12c34fbb5af69ca0..eaafb9ad54b371837cbc0f3268f7f2bf169e83e8 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -33,7 +33,7 @@ class AccuracyOp : public framework::OperatorWithKernel { auto inference_dim = ctx->GetInputDim("Out"); auto label_dim = ctx->GetInputDim("Label"); - // Assume indices has same shape with infernece, because + // Assume indices has same shape as inference, because // it's the output of topk. PADDLE_ENFORCE_EQ(label_dim.size(), 2, "label's rank must be 2."); @@ -60,20 +60,24 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { // TODO(typhoonzero): support both inference value and indices. - AddInput("Out", "topk (inferences) the network output"); - AddInput("Indices", "topk (indices) the network output"); + AddInput("Out", "The network output of topk (inferences)"); + AddInput("Indices", "The the network output of topk (indices)"); AddInput("Label", "Label of the training data"); // TODO(typhoonzero): AddInput("Weight", ... AddOutput("Accuracy", "The accuracy of current batch"); AddComment(R"DOC( -Accuracy. It will print accuracy rate for classification. -The accuracy is: -.. math:: -accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples}) +Accuracy Operator. + +It will print accuracy rate for classification. +The accuracy is calculated as follows: + +$$accuracy = \frac{NumOfCorrectPredicts}{NumOfAllSamples}$$ + +Both the input Out and Label can carry the LoD (Level of Details) +information, or not. But the output only shares the LoD information +with the input Out(Inference). -Both the input `Out` and `Label` can carry the LoD (Level of Details) -information, or not. But the output only shares the LoD with input `Inference`. )DOC"); } }; diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc index f2c8be4c54eed9cd0aeb004eeb74a42adc0695f5..9c4bfd24c132cfe3f9170b1178b1b92788a4ac64 100644 --- a/paddle/operators/batch_norm_op.cc +++ b/paddle/operators/batch_norm_op.cc @@ -51,6 +51,10 @@ class BatchNormOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), ""); PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), ""); + const float epsilon = ctx->Attrs().Get("epsilon"); + PADDLE_ENFORCE_GE(epsilon, 0.0, "epsilon should be larger than 0"); + PADDLE_ENFORCE_LE(epsilon, 0.001, "epsilon should not be too large"); + // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0], "Mean and MeanOut should share the same memory"); @@ -297,7 +301,6 @@ class BatchNormGradOp : public framework::OperatorWithKernel { framework::DataType IndicateDataType( const framework::ExecutionContext &ctx) const override { - VLOG(3) << "IndicateDataType " << this->Type(); const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { PADDLE_THROW("can't find Y@GRAD"); diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc index e11e51b4583817ef50cd447dbcf4c7202a152422..5f052689251bc023df635d41c1e64a660a0aa488 100644 --- a/paddle/operators/concat_op.cc +++ b/paddle/operators/concat_op.cc @@ -56,20 +56,24 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of concat operator.").AsDuplicable(); - AddOutput("Out", "the output tensor of concat operator."); - AddComment(R"DOC( - Join the input tensors along with the axis. - Examples: - Input[0] = [[1,2],[3,4]] - Input[1] = [[5,6]] - axis = 0 - Output = [[1,2], - [3,4], - [5,6]] - )DOC"); - AddAttr("axis", "The axis which the inputs will be joined with.") + AddInput("X", "Input tensors of concat operator.").AsDuplicable(); + AddOutput("Out", "Output tensor of concat operator."); + AddAttr("axis", + "The axis along which the input tensors will be concatenated.") .SetDefault(0); + AddComment(R"DOC( +Concat Operator. + +Concatenate the input tensors along dimension axis. +Examples: + Input[0] = [[1,2],[3,4]] + Input[1] = [[5,6]] + axis = 0 + Output = [[1,2], + [3,4], + [5,6]] + +)DOC"); } }; diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc index adcd867f502d166f851926fde602dbb3fed9b48e..b809bdc3a0fea727f2fb6ea0a55672ee9b0bbd04 100644 --- a/paddle/operators/cond_op.cc +++ b/paddle/operators/cond_op.cc @@ -216,11 +216,12 @@ class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { AddOutput("IndexTensors", "Index Tensors contains indices for true/false"); AddComment(R"DOC( -Sample dependent Cond Operator: -Given Cond[i] as a 1/0 vector to indicate true/false -The equation is: -Out[i] = subnet_t[i], if Cond[i] == true -Out[i] = subnet_t[i], if Cond[i] == false +Sample Dependent Conditional Operator. + +Given Cond[i] as a 1/0 vector to indicate true/false: +Out[i] = subnet_true[i], if Cond[i] == true +Out[i] = subnet_false[i], if Cond[i] == false + )DOC"); } }; diff --git a/paddle/operators/conv2d_op.cc b/paddle/operators/conv2d_op.cc index 1acb8415d0691df77047806d3c81b51cbb8c59f3..b47cff180dc6f019c1730f68841fae27e95693ee 100644 --- a/paddle/operators/conv2d_op.cc +++ b/paddle/operators/conv2d_op.cc @@ -56,17 +56,18 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, AddInput( "Input", "The input tensor of convolution operator. " - "The format of input tensor is NCHW. Where N is batch size, C is the " - "number of channels, H and W is the height and width of image."); + "The format of input tensor is NCHW, where N is batch size, C is the " + "number of channels, H is the height of the image, " + "and W is the width of the image."); AddInput("Filter", - "The filter tensor of convolution operator." + "The filter tensor of convolution operator. " "The format of the filter tensor is MCHW, where M is the number of " "output image channels, C is the number of input image channels, " - "H and W is height and width of filter. " - "If the groups attribute is greater than 1, C equal the number of " + "H is the height of the filter, and W is the width of the filter. " + "If the groups attribute is greater than 1, C equals the number of " "input image channels divided by the groups."); AddOutput("Output", - "The output tensor of convolution operator." + "The output tensor of convolution operator. " "The format of output tensor is also NCHW."); AddAttr>("strides", "strides of convolution operator.") .SetDefault({1, 1}); @@ -74,16 +75,19 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, .SetDefault({0, 0}); AddAttr( "groups", - "group size of convolution operator. " - "Refer to grouped convolution in Alex Krizhevsky's paper: " - "when group=2, the first half of the filters are only connected to the " - "first half of the input channels, and the second half only connected " - "to the second half.") + "Group size of convolution operator. " + "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " + "when group=2, the first half of the filters is only connected to the " + "first half of the input channels, while the second half of the filters " + "is only connected to the second half of the input channels.") .SetDefault(1); AddComment(R"DOC( -The convolution operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the -parameters is checked in the infer-shape. +Convolution Operator. + +The convolution operation calculates the output based on the input, filter, +strides, paddings, and groups parameters. The size of each dimension of the +parameters is checked in the infer-shape method. + )DOC"); } diff --git a/paddle/operators/conv2d_transpose_op.cc b/paddle/operators/conv2d_transpose_op.cc index 348527728bdd4ed60676d6e6e44c4e761b803096..8f5d18cddf45d1129040454adbc95a511ccf0583 100644 --- a/paddle/operators/conv2d_transpose_op.cc +++ b/paddle/operators/conv2d_transpose_op.cc @@ -54,15 +54,16 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( AddInput( "Input", "(Tensor) The input tensor of convolution transpose operator. " - "The format of input tensor is NCHW. Where N is batch size, C is the " - "number of input channels, H and W is the height and width of image."); + "The format of input tensor is NCHW, where N is batch size, C is the " + "number of input channels, H is the height of the image, and " + "W is the width of the image."); AddInput("Filter", "(Tensor) The filter tensor of convolution transpose operator." "The format of the filter tensor is CMHW, where C is the number of " "output image channels, M is the number of input image channels, " - "H and W is height and width of filter. " + "H is the height of the filter, and W is the width of the filter. " "We enforce groups number == 1 and padding == 0 in " - "convolution transpose Scenario."); + "the convolution transpose scenario."); AddOutput("Output", "(Tensor) The output tensor of convolution transpose operator." "The format of output tensor is also NCHW."); @@ -73,9 +74,12 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( "paddings of convolution transpose operator.") .SetDefault({0, 0}); AddComment(R"DOC( -The convolution transpose operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the -parameters is checked in the infer-shape. +Convolution Transpose Operator. + +The convolution transpose operation calculates the output based on the input, +filter, strides, paddings, and groups parameters. The size of each dimension +of the parameters is checked in the infer-shape method. + )DOC"); } diff --git a/paddle/operators/conv_cudnn_op.cc b/paddle/operators/conv_cudnn_op.cc index 4288f300dd5b0464f2b4394cdb0b44f93060ae74..62190ebc217be49f549cedfb2de24b9d138fff48 100644 --- a/paddle/operators/conv_cudnn_op.cc +++ b/paddle/operators/conv_cudnn_op.cc @@ -29,7 +29,7 @@ class CudnnConvOpMaker : public Conv2DOpMaker { "workspace is a section of GPU memory which will be " "allocated/freed each time the operator runs, larger " "workspace size can increase performance but also requires " - "better hardward. This size should be carefully setted.") + "better hardware. This size should be chosen carefully.") .SetDefault(4096); } }; diff --git a/paddle/operators/conv_shift_op.cc b/paddle/operators/conv_shift_op.cc index 6156a2d6af9a010240449a7c944ec0caffc85189..a4150a5664690e750d2501a1849767c23209186b 100644 --- a/paddle/operators/conv_shift_op.cc +++ b/paddle/operators/conv_shift_op.cc @@ -96,14 +96,13 @@ as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401 The equation is: - \f[ - Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j} - \f] +$$Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}$$ -where X's index is computed modulo M, and b's index is computed modulo N. +where X's index is computed modulo M, and Y's index is computed modulo N. + +Both inputs X and Y can carry LoD (Level of Details) information. +However, the output only shares the LoD information with input X. -Both of the input `X` and `Y` can carry LoD (Level of Details) information. -However, the output only shares the LoD information with input `X`. )DOC"); } }; diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc index 55f69fb03ad69c94dc4ebb8edd651d84e06a5f46..312264ccd48d1405a247a2c864d9f5897c897bea 100644 --- a/paddle/operators/cos_sim_op.cc +++ b/paddle/operators/cos_sim_op.cc @@ -79,15 +79,16 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Cosine Similarity Operator. -The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)). +$Out = X^T * Y / (\sqrt{X^T * X} * \sqrt{Y^T * Y})$ -The input `X` and `Y` must have the same shape, except that the 1st dimension -of input `Y` could be just 1 (different from input `X`), which will be -broadcasted to match the shape of input `X` before computing their cosine +The input X and Y must have the same shape, except that the 1st dimension +of input Y could be just 1 (different from input X), which will be +broadcasted to match the shape of input X before computing their cosine similarity. -Both the input `X` and `Y` can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD with input `X`. +Both the input X and Y can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input X. + )DOC"); } }; diff --git a/paddle/operators/crf_decoding_op.cc b/paddle/operators/crf_decoding_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..d1ce74c4b911545476f0b362df0e0f7a0d14cfb4 --- /dev/null +++ b/paddle/operators/crf_decoding_op.cc @@ -0,0 +1,136 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/crf_decoding_op.h" + +namespace paddle { +namespace operators { +class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker { + public: + CRFDecodingOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Emission", + "(LoDTensor, default: LoDTensor). A LoDTensor with shape " + "[N x D] where N is the size of the mini-batch and D is the total " + "tag number. This input is the unscaled emission weight matrix of " + "the linear_chain_crf operator."); + AddInput( + "Transition", + "(Tensor, default: Tensor). A Tensor with shape [(D + 2) x D]. " + "This input is the transition weights learned by the linear_chain_crf " + "operator, denoted as w. The 1st row of w are transition weights for " + "the start mask. The 2nd row of w are transition weights for the end " + "mask. Transition weights between other tags begin from the 3rd row of " + "w. See more details in comments of the linear_chain_crf operator."); + AddInput( + "Label", + "(LoDTensor, LoDTensor). The ground truth with shape " + "[N x 1]. This input is optional. See more details in the operator's " + "comments.") + .AsDispensable(); + AddOutput("ViterbiPath", + "(LoDTensor, LoDTensor). The decoding results. What to " + "return changes depending on whether the Input(Label) (the groud " + "truth) is given. See more details in the operator's comment."); + AddComment(R"DOC( +The crf_decoding operator reads the emission feature weights and the transition +freature weights learned by the linear_chain_crf operator. It implements the +Viterbi algorithm which is a dynamic programming algorithm for finding the most +likely sequence of hidden states, called the Viterbi path, that results in a +sequence of observed tags. + +The output of this operator changes according to whether Input(Label) is given: + +1. Input(Label) is given: + +This happens in training. This operator is used to co-work with the chunk_eval +operator. + +When Input(Label) is given, the crf_decoding operator returns a row vector +with shape [N x 1] whose values are fixed to be 0, indicating an incorrect +prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the +input to chunk_eval operator. + +2. Input(Label) is not given: + +This is the standard decoding process. + +The crf_decoding operator returns a row vecotr with shape [N x 1] whose values +range from 0 to maximum tag number - 1. Each element indicates an index of a +predicted tag. +)DOC"); + } +}; + +class CRFDecodingOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Emission"), + "Input(Emission) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Transition"), + "Input(Transition) should be not null."); + + PADDLE_ENFORCE(ctx->HasOutput("ViterbiPath"), + "Output(ViterbiPath) should be not null."); + + auto emission_dims = ctx->GetInputDim("Emission"); + PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL, + "The Input(Emission) should be a 2-D tensor."); + PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed."); + + auto transition_dims = ctx->GetInputDim("Transition"); + PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL, + "The Input(Transition) should be a 2-D tensor."); + PADDLE_ENFORCE_EQ( + transition_dims[0] - 2, transition_dims[1], + "An invalid dimension for the Input(Transition), which should " + "be a 2-D tensor with shape [(D + 2) x D]."); + PADDLE_ENFORCE_EQ( + emission_dims[1], transition_dims[1], + "The 2nd dimension of the Input(Emission) and the Input(Transition) " + "should be equal to the tag number."); + + if (ctx->HasInput("Label")) { + auto label_dims = ctx->GetInputDim("Label"); + PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL, + "The Input(Label) should be a 2-D tensor with the 2nd " + "dimensions fixed to 1."); + PADDLE_ENFORCE_EQ( + emission_dims[0], label_dims[0], + "The height of Input(Emission) and the height of Input(Label) " + "should be the same."); + } + + ctx->ShareLoD("Emission", /*->*/ "ViterbiPath"); + ctx->SetOutputDim("ViterbiPath", {emission_dims[0], 1}); + } + + protected: + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("Emission")->type()); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(crf_decoding, ops::CRFDecodingOp, + ops::CRFDecodingOpMaker); +REGISTER_OP_CPU_KERNEL( + crf_decoding, ops::CRFDecodingOpKernel, + ops::CRFDecodingOpKernel); diff --git a/paddle/operators/crf_decoding_op.h b/paddle/operators/crf_decoding_op.h new file mode 100644 index 0000000000000000000000000000000000000000..526e0c5dcb2649b35ee28f5153c8472ca7a0af7b --- /dev/null +++ b/paddle/operators/crf_decoding_op.h @@ -0,0 +1,127 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using framework::LoDTensor; +using framework::LoD; +using framework::Tensor; + +template +class CRFDecodingOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "The crf_decoding operator can only run on CPU."); + + auto* emission_weights = ctx.Input("Emission"); + auto* transition_weights = ctx.Input("Transition"); + auto* label = ctx.Input("Label"); + auto* decoded_path = ctx.Output("ViterbiPath"); + + PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL, + "The Input(Emission) should be a sequence."); + auto lod = emission_weights->lod(); + PADDLE_ENFORCE(lod.size(), "Input(Emission) must be a sequence."); + const size_t level = 0; + const size_t seq_num = lod[level].size() - 1; + + int* path = decoded_path->mutable_data(platform::CPUPlace()); + math::SetConstant()(ctx.device_context(), + decoded_path, 0); + for (size_t i = 0; i < seq_num; ++i) { + int start_pos = static_cast(lod[level][i]); + int end_pos = static_cast(lod[level][i + 1]); + Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos); + Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights, + &decoded_path_one_seq); + } + + if (label) { + PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL, + "The Input(Label) should be a sequence."); + const int* label_value = label->data(); + size_t batch_size = emission_weights->dims()[0]; + for (size_t i = 0; i < batch_size; ++i) { + path[i] = label_value[i] == path[i] ? 1 : 0; + } + } + } + + private: + void Decode(const Tensor& emission_weights, const Tensor& transition_weights, + Tensor* decoded_path) const { + auto emission_dims = emission_weights.dims(); + const size_t seq_len = emission_dims[0]; + const size_t tag_num = emission_dims[1]; + + const size_t state_trans_base_idx = 2; + + const T* x = emission_weights.data(); + const T* w = transition_weights.data(); + int* path = decoded_path->data(); + + // alpha is a memo table. An element alpha(k, v) records the score of the + // best sequence of tags from position 1 to position k with v being the end + // tag. + Tensor alpha; + T* alpha_value = alpha.mutable_data(emission_dims, platform::CPUPlace()); + Tensor track; + int* track_value = + track.mutable_data(emission_dims, platform::CPUPlace()); + + for (size_t i = 0; i < tag_num; ++i) alpha_value[i] = w[i] + x[i]; + + for (size_t k = 1; k < seq_len; ++k) { + for (size_t i = 0; i < tag_num; ++i) { + T max_score = -std::numeric_limits::max(); + int max_j = 0; + for (size_t j = 0; j < tag_num; ++j) { + T score = alpha_value[(k - 1) * tag_num + j] + + w[(j + state_trans_base_idx) * tag_num + i]; + if (score > max_score) { + max_score = score; + max_j = j; + } + } + + alpha_value[k * tag_num + i] = max_score + x[k * tag_num + i]; + track_value[k * tag_num + i] = max_j; + } + } + + T max_score = -std::numeric_limits::max(); + int max_i = 0; + for (size_t i = 0; i < tag_num; ++i) { + T score = alpha_value[(seq_len - 1) * tag_num + i] + w[tag_num + i]; + if (score > max_score) { + max_score = score; + max_i = i; + } + } + path[seq_len - 1] = max_i; + for (int k = seq_len - 1; k >= 1; --k) { + path[k - 1] = max_i = track_value[k * tag_num + max_i]; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc index ed78e9e3a3a49b7ff0990b8d13cfe2dae594b722..6752eb8c1c72150b0b1cf5595211ca1d01ef2bf4 100644 --- a/paddle/operators/crop_op.cc +++ b/paddle/operators/crop_op.cc @@ -56,34 +56,35 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " - "The input should be a k-D tensor(k > 0 and k < 7)"); + "The input should be a k-D tensor(k > 0 and k < 7)."); AddInput("Y", - "The input used as reference for cropping" - " with the same dimension as X. ") + "The input used as reference for cropping, " + "which is of the same dimensions as X.") .AsDispensable(); AddOutput("Out", - "The output of crop op " - "with the same dimension as X."); + "The output of crop op, " + "which is of the same dimensions as X."); AddAttr>("offsets", - "A list describing offsets to be cropped." - "The size of offsets list should be as same as " - "dimension size of input X."); + "A list describing offsets to be cropped. " + "The size of offsets list should be the same as " + "the dimension size of input X."); AddAttr>("shape", - "A list describing the shape of output." - "The size of shape list should be as same as " - "dimension size of input X.") + "A list describing the shape of output. " + "The size of shape list should be the same as " + "the dimension size of input X.") .SetDefault(std::vector()); AddComment(R"DOC( Crop Operator. + Crop input into output, as specified by offsets and shape. There are two ways to set shape: -1. referenc input: crop input X as shape as reference input. +1. reference input: crop input X into the same shape as reference input. The dimension of reference input should - be as same as input X. -2. shape list: crop input X by shape described by a list. - The size of shape list should be as same as - dimension size of input X. + be the same as the dimension of input X. +2. shape list: crop input X into the shape described by a list. + The size of shape list should be the same as + the dimension size of input X. The input should be a k-D tensor(k > 0 and k < 7). As an example: @@ -91,20 +92,20 @@ Given: X = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] - [0, 0, 0, 0, 0]] + [0, 0, 0, 0, 0]], and - offsets = [0, 1] + offsets = [0, 1], and - shape = [2, 2] + shape = [2, 2], -then we get +we get: Out = [[1, 2], - [3, 4]] + [3, 4]]. )DOC"); } diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index 39df19da677a7dee7d0989d491f8d5511f73a9c7..24df1fcadac75315890635f4d3aaa7146c1cc27b 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -49,7 +49,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel { } protected: - // Explicitly set that data type of the output of the cross_entropy operator + // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { @@ -96,7 +96,8 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { } protected: - // CrossEntropy's data type just determined by "X" + // Explicitly set that the data type of computation kernel of cross_entropy + // is determined by its input "X". framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { return framework::ToDataType(ctx.Input("X")->type()); @@ -117,9 +118,9 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { "Label", "(Tensor, default Tensor), the ground truth which is " "a 2-D tensor. " - "When soft_label is set to false, `Label` is a Tensor with shape " + "When soft_label is set to false, Label is a Tensor with shape " "[N x 1]. " - "When soft_label is set to true, `Label` is a Tensor " + "When soft_label is set to true, Label is a Tensor " "with shape [N x K]."); AddOutput("Y", "(Tensor, default Tensor), a 2-D tensor " @@ -137,13 +138,13 @@ computation. 