Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c4e54acd
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4e54acd
编写于
4月 06, 2022
作者:
W
weishengying
提交者:
GitHub
4月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rewrite pattern form paddle op tp trt op (#41323)
上级
5c6e4bff
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
296 addition
and
120 deletion
+296
-120
paddle/infrt/dialect/tensorrt/convert.h
paddle/infrt/dialect/tensorrt/convert.h
+96
-89
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
+4
-6
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
+111
-18
paddle/infrt/dialect/tensorrt/trt_ops.td
paddle/infrt/dialect/tensorrt/trt_ops.td
+8
-7
paddle/infrt/kernel/tensorrt/trt_kernels.cc
paddle/infrt/kernel/tensorrt/trt_kernels.cc
+6
-0
paddle/infrt/kernel/tensorrt/trt_layers.h
paddle/infrt/kernel/tensorrt/trt_layers.h
+71
-0
未找到文件。
paddle/infrt/dialect/tensorrt/convert.h
浏览文件 @
c4e54acd
...
...
@@ -58,58 +58,110 @@ template <>
}
static
mlir
::
Value
createTRTConv2dOp
(
mlir
::
PatternRewriter
&
rewriter
,
// NOLINT
mlir
::
Operation
*
op
)
{
mlir
::
Operation
*
op
,
mlir
::
Value
input
,
mlir
::
Value
filter
)
{
auto
conv_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Conv2dOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
::
mlir
::
Operation
::
operand_range
Input
=
conv_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Filter
=
conv_op
.
getODSOperands
(
1
);
operands
.
push_back
((
*
Input
.
begin
()));
operands
.
push_back
((
*
Filter
.
begin
()));
operands
.
push_back
(
input
);
operands
.
push_back
(
filter
);
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
conv_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
// TODO(weishengying) : get out_channel_num for filter shape
auto
tblgen_attr
=
rewriter
.
getSI32IntegerAttr
(
3
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"out_channel_num"
),
tblgen_attr
);
auto
*
filter_producer
=
filter
.
getDefiningOp
();
auto
create_inited_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
filter_producer
);
CHECK_NOTNULL
(
create_inited_tensor_op
);
mlir
::
ArrayAttr
dims
=
create_inited_tensor_op
.
dims
();
CHECK_EQ
(
dims
.
size
(),
4U
);
CHECK
(
dims
[
0
].
getType
().
isIntOrIndex
());
const
int32_t
n_output
=
dims
[
0
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
const
int32_t
filter_h
=
dims
[
2
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
const
int32_t
filter_w
=
dims
[
3
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
auto
padding_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"paddings"
);
llvm
::
SmallVector
<
int32_t
,
4
>
paddings
(
padding_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
padding_attr
.
size
();
i
++
)
{
paddings
[
i
]
=
padding_attr
[
i
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
}
{
// TODO(weishengying) : get kernel_size for filter shape
auto
tblgen_attr
=
rewriter
.
getI32ArrayAttr
({
3
,
3
});
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"kernel_size"
),
tblgen_attr
);
auto
dilations_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"dilations"
);
llvm
::
SmallVector
<
int32_t
>
dilations
(
dilations_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
dilations_attr
.
size
();
i
++
)
{
dilations
[
i
]
=
dilations_attr
[
i
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"strides"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"strides"
),
tblgen_attr
);
llvm
::
SmallVector
<
int32_t
,
2
>
nv_paddings
(
2
);
llvm
::
SmallVector
<
int32_t
,
4
>
nv_pre_paddings
(
2
);
llvm
::
SmallVector
<
int32_t
,
4
>
nv_post_paddings
(
2
);
llvm
::
SmallVector
<
int32_t
,
2
>
nv_dilations
({
dilations
[
0
],
dilations
[
1
]});
int32_t
nv_padding_mode
=
0
;
// nvinfer1::PaddingMode::kEXPLICIT_ROUND_DOWN
auto
padding_algorithm_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"padding_algorithm"
);
if
(
padding_algorithm_attr
.