1) One-hot cross-entropy: soft_label = false, Label[i, 0] indicates the class index for sample i: - Y[i] = -log(X[i, Label[i]]) + $Y[i] = -\log(X[i, Label[i]])$ 2) Soft-label cross-entropy: soft_label = true, Label[i, j] indicates the soft label of class j for sample i: - Y[i] = \sum_j{-Label[i, j] * log(X[i, j])} + $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$ Please make sure that in this case the summuation of each row of Label equals one. @@ -153,8 +154,9 @@ computation. non-zero element (equals 1), soft-label cross-entropy degenerates to a one-hot cross-entropy with one-hot label representation. -Both the input `X` and `Label` can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD with input `X`. +Both the input X and Label can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input X. + )DOC"); } }; diff --git a/paddle/operators/decayed_adagrad_op.cc b/paddle/operators/decayed_adagrad_op.cc index 17b394aa07cb0c7ca6e085b61590ff052221b22c..640b4e77448d1b64bcf7375f26c07ff1d2bdeaa3 100644 --- a/paddle/operators/decayed_adagrad_op.cc +++ b/paddle/operators/decayed_adagrad_op.cc @@ -75,11 +75,18 @@ class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker { "Constant for numerical stability") .SetDefault(1.0e-6f); AddComment(R"DOC( +Decayed Adagrad Optimizer. -Decayed Adagrad +The update is done as follows: -moment_out = decay * moment + (1 - decay) * grad * grad -param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon) +$$ +moment\_out = decay * moment + (1 - decay) * grad * grad \\ +param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + epsilon} +$$ + +The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) +does not have an epsilon attribute. It is added here for numerical +stability to avoid the division by zero error. )DOC"); } diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc index ff1ccea3b94dcd55c372b707c2afeda874ed212e..818146aca766cb13b93fd024c11c1209655d9e11 100644 --- a/paddle/operators/dropout_op.cc +++ b/paddle/operators/dropout_op.cc @@ -43,22 +43,24 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { DropoutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddAttr("dropout_prob", "Probability of setting units to zero.") - .SetDefault(.5f); - AddAttr("is_training", "Whether in training phase.").SetDefault(true); - AddAttr("seed", "Dropout random seed.").SetDefault(0); AddInput("X", "The input of dropout op."); AddOutput("Out", "The output of dropout op."); AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate(); + AddAttr("dropout_prob", "Probability of setting units to zero.") + .SetDefault(.5f); + AddAttr("is_training", "True if in training phase.").SetDefault(true); + AddAttr("seed", "Dropout random seed.").SetDefault(0); + AddComment(R"DOC( Dropout Operator. -'Dropout' refers to randomly dropping out units in a nerual network. It is a +Dropout refers to randomly dropping out units in a nerual network. It is a regularization technique for reducing overfitting by preventing neuron co-adaption during training. The dropout operator randomly set (according to the given dropout probability) the outputs of some units to zero, while others -being set to their inputs. +are set equal to their corresponding inputs. + )DOC"); } }; diff --git a/paddle/operators/dynamic_recurrent_op.cc b/paddle/operators/dynamic_recurrent_op.cc index a0b06ac1dc305bc899f9abaafcc980a6150ecda9..d48cc4e8df587708ab93e7d788145adc01c1d3e5 100644 --- a/paddle/operators/dynamic_recurrent_op.cc +++ b/paddle/operators/dynamic_recurrent_op.cc @@ -386,12 +386,13 @@ class DynamicRecurrentOpProtoAndCheckerMaker RNNAlgorithm::kArgNames[RNNAlgorithm::ComputeMode::kForward]; // inputs and outputs stored in proto AddInput(name.inlinks, - "the inputs that need to be segmented for each step.") + "The inputs that need to be segmented for each step.") .AsDuplicable(); - AddInput(name.initial_states, "variables to initialize states.") + AddInput(name.initial_states, "Variables to initialize the states.") .AsDuplicable(); - AddOutput(name.outlinks, "the outputs that need to concated for all steps.") + AddOutput(name.outlinks, + "The outputs that need to be concatenated for all steps.") .AsDuplicable(); AddOutput(name.step_scopes, "step scopes"); @@ -399,7 +400,12 @@ class DynamicRecurrentOpProtoAndCheckerMaker AddAttr>(name.ex_states, "names of ex_states"); AddAttr>(name.states, "names of states"); - AddComment("This is a RNN operator for varience-length sequences."); + AddComment(R"DOC( +Dynamic Recurrent Operator. + +This is a RNN operator for varience-length sequences. + +)DOC"); } }; diff --git a/paddle/operators/elementwise_add_op.cc b/paddle/operators/elementwise_add_op.cc index d9bc80c869c023caebf0b45ed24f2def3f0b1dd8..ebe1de90c7d245756de759d8675a30f955843798 100644 --- a/paddle/operators/elementwise_add_op.cc +++ b/paddle/operators/elementwise_add_op.cc @@ -22,7 +22,7 @@ class ElementwiseAddOpMaker : public ElementwiseOpMaker { ElementwiseAddOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("add", "Out = X + Y"); + SetComment("Add", "$Out = X + Y$"); AddComment(comment_); } }; diff --git a/paddle/operators/elementwise_div_op.cc b/paddle/operators/elementwise_div_op.cc index 3f56344d0007b5f14fd9b5b9b44a9b29d3c42f2a..de75816a249002549940b04d928c88c17d075917 100644 --- a/paddle/operators/elementwise_div_op.cc +++ b/paddle/operators/elementwise_div_op.cc @@ -22,7 +22,7 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker { ElementwiseDivOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Div", "Out = X / Y"); + SetComment("Div", "$Out = X / Y$"); AddComment(comment_); } }; diff --git a/paddle/operators/elementwise_mul_op.cc b/paddle/operators/elementwise_mul_op.cc index da7765aa6a7a81c9e0b4f462022cad54c16aec47..ffa10486f123963274aa478eb4c607e32138bcec 100644 --- a/paddle/operators/elementwise_mul_op.cc +++ b/paddle/operators/elementwise_mul_op.cc @@ -23,7 +23,7 @@ class ElementwiseMulOpMaker : public ElementwiseOpMaker { ElementwiseMulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Mul", "Out = X ⊙ Y"); + SetComment("Mul", "$Out = X \\odot\\ Y$"); AddComment(comment_); } }; diff --git a/paddle/operators/elementwise_op.h b/paddle/operators/elementwise_op.h index fce4b24a22f40c9cc57738273a758d0d48ff5e91..56e5eb69bc382a2c15d88b759fa6987f02c6cabb 100644 --- a/paddle/operators/elementwise_op.h +++ b/paddle/operators/elementwise_op.h @@ -46,37 +46,42 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { ElementwiseOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", R"DOC( -The first input of elementwise op, it's a tensor of any dimensions. -)DOC"); - AddInput("Y", R"DOC( -The sencond input of elementwise op, it's a tensor and it's dimensions -must be small or equal to X's dimensions. -)DOC"); + AddInput("X", "(Tensor) The first input tensor of elementwise op"); + AddInput("Y", "(Tensor) The second input tensor of elementwise op"); + AddOutput("Out", "The output of elementwise op"); AddAttr("axis", - R"DOC( -When the shape(Y) does not equal the shape(X),Y will be broadcasted -to match the shape of X and axis should be dimension index Y in X - )DOC") + "(int, default -1) The starting dimension index " + "for broadcasting Y onto X") .SetDefault(-1) .EqualGreaterThan(-1); - - AddOutput("Out", "The output of elementwise op"); comment_ = R"DOC( -Limited elementwise {name} operator.The equation is: Out = {equation}. -1. The shape of Y should be same with X or -2. Y's shape is a subset of X. - Y will be broadcasted to match the shape of X and axis should be dimension index Y in X. - - example: - shape(X) = (2, 3, 4, 5), shape(Y) = (,) - shape(X) = (2, 3, 4, 5), shape(Y) = (5,) - shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) - shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 - shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 +Limited Elementwise {name} Operator. + +The equation is: + +{equation} + +X is a tensor of any dimension and the dimensions of tensor Y must be smaller than +or equal to the dimensions of X. + +There are two cases for this operator: +1. The shape of Y is same with X; +2. The shape of Y is a subset of X. + +For case 2: +Y will be broadcasted to match the shape of X and axis should be +the starting dimension index for broadcasting Y onto X. + +example: + shape(X) = (2, 3, 4, 5), shape(Y) = (,) + shape(X) = (2, 3, 4, 5), shape(Y) = (5,) + shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) + shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 Both the input X and Y can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD with input X. +or not. But the output only shares the LoD information with input X. + )DOC"; AddComment(comment_); } diff --git a/paddle/operators/elementwise_sub_op.cc b/paddle/operators/elementwise_sub_op.cc index 3e4f98fdb35b148931a67d511fe41958eb523f99..39702dad0ee61de71ff0d54765e6f73de93cee9c 100644 --- a/paddle/operators/elementwise_sub_op.cc +++ b/paddle/operators/elementwise_sub_op.cc @@ -22,7 +22,7 @@ class ElementwiseSubOpMaker : public ElementwiseOpMaker { ElementwiseSubOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Sub", "Out = X - Y"); + SetComment("Sub", "$Out = X - Y$"); AddComment(comment_); } }; diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index 0e5b263eae904d97b61d41691b848e4fa2c17971..0dd84cbeaafbafd45132b0a0b744554ce7475411 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -59,8 +59,13 @@ class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of feed op"); AddOutput("Out", "The output of feed op"); - AddComment("feed op, it should not be configured by users directly"); - AddAttr("col", "column of feed"); + AddAttr("col", "(int) The column of feed"); + AddComment(R"DOC( +Feed Operator. + +It should not be configured by users directly. + +)DOC"); } }; diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index f1086e3dc774a5e57f1abb5d4f91f859fc0e64aa..8108ae69dec4bafd1c04d5ab05eef6f467d4c6e8 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -66,8 +66,13 @@ class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fetch op"); AddOutput("Out", "The output of fetch op"); - AddComment("fetch op, it should not be configured by users directly"); - AddAttr("col", "column of fetch"); + AddAttr("col", "(int) The column of fetch"); + AddComment(R"DOC( +Fetch Operator. + +It should not be configured by users directly. + +)DOC"); } }; } // namespace operators diff --git a/paddle/operators/fill_constant_batch_size_like_op.cc b/paddle/operators/fill_constant_batch_size_like_op.cc index 0244adb42392c707d755e95c7abdebd826c219b4..3f02214f30f886c5a03ad438fd795d44a0b8dddc 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cc @@ -70,11 +70,16 @@ class FillConstantBatchSizeLikeOpMaker "with the specified value"); AddAttr>("shape", "(vector) The shape of the output"); AddAttr("dim_idx", - "(int, default 0) the index of batch size dimension") + "(int, default 0) The index of batch size dimension") .SetDefault(0); AddAttr("value", "(float, default 0) The value to be filled") .SetDefault(0.0f); - AddComment(R"DOC(Fill up a variable with specified constant value.)DOC"); + AddComment(R"DOC( +FillConstantBatchSizeLike Operator. + +Fill up a variable with specified constant value. + +)DOC"); } }; } // namespace operators diff --git a/paddle/operators/fill_constant_op.cc b/paddle/operators/fill_constant_op.cc index 7a861b6cfc0fab312f4e5a7cce2fc28f923173d2..ee2219cd03313beae352c18adbe7e029fabbb6d3 100644 --- a/paddle/operators/fill_constant_op.cc +++ b/paddle/operators/fill_constant_op.cc @@ -54,7 +54,12 @@ class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("Out", "(Tensor) Tensor of specified shape will be filled " "with the specified value"); - AddComment(R"DOC(Fill up a variable with specified constant value.)DOC"); + AddComment(R"DOC( +FillConstantBatchSizeLike Operator. + +Fill up a variable with specified constant value. + +)DOC"); } }; } // namespace operators diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index ed529ac40aaf179b35a9ab32e11ed7dbbe9289ba..8ab39d4fb012b8fa3883f33e4d15be7918500354 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -37,11 +37,13 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fill-zeros-like op."); - AddOutput("Y", "The varibale will be filled up with zeros."); + AddOutput("Y", "The variable will be filled up with zeros."); AddComment(R"DOC( -Fill up a vriable with zeros. +FillZerosLike Operator. + +Fill up a variable with zeros. +The output will