strref
()
==
"VALID"
)
{
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
i
++
)
{
paddings
[
i
]
=
0
;
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"paddings"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"paddings"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"padding_algorithm"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"padding_mode"
),
tblgen_attr
);
if
(
padding_algorithm_attr
.
strref
()
==
"SAME"
)
{
nv_padding_mode
=
2
;
// nvinfer1::PaddingMode::kSAME_UPPER
nv_dilations
[
0
]
=
1
;
nv_dilations
[
1
]
=
1
;
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
IntegerAttr
>
(
"groups"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"groups"
),
tblgen_attr
);
if
(
paddings
.
size
()
==
2
)
{
nv_paddings
[
0
]
=
paddings
[
0
];
nv_paddings
[
1
]
=
paddings
[
1
];
}
else
{
CHECK_EQ
(
paddings
.
size
(),
4U
);
nv_pre_paddings
[
0
]
=
paddings
[
0
];
nv_pre_paddings
[
1
]
=
paddings
[
2
];
nv_post_paddings
[
0
]
=
paddings
[
1
];
nv_post_paddings
[
1
]
=
paddings
[
3
];
}
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"out_channel_num"
),
rewriter
.
getSI32IntegerAttr
(
n_output
));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"kernel_size"
),
rewriter
.
getI32ArrayAttr
({
filter_h
,
filter_w
}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"dilations"
),
rewriter
.
getI32ArrayAttr
({
nv_dilations
[
0
],
nv_dilations
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"padding_mode"
),
rewriter
.
getSI32IntegerAttr
(
nv_padding_mode
));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"paddings"
),
rewriter
.
getI32ArrayAttr
({
paddings
[
0
],
paddings
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"pre_paddings"
),
rewriter
.
getI32ArrayAttr
({
nv_pre_paddings
[
0
],
nv_pre_paddings
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"post_paddings"
),
rewriter
.
getI32ArrayAttr
({
nv_post_paddings
[
0
],
nv_post_paddings
[
1
]}));
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"dilation
s"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"
dilation
s"
),
tblgen_attr
);
auto
tblgen_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
IntegerAttr
>
(
"group
s"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"
group
s"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"data_format
"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"
data_format
"
),
tblgen_attr
);
auto
tblgen_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"strides
"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"
strides
"
),
tblgen_attr
);
}
return
rewriter
.
create
<
trt
::
ConvolutionOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
conv_
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
static
inline
mlir
::
ArrayAttr
TransposeWeight
(
...
...
@@ -193,51 +245,6 @@ inline ::llvm::SmallVector<::mlir::Value, 4> createTrtFcOp(
return
tblgen_repl_values
;
}
static
mlir
::
Value
createTRTShuffledOp
(
mlir
::
PatternRewriter
&
rewriter
,
// NOLINT
mlir
::
Operation
*
op
,
const
mlir
::
Value
&
input
,
const
mlir
::
Attribute
&
start
,
const
mlir
::
Attribute
&
stop
)
{
auto
flatten_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Flatten_contiguous_rangeOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
operands
.
push_back
(
input
);
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
flatten_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
mlir
::
IntegerAttr
start_attr
=
start
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
mlir
::
IntegerAttr
stop_attr
=
stop
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
int
start_axis
=
start_attr
.
getSInt
();
int
stop_axis
=
stop_attr
.
getSInt
();
// TODO(weishengying) : get dim form DenseTonsor
int
dims
=
4
;
// TODO(weishengying) : get input_dims form DenseTonsor
int
input_dims
[
4
]
=
{
1
,
2048
,
1
,
1
};
int
dim_prod
=
1
;
std
::
vector
<
int
>
flatten_dim
(
dims
-
(
stop_axis
-
start_axis
));
for
(
int
i
=
0
,
j
=
0
;
i
<
dims
;
++
i
)
{
if
(
start_axis
<=
i
+
1
&&
i
+
1
<=
stop_axis
)
{
int
dim_i
=
input_dims
[
i
];
dim_prod
*=
dim_i
;
if
(
i
+
1
==
stop_axis
)
{
flatten_dim
[
j
++
]
=
dim_prod
;
}
}
else
{
flatten_dim
[
j
++
]
=
input_dims
[
i
];
}
}
auto
reshape_arrt
=
rewriter
.
getI32ArrayAttr
(
flatten_dim
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"reshape"
),
reshape_arrt
);
return
rewriter
.
create
<
trt
::
ShuffleOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
inline
mlir
::
IntegerAttr
CreatePoolingType
(
mlir
::
PatternRewriter
&
builder
,
// NOLINT
mlir
::
StringAttr
pool_type
)
{
...
...
@@ -339,7 +346,7 @@ inline ::llvm::SmallVector<::mlir::Value, 4> CreatePaddleTrtPoolingOp(
PoolingOp
pool_op
;
{
auto
ods_loc
=
builder
.
getFusedLoc
({
input_producer
->
getLoc
()});
builder
.
create
<
PoolingOp
>
(
ods_loc
,
pool_op
=
builder
.
create
<
PoolingOp
>
(
ods_loc
,
input
.
getType
(),
input
,
pool_type_attr
,
...
...
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
浏览文件 @
c4e54acd
...
...
@@ -25,11 +25,11 @@ def PD2TRT_Relu6_Lower : Pat<
(PD_Relu6Op $X, $threshold),
(TRT_ActivationOp $X, (TRT_createNvinferEnumAttr<"nvinfer1::ActivationType", "kCLIP">), (INFRT_createF32Attr<"0.0">), $threshold)>;
def createTRTConv2dOp : NativeCodeCall<"createTRTConv2dOp($_builder, $0.getDefiningOp())">;
def createTRTConv2dOp : NativeCodeCall<"createTRTConv2dOp($_builder, $0.getDefiningOp()
, $1, $2
)">;
def PD2TRT_Conv2d_Lower : Pat<
(PD_Conv2dOp:$old_value $Input, $Filter, $strides, $paddings, $padding_algorithm, $groups, $dilations, $data_format),
(createTRTConv2dOp $old_value)>;
(createTRTConv2dOp $old_value
, $Input, $Filter
)>;
def createTrtPoolingOp : NativeCodeCall<"::infrt::trt::CreatePaddleTrtPoolingOp($_builder, $0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $10)">;
def PD2TRT_Pooling_Lower : Pat<
...
...
@@ -50,9 +50,7 @@ def PD2TRT_Fc_Lower : Pat<
(PD_Elementwise_addOp:$elt_out (PD_Matmul_v2Op $X, $Y, $trans_x, $trans_y), $elt_y, $axis),
(createTrtFcOp $X, $Y, $elt_y, $elt_out)>;
def createTRTShuffledOp : NativeCodeCall<"createTRTShuffledOp($_builder, $0.getDefiningOp(), $1, $2, $3)">;
def PD2TRT_Flatten_contiguous_range_Lower : Pat<
(PD_Flatten_contiguous_rangeOp
:$out
$input, $start_axis, $end_axis),
(
createTRTShuffledOp $out,
$input, $start_axis, $end_axis)>;
(PD_Flatten_contiguous_rangeOp $input, $start_axis, $end_axis),
(
TRT_ShuffleOp
$input, $start_axis, $end_axis)>;
#endif // PD_LOWER_TO_TRT
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
浏览文件 @
c4e54acd
...
...
@@ -92,20 +92,122 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
::
mlir
::
Operation
::
operand_range
Input
=
casted_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Scale
=
casted_op
.
getODSOperands
(
1
);
::
mlir
::
Operation
::
operand_range
Bias
=
casted_op
.
getODSOperands
(
2
);
::
mlir
::
Operation
::
operand_range
Mean
=
casted_op
.
getODSOperands
(
3
);
::
mlir
::
Operation
::
operand_range
Variance
=
casted_op
.
getODSOperands
(
4
);
operands
.
push_back
(
Input
[
0
]);
operands
.
push_back
(
Bias
[
0
]);
operands
.