have the same size as the input. -The output will have the same size with input. )DOC"); } }; diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index f6c7f472da24a1a60c0d2538ae643bdc8e55b10f..aee672500ee5d1bf6cc7ef872f2cb6c408de6d9e 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -67,11 +67,28 @@ class GatherOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The source input of gather op"); AddInput("Index", "The index input of gather op"); - AddOutput("Out", "The output of add op"); + AddOutput("Out", "The output of gather op"); AddComment(R"DOC( -Gather Operator by selecting from the first axis, +Gather Operator. + +$Out = X[Index]$ + +Out is obtained by gathering entries of the outer-most dimension +of X indexed by Index and concatenate them together. + +Example: + +X = [[1, 2], + [3, 4], + [5, 6]] + +Index = [[1, 2]] + +Then: + +Out = [[3, 4], + [5, 6]] -Out = X[Index] )DOC"); } }; diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index be7f542a7a274d88d2dac953995d6a83a6ce022d..802c98ae764d02af3143d1d39b714d486791da82 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -68,21 +68,35 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { GaussianRandomOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { - AddOutput("Out", "output matrix of random op"); - AddComment(R"DOC( -GaussianRandom operator. -Use to initialize tensor with gaussian random generator. -)DOC"); + AddOutput("Out", "Output matrix of gaussian random op"); - AddAttr>("shape", "The dimension of random tensor."); - AddAttr("mean", "mean of random tensor.").SetDefault(.0f); - AddAttr("std", "std of random tensor.").SetDefault(1.0f); + AddAttr>("shape", + "(vector) " + "The dimension of random tensor."); + AddAttr("mean", + "(float, default 0.0) " + "mean of random tensor.") + .SetDefault(.0f); + AddAttr("std", + "(float, default 1.0) " + "std of random tensor.") + .SetDefault(1.0f); AddAttr("seed", + "(int, default 0) " "Random seed of generator." - "0 means use system wide seed") + "0 means use system wide seed.") .SetDefault(0); - AddAttr("data_type", "output data type") + AddAttr("data_type", + "(int, default 5(FP32)) " + "Output data type.") .SetDefault(framework::DataType::FP32); + + AddComment(R"DOC( +GaussianRandom Operator. + +Used to initialize tensors with gaussian random generator. + +)DOC"); } }; diff --git a/paddle/operators/gru_unit_op.cc b/paddle/operators/gru_unit_op.cc index 8d9723289d9af9ef218a5e056b4b585383e00dac..89c027ff1eea93012dc5ab22b081786efc328e96 100644 --- a/paddle/operators/gru_unit_op.cc +++ b/paddle/operators/gru_unit_op.cc @@ -80,19 +80,21 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("HiddenPrev", "(Tensor) Matrix with shape [batch_size, frame_size] for the " "states of previous time step."); - AddInput("Weight", - "(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. " - "The elements continuous in memory can be divided into two parts. " - "The first part are weights of the update gate and reset gate " - "with shape [frame_size, frame_size * 2], and the second part are " - "weights of output candidate with shape [frame_size, frame_size]"); - AddInput("Bias", - "(Tensor) Bias vector with shape [1, frame_size * 3] concating " - "bias of the update gate, reset gate and output candidate.") + AddInput( + "Weight", + "(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. " + "The elements continuous in memory can be divided into two parts. " + "The first part are weights of the update gate and reset gate " + "with shape [frame_size, frame_size * 2], and the second part are " + "weights of output candidate with shape [frame_size, frame_size]."); + AddInput( + "Bias", + "(Tensor) Bias vector with shape [1, frame_size * 3] concatenating " + "bias of the update gate, reset gate and output candidate.") .AsDispensable(); AddOutput("Gate", "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the " - "output of update gate, reset gate and output candidate") + "output of update gate, reset gate and output candidate.") .AsIntermediate(); AddOutput("ResetHiddenPrev", "(Tensor) Matrix with shape [batch_size, frame_size] for the " @@ -112,16 +114,19 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(sigmoid) .InEnum({identity, sigmoid, tanh, relu}); AddComment(R"DOC( -GRUUnitOp implements part calculations of the GRU unit as following: +GRUUnit Operator. -\f[ -update \ gate: u_t = actGate(xu_t + W_u * hidden_prev + bias_u) \\ -reset \ gate: r_t = actGate(xr_t + W_r * hidden_prev + bias_r) \\ -output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, hidden_prev) + bias_c) \\ -output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_prev) -\f] +This operator implements partial calculations of the GRU unit as follows: + +$$ +update \ gate: u_t = actGate(xu_t + W_u * hidden_{prev} + bias_u) \\ +reset \ gate: r_t = actGate(xr_t + W_r * hidden_{prev} + bias_r) \\ +output \ candidate: {h}_t = actNode({xc}_t + W_c * dot(r_t, hidden_{prev}) + bias_c) \\ +output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_{prev}) +$$ The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp. + )DOC"); } }; diff --git a/paddle/operators/huber_loss_op.cc b/paddle/operators/huber_loss_op.cc index 2d9449f5ca50dab8d2a7928c4311ec2d66b47904..3435e74b0afb470fcbd1c0f4e06ad363352cac00 100644 --- a/paddle/operators/huber_loss_op.cc +++ b/paddle/operators/huber_loss_op.cc @@ -59,10 +59,12 @@ class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker { "The shape is same as Input(X) and will be reused in backward.") .AsIntermediate(); AddOutput("Out", - "The output tensor with shape [batch_size, 1] which represents " - "the huber loss."); + "The output tensor with shape [batch_size, 1] " + "which represents the huber loss."); AddAttr("delta", "Hyper parameter in huber loss."); AddComment(R"DOC( +HuberLoss Operator. + Huber loss is a loss function used in robust regression. We define X as the input value and Y as the target value. Huber loss can evaluate the fitness of X to Y. Different from MSE loss, Huber loss is more robust for outliers. The diff --git a/paddle/operators/increment_op.cc b/paddle/operators/increment_op.cc index 139392c691e00b2a94f46801f1cfc2018ce139f5..c3e9308fe0ad6a90ce5e9097d078dfe3a3e1c20c 100644 --- a/paddle/operators/increment_op.cc +++ b/paddle/operators/increment_op.cc @@ -39,14 +39,18 @@ class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of increment operator"); AddOutput("Out", "(Tensor) The output tensor of increment operator."); - AddComment(R"DOC(Increment operator - -The equation is: Out = X + step -)DOC"); AddAttr("step", + "(float, default 1.0) " "The step size by which the " "input tensor will be incremented.") .SetDefault(1.0); + AddComment(R"DOC( +Increment Operator. + +The equation is: +$$Out = X + step$$ + +)DOC"); } }; diff --git a/paddle/operators/l1_norm_op.cc b/paddle/operators/l1_norm_op.cc index 1d111696cf43d232413a8dec7ffb057cb1913c7f..02ebf022968e95d0b20598d3c935fb51177c8841 100644 --- a/paddle/operators/l1_norm_op.cc +++ b/paddle/operators/l1_norm_op.cc @@ -57,7 +57,7 @@ L1 Norm Operator. Computes the L1 norm of a tensor. -Out = sum (abs(X)) +$$Out = \sum{|X|}$$ )DOC"); } diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 605dbba5af1bb8b0d718833be6af45fdaeac70ac..6864e3b0b7ace69f7e4b5f7e129b476d28591a34 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -22,43 +22,44 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker { LinearChainCRFOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput( - "Emission", - "(LoDTensor, default: LoDTensor). " - "The unscaled emission weight matrix for the linear chain CRF. " - "This input is a LoDTensor with shape [N x D] where N is the size of " - "the mini-batch and D is the total tag number."); - AddInput( - "Transition", - "(Tensor, default: Tensor). A Tensor with shape [(D + 2) x D]. " - "The learnable parameter for the linear_chain_crf operator. " - "See more details in the operator's comments."); - AddInput( - "Label", - "(LoDTensor, default: LoDTensor). The ground truth which is a 2-D " - "LoDTensor with shape [N x 1], where N is the total element number in " - "a mini-batch."); + AddInput("Emission", + "(LoDTensor, default: LoDTensor). " + "A 2-D LoDTensor with shape [N x D] where N is the size of the " + "mini-batch and D is the total tag number. The unscaled emission " + "weight matrix for the linear chain CRF. "); + AddInput("Transition", + "(Tensor, default: Tensor). A 2-D Tensor with shape " + "[(D + 2) x D]. The learnable parameter for the linear_chain_crf " + "operator. See more details in the operator's comments."); + AddInput("Label", + "(LoDTensor, default: LoDTensor). A LoDTensor with shape " + "[N x 1], where N is the total element number in a mini-batch. " + "The ground truth."); AddOutput( "Alpha", - "Tensor, default: Tensor. The forward vectors for the entire " - "batch. A two dimensional tensor with shape [N x D], " - "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to " - "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores " - "the unnormalized probabilites of all possible unfinished sequences of " - "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, " + "(Tensor, default: Tensor). A 2-D Tensor with shape [N x D]. " + "The forward vectors for the entire batch. Denote it as \f$\alpha\f$. " + "\f$\alpha$\f is a memo table used to calculate the normalization " + "factor in CRF. \f$\alpha[k, v]$\f stores the unnormalized " + "probabilites of all possible unfinished sequences of tags that end at " + "position \f$k$\f with tag \f$v$\f. For each \f$k$\f, " "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for " "each tag value \f$v$\f. This vector is called a forward vecotr and " "will also be used in backward computations.") .AsIntermediate(); - AddOutput("EmissionExps", - "The exponentials of Input(Emission). This is an intermediate " - "computational result in forward computation, and will be reused " - "in backward computation.") + AddOutput( + "EmissionExps", + "(Tensor, default: Tensor). A 2-D Tensor with shape [N x D]. " + "The exponentials of Input(Emission). This is an intermediate " + "computational result in forward computation, and will be reused in " + "backward computation.") .AsIntermediate(); - AddOutput("TransitionExps", - "The exponentials of Input(Transition). This is an intermediate " - "computational result in forward computation, and will be reused " - "in backward computation.") + AddOutput( + "TransitionExps", + "(Tensor, default: Tensor). A 2-D Tensor with shape " + "[(D + 2) x D]. The exponentials of Input(Transition). This is an " + "intermediate computational result in forward computation, and " + "will be reused in backward computation.") .AsIntermediate(); AddOutput( "LogLikelihood", @@ -179,8 +180,8 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { } protected: - // Explicitly set that the data type of output of the linear_chain_crf - // operator is determined by its input "Emission". + // Explicitly set that the data type of computation kernel of linear_chain_crf + // is determined by its input "Emission". framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { return framework::ToDataType(ctx.Input("Emission")->type()); diff --git a/paddle/operators/linear_chain_crf_op.h b/paddle/operators/linear_chain_crf_op.h index 56fb0c9102bee6e2fefd1180ef20237891573f70..ddf73981751798c72cef08f2dd5c87580b45aec3 100644 --- a/paddle/operators/linear_chain_crf_op.h +++ b/paddle/operators/linear_chain_crf_op.h @@ -134,7 +134,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { Tensor emission_row_max; emission_row_max.mutable_data( - framework::make_ddim({static_cast(batch_size), 1}), + framework::make_ddim({static_cast(batch_size), 1}), platform::CPUPlace()); auto place = ctx.GetEigenDevice(); @@ -273,7 +273,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { const int* lbl = label.data(); PADDLE_ENFORCE_LT( - *std::max_element(lbl, lbl + seq_length), tag_num, + static_cast(*std::max_element(lbl, lbl + seq_length)), tag_num, "An invalid tag label that execesses the largest tag number."); // Calculate the nominator part, which depends on the label sequence. diff --git a/paddle/operators/load_op.cc b/paddle/operators/load_op.cc index 2d4eff0c35af520dd27b9eb197937026a8fbdff9..b71a33a6b1ce80b545e6d7a4020dafc941dc55d2 100644 --- a/paddle/operators/load_op.cc +++ b/paddle/operators/load_op.cc @@ -115,14 +115,18 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker { LoadOpProtoMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddOutput("Out", "The tensor need to be loaded"); - AddComment(R"DOC(Load Operator -Load operator will load a tensor variable from disk file. -)DOC"); + AddOutput("Out", "(Tensor) The tensor need to be loaded"); AddAttr("file_path", + "(string) " "Variable will be loaded from \"file_path\".") .AddCustomChecker( [](const std::string &path) { return !path.empty(); }); + AddComment(R"DOC( +Load Operator. + +Load operator will load a tensor variable from disk file. + +)DOC"); } }; } // namespace operators diff --git a/paddle/operators/lod_rank_table_op.cc b/paddle/operators/lod_rank_table_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..be198951c241dc5e5587c8a2b8d94f67173d2b2a --- /dev/null +++ b/paddle/operators/lod_rank_table_op.cc @@ -0,0 +1,80 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ +#include "paddle/framework/lod_rank_table.h" +#include "paddle/framework/op_registry.h" +namespace paddle { +namespace operators { + +class LoDRankTableOp : public framework::OperatorBase { + public: + LoDRankTableOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::DeviceContext &dev_ctx) const override { + auto x = scope.FindVar(Input("X"))->Get(); + auto *out = + scope.FindVar(Output("Out"))->GetMutable(); + out->Reset(x.lod(), static_cast(Attr("level"))); + } +}; + +class LoDRankTableOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + LoDRankTableOpProtoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor) input lod tensor, must contain lod information."); + AddOutput("Out", "(LoDRankTable) The rank table of specific level."); + AddAttr("level", "(int) the specific lod level to rank.") + .SetDefault(0) + .EqualGreaterThan(0); + AddComment(R"DOC(Create LoDRanTable by LoDTensor + +LoD Rank Table stores the `level` of `lod` which is ordered by sequence +length in descending order. It is useful when implement dynamic RNN and is +shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice +output operators. +)DOC"); + } +}; + +class LoDRankTableInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + PADDLE_ENFORCE(context->HasInput("X"), "LoDRankTable must has input X"); + } +}; + +class LoDRankTableInferVarType : public framework::VarTypeInference { + public: + void operator()(const framework::OpDescBind &op_desc, + framework::BlockDescBind *block) const override { + for (auto &o : op_desc.Output("Out")) { + block->Var(o)->SetType(framework::VarDesc::LOD_RANK_TABLE); + } + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(lod_rank_table, paddle::operators::LoDRankTableOp, + paddle::operators::LoDRankTableOpProtoMaker, + paddle::operators::LoDRankTableInferShape, + paddle::operators::LoDRankTableInferVarType, + paddle::framework::EmptyGradOpMaker); diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 0b361e20f2037b9b75bc8670488dff1c50fb689c..2163c8ce4e5d75d5934c08f59a47bad9553f0c8b 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -53,21 +53,27 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("W", - "An input represents embedding tensors," - " which is a learnable parameter."); + "An input represents embedding tensors, " + "which is a learnable parameter."); AddInput("Ids", - "An input with type int32 or int64" - "contains the ids to be looked up in W." - "Ids must be a column vector with rank = 2." - "The 2nd dimension size must be 1"); - AddOutput("Out", "The lookup results, which have the same type with W."); - AddAttr("is_sparse", "Sparse update").SetDefault(false); + "An input with type int32 or int64 " + "contains the ids to be looked up in W. " + "Ids must be a column vector with rank = 2. " + "The 2nd dimension size must be 1."); + AddOutput("Out", "The lookup results, which have the same type as W."); + AddAttr("is_sparse", + "(boolean, default false) " + "Sparse update") + .SetDefault(false); AddComment(R"DOC( +Lookup Table Operator. + This operator is used to perform lookups on the parameter W, then concatenated into a dense tensor. -The input `Ids` can carry the LoD (Level of Details) information, -or not. And the output only shares the LoD with input `Ids`. +The input Ids can carry the LoD (Level of Details) information, +or not. And the output only shares the LoD information with input Ids. + )DOC"); } }; diff --git a/paddle/operators/lrn_op.cc b/paddle/operators/lrn_op.cc index 89ea6bfdbd9b78dd0a81fd5ba465d09549162eb5..00392b7967d020a7951a16a7850a2f08735baeb8 100644 --- a/paddle/operators/lrn_op.cc +++ b/paddle/operators/lrn_op.cc @@ -45,72 +45,70 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker { public: LRNOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", R"DOC( - (Tensor) The input of LRN operator. It must be a 4D tenor with NCHW format. - )DOC"); - + AddInput("X", + "(Tensor) The input of LRN operator. " + "It must be a 4D tenor with NCHW format."); AddOutput("Out", "(Tensor) The output of LRN operator, which is also the 4D " "tensor with NCHW format."); - AddOutput("MidOut", R"Doc( -(Tensor)Middle result of lrn op.It's computed in forward process -and also used in backward process. - )Doc"); - - AddAttr("n", R"DOC( -(int, default 5)n is “adjacent” kernel maps at the same spatial position. - )DOC") + AddOutput("MidOut", + "(Tensor) Middle result of LRN operator. It's computed in " + "forward process and also used in backward process."); + + AddAttr("n", + "(int default 5) " + "n is the \"adjacent\" kernel that maps " + "at the same spatial position.") .SetDefault(5) .GreaterThan(0); - AddAttr("k", R"DOC( -(float, default 2.0)k is the bias. - )DOC") + AddAttr("k", + "(float, default 2.0) " + "k is the bias.") .SetDefault(2.0) .GreaterThan(0.0); - AddAttr("alpha", R"DOC( -(float, default 0.0001)alpha is the scale number. - )DOC") + AddAttr("alpha", + "(float, default 0.0001) " + "alpha is the scale number.") .SetDefault(0.0001) .GreaterThan(0.0); - AddAttr("beta", R"DOC( -(float, default 0.75)beta is the power number. - )DOC") + AddAttr("beta", + "(float, default 0.75) " + "beta is the power number.") .SetDefault(0.75) .GreaterThan(0.0); AddComment(R"DOC( - Local Response Normalization. - - This Function comes from the paper - "ImageNet Classification with Deep Convolutional Neural Networks". +Local Response Normalization Operator. - The original formula is: +This operator comes from the paper +"ImageNet Classification with Deep Convolutional Neural Networks". - Input(i, x, y) - Output(i, x, y) = ---------------------------------------------- - -- upper - (k + alpha * > (Input(j, x, y))^2) ^ (beta) - -- j = lower +The original formula is: - upper is `min(C, c + n/2)` - lower if `max(0, c - n/2)` +$$ +Output(i, x, y) = Input(i, x, y) / \left( +k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)} +(Input(j, x, y))^2 +\right)^{\beta} +$$ - Function implementation: +Function implementation: - inputs and outpus is NCHW format, while input.shape.ndims() is equal 4. - And the meaning of each dimension(0-3) is respectively batch size, - feature maps, rows and columns. +Inputs and outpus are in NCHW format, while input.shape.ndims() equals 4. +And dimensions 0 ~ 3 represent batch size, feature maps, rows, +and columns, respectively. - Input and Output in the above formula is for each map(i) of one image, and - Input(i, x, y), Output(i, x, y) represents an element in an image. +Input and Output in the formula above is for each map(i) of one image, and +Input(i, x, y), Output(i, x, y) represents an element in an image. - C is the number of feature maps of one image, and n is a hyper-parameters - is configured when Function is initialized. The sum in the denominator - is the sum of the same position in the neighboring maps. - )DOC"); +C is the number of feature maps of one image. n is a hyper-parameter +configured when operator is initialized. The sum in the denominator +is the sum of the same positions in the neighboring maps. + +)DOC"); } }; diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc index 94342d940704d850a2a45c281a3d88de5a132753..fdf52cf424d1b2727982e6e76f0f824915d84968 100644 --- a/paddle/operators/lstm_op.cc +++ b/paddle/operators/lstm_op.cc @@ -103,7 +103,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("H0", "(Tensor, optional) the initial hidden state is an optional " "input. This is a tensor with shape (N x D), where N is the " - "batch size, D is the hidden size.") + "batch size and D is the hidden size.") .AsDispensable(); AddInput("C0", "(Tensor, optional) the initial cell state is an optional " @@ -134,85 +134,82 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("BatchGate", "(LoDTensor) This LoDTensor contains input gate, forget gate " "and output gate after the nonlinear computation. This " - "LoDTensor has the same shape with the reorganized input, which " + "LoDTensor has the same shape as the reorganized input, which " "is also be called batch input. The LoD size is 2. The first " "LoD is the batch offsets and the second LoD contains the " "indexes, which denote the position of reorganized sequence " "in the raw input.") .AsIntermediate(); AddOutput("BatchCellPreAct", - "(LoDTensor) This LoDTensor is got in the forward and used " + "(LoDTensor) This LoDTensor is obtained in the forward and used " "in the backward.") .AsIntermediate(); AddAttr("usePeepholes", - "(bool, defalut: True) " + "(bool, default True) " "whether to enable diagonal/peephole connections.") .SetDefault(true); AddAttr("isReverse", - "(bool, defalut: False) " + "(bool, default False) " "whether to compute reversed LSTM.") .SetDefault(false); AddAttr( "gateActivation", - "(string, default: sigmoid)" + "(string, default sigmoid)" "The activation for input gate, forget gate and output " "gate, `sigmoid` by default.") .SetDefault("sigmoid"); AddAttr("cellActivation", - "(string, default: tanh)" + "(string, default tanh)" "The activation for cell output, `tanh` by defalut.") .SetDefault("tanh"); AddAttr("candidateActivation", - "(string, default: tanh)" + "(string, default tanh)" "The activation for candidate hidden state, " "`tanh` by default.") .SetDefault("tanh"); - AddComment(R"DOC(Long-Short Term Memory (LSTM) Operator + AddComment(R"DOC( +Long-Short Term Memory (LSTM) Operator. -The defalut implementation is diagonal/peephole connection [1], the formula is -as follows +The defalut implementation is diagonal/peephole connection +(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows: - i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) +$$ +i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \\ - f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) +f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \\ - \tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) +\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) \\ - o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) +o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\ - c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t} +c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\ - h_t = o_t ⊙ act_h(c_t) +h_t = o_t \odot act_h(c_t) +$$ where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$ -are diagonal weight matrices for peephole connections. In our implenmention, -We use vectors to reprenset these diagonal weight matrices. The b terms +are diagonal weight matrices for peephole connections. In our implementation, +we use vectors to reprenset these diagonal weight matrices. The b terms denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$ -is the non-line actications, such as logistic sigmoid function, and -\f$i, f, o\f$ and \f$c\f$ are respectively the input gate, forget gate, -output gate and cell activation vectors, all of which are the same size as +is the non-line activations, such as logistic sigmoid function, and +\f$i, f, o\f$ and \f$c\f$ are the input gate, forget gate, output gate, +and cell activation vectors, respectively, all of which have the same size as the cell output activation vector \f$h\f$. -The ⊙ is the element-wise product of the vectors, \f$act_g\f$ and \f$act_h\f$ -are the cell input and cell output activation functions, `tanh` is usually +The \f$\odot\f$ is the element-wise product of the vectors. \f$act_g\f$ and \f$act_h\f$ +are the cell input and cell output activation functions and `tanh` is usually used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state, which is computed based on the current input and the previous hidden state. -Set `usePeepholes` False to disable peephole connection [2]. The formula +Set usePeepholes False to disable peephole connection +(http://www.bioinf.jku.at/publications/older/2604.pdf). The formula is omitted here. -@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$ -operations on the input x_{t} were NOT included in this operator. +Note that these \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$ +operations on the input \f$x_{t}\f$ are NOT included in this operator. Users can choose to use fully-connect operator before LSTM operator. -[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory -recurrent neural network architectures for large scale acoustic modeling. -INTERSPEECH, 2014. - -[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. -Neural Computation, 9(8):1735-1780, 1997. - )DOC"); } }; diff --git a/paddle/operators/lstm_unit_op.cc b/paddle/operators/lstm_unit_op.cc index 5d63017208a55ec4bcc2e8d66f1ca2e1b84d4593..f4519ec16f3f694cf49941f8d23c4106f6f1ddc3 100644 --- a/paddle/operators/lstm_unit_op.cc +++ b/paddle/operators/lstm_unit_op.cc @@ -57,17 +57,22 @@ class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker { "The cell state tensor of last time-step in the Lstm Unit operator."); AddOutput("C", "The cell tensor of Lstm Unit operator."); AddOutput("H", "The hidden state tensor of Lstm Unit operator."); - - AddComment(R"DOC(Lstm-Unit Operator + AddAttr("forget_bias", + "(float, default 0.0) " + "The forget bias of Lstm Unit.") + .SetDefault(0.0); + AddComment(R"DOC( +Lstm Unit Operator Equation: - i, f, o, j = split(X) - C = C_prev * sigm(f + forget_bias) + sigm(i) * tanh(j) - H = C * sigm(o) + +$$ +i, f, o, j = split(X) \\ +C = C_{prev} * sigm(f + forget\_bias) + sigm(i) * tanh(j) \\ +H = C * sigm(o) +$$ )DOC"); - AddAttr("forget_bias", "The forget bias of Lstm Unit.") - .SetDefault(0.0); } }; diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index 2af67b6ed17f762b65d21741e9560ee8a68b2189..1e6143c0c845e121dbfc4ced544ce22bf2eecfb9 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -23,7 +23,7 @@ else() cc_library(context_project SRCS context_project.cc DEPS device_context) cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context) cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions) - cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions) + cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function) endif() cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) diff --git a/paddle/operators/save_op.cc b/paddle/operators/save_op.cc index 490256dfa1cf9b891713dac264e9260906ce1025..56909fb65f44ad00314103e21bee9535fbd59317 100644 --- a/paddle/operators/save_op.cc +++ b/paddle/operators/save_op.cc @@ -163,14 +163,19 @@ class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker { SaveOpProtoMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The tensor need to be saved"); - AddComment(R"DOC(Save operator -Save operator will serialize and write a tensor variable to disk file. + AddInput("X", "(Tensor ) Input tensor to be saved"); + AddComment(R"DOC( +Save operator + +This operator will serialize and write a tensor variable to file on disk. )DOC"); - AddAttr("overwrite", "Overwrite the output file if exist") + AddAttr("overwrite", + "(boolean, default true)" + "Overwrite the output file if exist") .SetDefault(true); AddAttr("file_path", - "Variable will be saved to \"file_path\".") + "(string)" + "The \"file_path\" where the variable will be saved.") .AddCustomChecker( [](const std::string &path) { return !path.empty(); }); } diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index 5fcacf70d80527b4580a8f744ab3b79fb301d1d9..5745580504fb9bda551f21665bff5c65ae82aeb9 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -40,13 +40,16 @@ class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input tensor of scale operator."); - AddOutput("Out", "The output tensor of scale operator."); - AddComment(R"DOC(Scale operator + AddInput("X", "(Tensor) Input tensor of scale operator."); + AddOutput("Out", "(Tensor) Output tensor of scale operator."); + AddComment(R"DOC( +Scale operator -The equation is: Out = scale*X +$$Out = scale*X$$ )DOC"); - AddAttr("scale", "The scaling factor of the scale operator.") + AddAttr("scale", + "(float, default 0)" + "The scaling factor of the scale operator.") .SetDefault(1.0); } }; diff --git a/paddle/operators/sequence_concat_op.cc b/paddle/operators/sequence_concat_op.cc index 46f73e3c279835bbb4bfdd7dede03a5535186b24..ec4ad50dab7af0f86e586f840dbced402ee14120 100644 --- a/paddle/operators/sequence_concat_op.cc +++ b/paddle/operators/sequence_concat_op.cc @@ -47,19 +47,19 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", - "(A vector of LoDTensor), the input is a vector of LoDTensor, " + "(vector) Input is a vector of LoDTensor, " "each of which is a variable-length sequence or nested sequence.") .AsDuplicable(); AddOutput("Out", - "(A LoDTensor), the variable-length output of " + "(LoDTensor), Variable-length output of " "sequence_concat Op."); AddAttr("axis", - "(int, default 0)" - "The axis which the inputs will be joined with. " + "(int, default 0) " + "The axis along which the inputs will be joined. " "If axis is 0, the inputs will be joined with LoD index.") .SetDefault(0); AddAttr("level", - "(int, default 0)" + "(int, default 0) " "The level at which the inputs will be joined. " "If the level is 0, the inputs will be joined at the nested " "sequence level. " @@ -68,34 +68,36 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { "The level should be less than the level number of inputs.") .SetDefault(0); AddComment(R"DOC( - The sequence_concat operator concatenates multiple LoDTensors. - It only supports sequence (LoD Tensor with level number is 1) - or a nested sequence (LoD tensor with level number is 2) as its input. - - Case1: - If the axis is other than 0(here, axis is 1 and level is 1), - each input should have the same LoD information and the LoD - information of the output keeps the same as the input. - - LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) - LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4) - LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) - - - Case2: - If the axis is 0(here, leve is 0), the inputs are concatenated along - time steps, the LoD information of the output need to re-compute. - - LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) - LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4) - LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4) - - - Case3: - If the axis is 0(here, level is 1). - - LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) - LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4) - LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4) - - NOTE: The levels of all the inputs should be the same. +Sequence Concat operator + +The sequence_concat operator concatenates multiple LoDTensors. +It only supports sequence (LoD Tensor with level number is 1) +or a nested sequence (LoD tensor with level number is 2) as its input. +- Case1: + If the axis is other than 0(here, axis is 1 and level is 1), + each input should have the same LoD information and the LoD + information of the output keeps the same as the input. + + LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) + LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4) + LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) + +- Case2: + If the axis is 0(here, leve is 0), the inputs are concatenated along + time steps, the LoD information of the output need to re-compute. + + LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) + LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4) + LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4) + +- Case3: + If the axis is 0(here, level is 1). + + LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) + LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4) + LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4) + +NOTE: The levels of all the inputs should be the same. )DOC"); } }; diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 939176c73dc21dc662b1aaf23d8077c6856a5650..72f4e4d5cbcd692423fa2a3e9ec8e7033b552c3c 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -45,15 +45,17 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: SGDOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("Param", "Input parameter"); - AddInput("LearningRate", "Learning rate of SGD"); - AddInput("Grad", "Input gradient"); - AddOutput("ParamOut", "output parameter"); + AddInput("Param", "(Tensor) Input parameter"); + AddInput("LearningRate", "(Tensor) Learning rate of SGD"); + AddInput("Grad", "(Tensor) Input gradient"); + AddOutput("ParamOut", "(Tensor) Output parameter"); AddComment(R"DOC( -Simplest sgd algorithm. +SGD operator -param_out = param - learning_rate * grad; +This operator implements one step of the stochastic gradient descent algorithm. + +$$param_out = param - learning_rate * grad$$ )DOC"); } diff --git a/paddle/operators/sign_op.cc b/paddle/operators/sign_op.cc index 1b2f879d6d305e4e77be41683d8249904337a6f8..08bf2e4e7cc101a3bcc907d3b40ee82347b39f80 100644 --- a/paddle/operators/sign_op.cc +++ b/paddle/operators/sign_op.cc @@ -38,9 +38,10 @@ class SignOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of sign operator."); AddOutput("Out", "(Tensor) Output tensor of sign operator."); - AddComment(R"DOC(Sign operator + AddComment(R"DOC( +Sign operator -The equation is: Out = X.sign() +$$Out = X.sign()$$ )DOC"); } }; diff --git a/paddle/operators/split_op.cc b/paddle/operators/split_op.cc index 1ef314b77f0fdd395ddb0cecf8f29e97559cb7ca..275b25e96aa75fdbcb7275e272c49ea8d278d2c8 100644 --- a/paddle/operators/split_op.cc +++ b/paddle/operators/split_op.cc @@ -67,30 +67,38 @@ class SplitOpMaker : public framework::OpProtoAndCheckerMaker { public: SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensor of split operator."); - AddOutput("Out", "the output tensors of split operator.").AsDuplicable(); + AddInput("X", "(Tensor) Input tensor of the split operator."); + AddOutput("Out", "(Tensor) Output tensors of the split operator.") + .AsDuplicable(); AddComment(R"DOC( - Split the input tensor into multiple sub-tensors. - Example: - Input = [[1,2], - [3,4], - [5,6]] - sections = [2,1] - axis = 0 - Output[0] = [[1,2], - [3,4]] - Output[1] = [[5,6]] +Split operator + +This operator splits the input tensor into multiple sub-tensors. + +Example: + Input = [[1,2], + [3,4], + [5,6]] + sections = [2,1] + axis = 0 + Output[0] = [[1,2], + [3,4]] + Output[1] = [[5,6]] )DOC"); AddAttr>("sections", - "the length for each" - "output along with the specify axis.") + "(vector) " + "the length of each output along the " + "specified axis.") .SetDefault(std::vector{}); AddAttr("num", - "number of the sub-tensors, it must evenly divide " + "(int, default 0)" + "Number of sub-tensors. This must evenly divide " "Input.dims()[axis]") .SetDefault(0); - AddAttr("axis", "The axis which the input will be splited on.") + AddAttr("axis", + "(int, default 0) " + "The axis which the input will be splited on.") .SetDefault(0); } }; diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index e360c19b47eae7fc32ae66f9e4e3873bff211b04..bec2a2c18ae8da892ee7d71f45afe53c887c0f57 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -59,23 +59,26 @@ class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker { SquaredL2DistanceOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "Input of SquaredL2DistanceOp."); - AddInput("Y", "Target of SquaredL2DistanceOp."); + AddInput("X", "(Tensor) Input of SquaredL2DistanceOp."); + AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp."); AddOutput("sub_result", - "Buffering substraction result which " + "(Tensor) Buffering subtraction result which " "will be reused in backward.") .AsIntermediate(); - AddOutput("Out", "Squared l2 distance between input and target."); + AddOutput("Out", "(Tensor) Squared l2 distance between input and target."); AddComment(R"DOC( - SquaredL2DistanceOp will cacluate the squared L2 distance for - input and target. Number of distance value equals to the - first dimension of input. First dimension of target could be equal to - input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp - will broadcast target's first dimension to input's first dimension. - You can decide whether calculate the gradient of input and target. - - Both the input X and Y can carry the LoD (Level of Details) information, - or not. But the output only shares the LoD with input X. +SquaredL2Distance operator + +This operator will cacluate the squared L2 distance for the input and +the target. Number of distance value will be equal to the first dimension +of input. First dimension of the target could be equal to the input or to 1. +If the first dimension of target is 1, the operator will broadcast target's +first dimension to input's first dimension. During backward propagation, +the user can decide whether to calculate the gradient of the input or +the target or both. + +Both the input X and Y can carry the LoD (Level of Details) information. +However, the output only shares the LoD information with input X. )DOC"); } }; diff --git a/paddle/operators/squared_l2_norm_op.cc b/paddle/operators/squared_l2_norm_op.cc index 42ad87e65a85355e1b9b927dcef9ebbb88cde717..3c10e6159f44bc8c21b1e79aefaa962c7a2b64ed 100644 --- a/paddle/operators/squared_l2_norm_op.cc +++ b/paddle/operators/squared_l2_norm_op.cc @@ -52,13 +52,13 @@ class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of squared_l2_norm op."); - AddOutput("Out", "(Float) The output of squared_l2_norm op."); + AddOutput("Out", "(Scalar) The output of squared_l2_norm op."); AddComment(R"DOC( SquaredL2Norm Operator. Computes the squared L2 norm of a tensor. -Out = sum (X ** 2) +$$Out = \sum_{i} X_{i}^2$$ )DOC"); } diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index ca36ad764c8a4cb5f6c58d3ac3d9ff4a588f3200..d9d3dd6e37a8ffd7aa7a2e6f47a1c225474f630b 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -45,13 +45,15 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of sum operator.").AsDuplicable(); - AddOutput("Out", "the output tensor of sum operator."); + AddInput("X", "(vector) The input tensors of sum operator.") + .AsDuplicable(); + AddOutput("Out", "(Tensor) The output tensor of sum operator."); AddComment(R"DOC( -Sum the input tensors. +Sum operator. -All the inputs can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD with the first input. +This operators sums the input tensors. All the inputs can carry the +LoD (Level of Details) information. However, the output only shares +the LoD information with the first input. )DOC"); } }; diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index ac9257259548dc4223efac239d8362f69366850c..16ae925eb5cab1c05f3bc376972cabadc4367d20 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -48,20 +48,20 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker { public: TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input of Topk op"); - AddOutput("Out", "The output tensor of Topk op"); - AddOutput("Indices", "The indices of Topk elements of input"); - AddComment( - R"DOC(If the input is a vector (1d tensor), - finds the k largest entries in the vector - and outputs their values and indices as vectors. - Thus values[j] is the j-th largest entry in input, - and its index is indices[j]. + AddInput("X", "(Tensor) The input of Topk op"); + AddOutput("Out", "(Tensor) The output tensor of Topk op"); + AddOutput("Indices", "(Tensor) The indices of Topk elements of input"); + AddComment(R"DOC( +Top K operator - For matrices, computes the top k entries in each row. )DOC"); +If the input is a vector (1d tensor), this operator finds the k largest +entries in the vector and outputs their values and indices as vectors. +Thus values[j] is the j-th largest entry in input, and its index is indices[j]. + +For matrices, this operator computes the top k entries in each row. )DOC"); AddAttr("k", - "Number of top elements to look for along the last " - "dimension (along each row for matrices).") + "(int, default 1) Number of top elements to look for along " + "the last dimension (along each row for matrices).") .SetDefault(1); } }; diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 82f9b8fbf1094bde1def83b9a1c464207b7e4669..cd22c561acb6cbd66faf1d3d6ee21779001a2795 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -74,18 +74,30 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { UniformRandomOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { - AddOutput("Out", "The output tensor of uniform random op"); - AddComment(R"DOC(Uniform random operator. -Used to initialize tensor with uniform random generator. + AddOutput("Out", "(Tensor) The output tensor of uniform random op"); + AddComment(R"DOC( +Uniform random operator. + +This operator initializes a tensor with random values sampled from a +uniform distribution. + )DOC"); - AddAttr>("shape", "the dimension of random tensor"); - AddAttr("min", "Minimum value of uniform random").SetDefault(-1.0f); - AddAttr("max", "Maximun value of uniform random").SetDefault(1.0f); + AddAttr>("shape", + "(vector) The shape of the output tensor"); + AddAttr("min", + "(float, default -1.0) " + "Minimum value of uniform random") + .SetDefault(-1.0f); + AddAttr("max", + "(float, default 1.0) " + "Maximun value of uniform random") + .SetDefault(1.0f); AddAttr("seed", - "Random seed of uniform random. " - "0 means generate a seed by system") + "(int, default 0) " + "Random seed used for generating samples. " + "0 means use a seed generated by the system.") .SetDefault(0); - AddAttr("data_type", "output tensor data type") + AddAttr("data_type", "(int, default 5(FP32)) Output tensor data type") .SetDefault(framework::DataType::FP32); } }; diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index dcae426c7e231757d796c5a84cc5a1c2b0d6763b..d3fc544ec712a753304de8568534c78c154774a5 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -238,7 +238,8 @@ void BindVarDsec(py::module &m) { .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS) .value("FEED_MINIBATCH", VarDesc::FEED_MINIBATCH) .value("FETCH_LIST", VarDesc::FETCH_LIST) - .value("STEP_SCOPES", VarDesc::STEP_SCOPES); + .value("STEP_SCOPES", VarDesc::STEP_SCOPES) + .value("LOD_RANK_TABLE", VarDesc::LOD_RANK_TABLE); } void BindOpDesc(py::module &m) { diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index aab08a759b094382c62feec57c6a907490331fea..78dc7943b3644e7014da427e6aca640d94746f68 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -21,6 +21,7 @@ limitations under the License. */ #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" #include "paddle/framework/framework.pb.h" +#include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/prune.h" #include "paddle/framework/selected_rows.h" @@ -224,6 +225,9 @@ All parameter, weight, gradient are variables in Paddle. return self.GetMutable(); }, py::return_value_policy::reference) + .def("get_lod_rank_table", + [](Variable &self) { return self.GetMutable(); }, + py::return_value_policy::reference) .def("get_selected_rows", [](Variable &self) -> SelectedRows * { return self.GetMutable(); @@ -492,6 +496,15 @@ All parameter, weight, gradient are variables in Paddle. BindVarDsec(m); BindOpDesc(m); + py::class_(m, "LodRankTable") + .def("items", [](framework::LoDRankTable &table) { + std::vector> res; + for (auto &item : table.items()) { + res.push_back({item.index, item.length}); + } + return res; + }); + m.def("op_support_gpu", OpSupportGPU); #ifdef PADDLE_WITH_CUDA m.def("get_cuda_device_count", platform::GetCUDADeviceCount); diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index a08716c5a559def54bb7b989f250b489f6a805a2..5bdf8c833522564e6b1027ca5dad8c0bb481cdc4 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -162,6 +162,7 @@ ${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_GPU_ENV} ADD go/cmd/pserver/pserver /usr/bin/ ADD go/cmd/master/master /usr/bin/ +ADD paddle/pybind/print_operators_doc /usr/bin/ # default command shows the paddle version and exit CMD ["paddle", "version"] EOF diff --git a/python/paddle/v2/framework/framework.py b/python/paddle/v2/framework/framework.py index a890bbf598569ecb7d8f9f6b02ca4ab9895d149e..4e737549c929c6d5b2f2784f4fe9bcfeedae66e2 100644 --- a/python/paddle/v2/framework/framework.py +++ b/python/paddle/v2/framework/framework.py @@ -101,6 +101,10 @@ class Variable(object): def persistable(self): return self.desc.persistable() + @persistable.setter + def persistable(self, p): + self.desc.set_persistable(p) + @property def name(self): return self.desc.name() diff --git a/python/paddle/v2/framework/layer_helper.py b/python/paddle/v2/framework/layer_helper.py index aa7dd0b50d430352d681bac5175b84850f672c46..9e80eaa647366d13f8d9d55745067b7b29091d32 100644 --- a/python/paddle/v2/framework/layer_helper.py +++ b/python/paddle/v2/framework/layer_helper.py @@ -112,9 +112,12 @@ class LayerHelper(object): raise ValueError("Data Type mismatch") return dtype - def create_parameter(self, attr, shape, dtype, suffix='w'): + def create_parameter(self, attr, shape, dtype, suffix='w', + initializer=None): # Deepcopy the attr so that parameters can be shared in program attr_copy = copy.deepcopy(attr) + if initializer is not None: + attr_copy['initializer'] = initializer if attr_copy['name'] is None: attr_copy['name'] = unique_name(".".join([self.name, suffix])) self.init_program.global_block().create_parameter( diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index a98b4e554f9877436381ced6a2576bbe286feb3f..8b7d6fc32bff716d12c685180a25112f5573207b 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -1,8 +1,7 @@ -from paddle.v2.framework.layer_helper import LayerHelper, unique_name import paddle.v2.framework.core as core -from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \ - Operator -from paddle.v2.framework.initializer import ConstantInitializer +from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, Operator +from paddle.v2.framework.initializer import ConstantInitializer, NormalInitializer +from paddle.v2.framework.layer_helper import LayerHelper, unique_name import re __all__ = [ @@ -344,8 +343,13 @@ def conv2d(input, input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size + + std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 filter = helper.create_parameter( - attr=helper.param_attr, shape=filter_shape, dtype=dtype) + attr=helper.param_attr, + shape=filter_shape, + dtype=dtype, + initializer=NormalInitializer(0.0, std, 0)) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( @@ -420,7 +424,7 @@ def batch_norm(input, act=None, is_test=False, momentum=0.9, - epsilon=1e05, + epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', @@ -438,27 +442,29 @@ def batch_norm(input, else: raise ValueError("unsupported data layout:" + data_layout) - def create_persistable_var(dtype, shape, initializer=None): - name = unique_name(".".join([helper.name, "xxxx"])) - var = init_program.global_block().create_var( - dtype=dtype, shape=shape, name=name, persistable=True) - if initializer is not None: - initializer(var, var.block) - return program.global_block().create_var( - name=name, dtype=dtype, shape=shape, persistable=True) - param_shape = [channel_num] # create parameter scale = helper.create_parameter( - attr=helper.param_attr, shape=param_shape, dtype=dtype) + attr=helper.param_attr, + shape=param_shape, + dtype=dtype, + initializer=ConstantInitializer(1.0)) bias = helper.create_parameter( - attr=helper.param_attr, shape=param_shape, dtype=dtype) + attr=helper.param_attr, + shape=param_shape, + dtype=dtype, + initializer=ConstantInitializer(0.0)) - # create input - mean = create_persistable_var(dtype, param_shape, ConstantInitializer(0.0)) - variance = create_persistable_var(dtype, param_shape, - ConstantInitializer(1.0)) + mean = helper.create_global_variable( + dtype=input.data_type, shape=param_shape, persistable=True) + helper.set_variable_initializer( + var=mean, initializer=ConstantInitializer(0.0)) + + variance = helper.create_global_variable( + dtype=input.data_type, shape=param_shape, persistable=True) + helper.set_variable_initializer( + var=variance, initializer=ConstantInitializer(1.0)) # create output # mean and mean_out share the same memory @@ -729,3 +735,16 @@ class StaticRNN(object): 'states': memories, 'step_block': rnn_block }) + + +def lod_rank_table(x, level=0, program=None): + helper = LayerHelper("lod_rank_table", **locals()) + table = helper.create_variable( + type=core.VarDesc.VarType.LOD_RANK_TABLE, + name=unique_name("lod_rank_table")) + helper.append_op( + type='lod_rank_table', + inputs={'X': x}, + outputs={'Out': table}, + attrs={'level': level}) + return table diff --git a/python/paddle/v2/framework/tests/test_crf_decoding_op.py b/python/paddle/v2/framework/tests/test_crf_decoding_op.py new file mode 100644 index 0000000000000000000000000000000000000000..ee2b996bf430d5a0edaa0de459a937adffd9f8f6 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_crf_decoding_op.py @@ -0,0 +1,146 @@ +import unittest +import random +import numpy as np + +from op_test import OpTest + + +class CRFDecoding(object): + def __init__(self, emission_weights, transition_weights, + seq_start_positions): + assert (emission_weights.shape[0] == seq_start_positions[-1]) + self.tag_num = emission_weights.shape[1] + self.seq_num = len(seq_start_positions) - 1 + + self.seq_start_positions = seq_start_positions + self.x = emission_weights + + self.a = transition_weights[0, :] + self.b = transition_weights[1, :] + self.w = transition_weights[2:, :] + + self.track = np.zeros( + (seq_start_positions[-1], self.tag_num), dtype="int32") + self.decoded_path = np.zeros( + (seq_start_positions[-1], 1), dtype="int32") + + def _decode_one_sequence(self, decoded_path, x): + seq_len, tag_num = x.shape + alpha = np.zeros((seq_len, tag_num), dtype="float64") + track = np.zeros((seq_len, tag_num), dtype="int32") + + for i in range(tag_num): + alpha[0, i] = self.a[i] + x[0, i] + + for k in range(1, seq_len): + for i in range(tag_num): + max_score = -np.finfo("float64").max + max_idx = 0 + for j in range(tag_num): + score = alpha[k - 1, j] + self.w[j, i] + if score > max_score: + max_score = score + max_idx = j + alpha[k, i] = max_score + x[k, i] + track[k, i] = max_idx + + max_score = -np.finfo("float64").max + max_idx = 0 + for i in range(tag_num): + score = alpha[seq_len - 1, i] + self.b[i] + if score > max_score: + max_score = score + max_idx = i + + decoded_path[-1] = max_idx + for i in range(seq_len - 1, 0, -1): + decoded_path[i - 1] = max_idx = track[i, max_idx] + + def decode(self): + for i in range(self.seq_num): + start = self.seq_start_positions[i] + end = self.seq_start_positions[i + 1] + self._decode_one_sequence(self.decoded_path[start:end, :], + self.x[start:end, :]) + return self.decoded_path + + +class TestCRFDecodingOp1(OpTest): + """ + Compare the dynamic program with random generated parameters and inputs + with grouth truth not being given. + """ + + def set_test_data(self): + SEQ_NUM = 3 + TAG_NUM = 17 + MAX_SEQ_LEN = 10 + + lod = [[0]] + for i in range(SEQ_NUM): + lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN)) + emission = np.random.uniform(-1, 1, + [lod[-1][-1], TAG_NUM]).astype("float64") + transition = np.random.uniform(-0.5, 0.5, + [TAG_NUM + 2, TAG_NUM]).astype("float64") + + self.inputs = { + "Emission": (emission, lod), + "Transition": transition, + } + + decoder = CRFDecoding(emission, transition, lod[0]) + decoded_path = decoder.decode() + + self.outputs = {"ViterbiPath": decoded_path} + + def setUp(self): + self.op_type = "crf_decoding" + self.set_test_data() + + def test_check_output(self): + self.check_output() + + +class TestCRFDecodingOp2(OpTest): + """ + Compare the dynamic program with brute force computation with + ground truth being given. + """ + + def setUp(self): + self.op_type = "crf_decoding" + TAG_NUM = 5 + + lod = [[0, 1, 3, 6, 10]] + transition = np.repeat( + np.arange( + TAG_NUM, dtype="float64").reshape(1, TAG_NUM), + TAG_NUM + 2, + axis=0) + emission = np.repeat( + np.arange( + TAG_NUM, dtype="float64").reshape(1, TAG_NUM), + lod[-1][-1], + axis=0) + + labels = np.random.randint( + low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int32") + predicted_labels = np.ones( + (lod[-1][-1], 1), dtype="int32") * (TAG_NUM - 1) + expected_output = (labels == predicted_labels).astype("int32") + + self.inputs = { + "Emission": (emission, lod), + "Transition": transition, + "Label": (labels, lod) + } + + self.outputs = {"ViterbiPath": expected_output} + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_image_classification_train.py b/python/paddle/v2/framework/tests/test_image_classification_train.py index 21adc7f38f8a0463fab020aab87751fe69a9b76f..7189adbf8fc55bb188cd9c99ba8b17c6ad6a4794 100644 --- a/python/paddle/v2/framework/tests/test_image_classification_train.py +++ b/python/paddle/v2/framework/tests/test_image_classification_train.py @@ -1,13 +1,12 @@ +import numpy as np import paddle.v2 as paddle +import paddle.v2.framework.core as core import paddle.v2.framework.layers as layers import paddle.v2.framework.nets as nets -import paddle.v2.framework.core as core import paddle.v2.framework.optimizer as optimizer - -from paddle.v2.framework.framework import Program, g_program from paddle.v2.framework.executor import Executor - -import numpy as np +from paddle.v2.framework.framework import g_init_program, g_program +from paddle.v2.framework.initializer import XavierInitializer def resnet_cifar10(input, depth=32, program=None, init_program=None): @@ -124,7 +123,7 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None): return pool -def vgg16_bn_drop(input, program, init_program): +def vgg16_bn_drop(input, program=None, init_program=None): def conv_block(input, num_filter, groups, @@ -155,6 +154,7 @@ def vgg16_bn_drop(input, program, init_program): fc1 = layers.fc(input=drop, size=512, act=None, + param_attr={"initializer": XavierInitializer()}, program=program, init_program=init_program) reshape1 = layers.reshape( @@ -169,46 +169,34 @@ def vgg16_bn_drop(input, program, init_program): fc2 = layers.fc(input=drop2, size=512, act=None, + param_attr={"initializer": XavierInitializer()}, program=program, init_program=init_program) return fc2 -init_program = Program() -program = Program() - classdim = 10 data_shape = [3, 32, 32] -images = layers.data( - name='pixel', shape=data_shape, data_type='float32', program=program) - -label = layers.data( - name='label', - shape=[1], - data_type='int64', - program=program, - init_program=init_program) +images = layers.data(name='pixel', shape=data_shape, data_type='float32') +label = layers.data(name='label', shape=[1], data_type='int64') # Add neural network config # option 1. resnet -net = resnet_cifar10(images, 32, program, init_program) +# net = resnet_cifar10(images, 32) # option 2. vgg -# net = vgg16_bn_drop(images, program, init_program) +net = vgg16_bn_drop(images) # print(program) -predict = layers.fc(input=net, - size=classdim, - act='softmax', - program=program, - init_program=init_program) -cost = layers.cross_entropy( - input=predict, label=label, program=program, init_program=init_program) -avg_cost = layers.mean(x=cost, program=program, init_program=init_program) +predict = layers.fc(input=net, size=classdim, act='softmax') +cost = layers.cross_entropy(input=predict, label=label) +avg_cost = layers.mean(x=cost) +accuracy = layers.accuracy(input=predict, label=label) -sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) -opts = sgd_optimizer.minimize(avg_cost, init_program) +# optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +optimizer = optimizer.AdamOptimizer(learning_rate=0.001) +opts = optimizer.minimize(avg_cost) BATCH_SIZE = 128 PASS_NUM = 1 @@ -221,7 +209,7 @@ train_reader = paddle.batch( place = core.CPUPlace() exe = Executor(place) -exe.run(init_program, feed={}, fetch_list=[]) +exe.run(g_init_program, feed={}, fetch_list=[]) for pass_id in range(PASS_NUM): batch_id = 0 @@ -239,14 +227,15 @@ for pass_id in range(PASS_NUM): tensor_img.set(img_data, place) tensor_y.set(y_data, place) - outs = exe.run(program, + outs = exe.run(g_program, feed={"pixel": tensor_img, "label": tensor_y}, - fetch_list=[avg_cost]) + fetch_list=[avg_cost, accuracy]) loss = np.array(outs[0]) + acc = np.array(outs[1]) print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) + - " loss:" + str(loss)) + " loss:" + str(loss) + " acc:" + str(acc)) batch_id = batch_id + 1 if batch_id > 1: diff --git a/python/paddle/v2/framework/tests/test_lod_rank_table.py b/python/paddle/v2/framework/tests/test_lod_rank_table.py new file mode 100644 index 0000000000000000000000000000000000000000..f635e716bcd0b338159235c1c66c490a14d53b07 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_lod_rank_table.py @@ -0,0 +1,29 @@ +from paddle.v2.framework.layers import lod_rank_table, data +from paddle.v2.framework.executor import Executor +from paddle.v2.framework.framework import g_program +import paddle.v2.framework.core as core +import numpy +import unittest + + +class TestLoDRankTable(unittest.TestCase): + def test_lod_rank_table(self): + x = data(name='x', shape=[100]) + cpu = core.CPUPlace() + rank_table = lod_rank_table(x=x, level=1) + rank_table.persistable = True + exe = Executor(cpu) + scope = core.Scope() + + tensor = core.LoDTensor() + tensor.set(numpy.random.random(size=(17, 100)), cpu) + tensor.set_lod([[0, 1, 3], [0, 5, 6, 7], [0, 3, 4, 9, 10, 13, 16, 17]]) + + exe.run(g_program, scope=scope, feed={'x': tensor}) + var = scope.find_var(rank_table.name) + table = var.get_lod_rank_table() + self.assertEqual([(0, 5), (1, 1), (2, 1)], table.items()) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py b/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py index c116d1a6d359751cceac419b4a26e41746689214..e848db170167944a975906b25ad54177ef2de5da 100644 --- a/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py +++ b/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py @@ -57,6 +57,8 @@ label = layers.data( cost = layers.cross_entropy( input=predict, label=label, program=program, init_program=init_program) avg_cost = layers.mean(x=cost, program=program, init_program=init_program) +accuracy = layers.accuracy( + input=predict, label=label, program=program, init_program=init_program) optimizer = optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9) opts = optimizer.minimize(avg_cost, init_program) @@ -87,9 +89,9 @@ for pass_id in range(PASS_NUM): outs = exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, - fetch_list=[avg_cost]) + fetch_list=[avg_cost, accuracy]) out = np.array(outs[0]) - + acc = np.array(outs[1]) if out[0] < 5.0: exit(0) # if avg cost less than 5.0, we think our code is good. exit(1)