push_back
(
Scale
[
0
]);
// TODO(weishengying) : recompute this via params
operands
.
push_back
((
*
Input
.
begin
()));
operands
.
push_back
((
*
Scale
.
begin
()));
operands
.
push_back
((
*
Bias
.
begin
()));
operands
.
push_back
((
*
Bias
.
begin
()));
auto
*
scale_producer
=
Scale
[
0
].
getDefiningOp
();
auto
create_scale_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
scale_producer
);
CHECK_NOTNULL
(
create_scale_tensor_op
);
trt
::
ScaleNdOp
scaleNd_op
;
// inputs
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
trt_inputs
;
for
(
auto
v
:
operands
)
{
trt_inputs
.
push_back
(
v
);
auto
*
bias_producer
=
Bias
[
0
].
getDefiningOp
();
auto
create_bias_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
bias_producer
);
CHECK_NOTNULL
(
create_bias_tensor_op
);
auto
*
mean_producer
=
Mean
[
0
].
getDefiningOp
();
auto
create_mean_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
mean_producer
);
CHECK_NOTNULL
(
create_mean_tensor_op
);
auto
*
variance_producer
=
Variance
[
0
].
getDefiningOp
();
auto
create_variance_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
variance_producer
);
CHECK_NOTNULL
(
create_variance_tensor_op
);
llvm
::
SmallVector
<
double
>
scale_data
;
mlir
::
ArrayAttr
scale_array_attr
=
create_scale_tensor_op
.
values
();
CHECK_GT
(
scale_array_attr
.
size
(),
0U
);
CHECK
(
scale_array_attr
[
0
].
getType
().
isF32
());
scale_data
.
resize
(
scale_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
scale_array_attr
.
size
();
i
++
)
{
scale_data
[
i
]
=
scale_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
llvm
::
SmallVector
<
double
>
bias_data
;
mlir
::
ArrayAttr
bias_array_attr
=
create_bias_tensor_op
.
values
();
CHECK_GT
(
bias_array_attr
.
size
(),
0U
);
CHECK
(
bias_array_attr
[
0
].
getType
().
isF32
());
bias_data
.
resize
(
bias_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
bias_array_attr
.
size
();
i
++
)
{
bias_data
[
i
]
=
bias_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
llvm
::
SmallVector
<
double
>
mean_data
;
mlir
::
ArrayAttr
mean_array_attr
=
create_mean_tensor_op
.
values
();
CHECK_GT
(
mean_array_attr
.
size
(),
0U
);
CHECK
(
mean_array_attr
[
0
].
getType
().
isF32
());
mean_data
.
resize
(
mean_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
mean_array_attr
.
size
();
i
++
)
{
mean_data
[
i
]
=
mean_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
llvm
::
SmallVector
<
double
>
variance_data
;
mlir
::
ArrayAttr
variance_array_attr
=
create_variance_tensor_op
.
values
();
CHECK_GT
(
variance_array_attr
.
size
(),
0U
);
CHECK
(
variance_array_attr
[
0
].
getType
().
isF32
());
variance_data
.
resize
(
variance_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
variance_array_attr
.
size
();
i
++
)
{
variance_data
[
i
]
=
variance_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
double
eps
=
casted_op
.
epsilonAttr
().
getValueAsDouble
();
llvm
::
SmallVector
<
float
>
combile_scale_data
;
combile_scale_data
.
resize
(
scale_data
.
size
());
llvm
::
SmallVector
<
float
>
combile_bias_data
;
combile_bias_data
.
resize
(
bias_data
.
size
());
size_t
ele_num
=
combile_scale_data
.
size
();
for
(
size_t
i
=
0
;
i
<
ele_num
;
i
++
)
{
float
scale
=
scale_data
[
i
];
float
bias
=
bias_data
[
i
];
float
mean
=
mean_data
[
i
];
float
variance
=
variance_data
[
i
];
combile_scale_data
[
i
]
=
scale
/
sqrtf
(
variance
+
eps
);
combile_bias_data
[
i
]
=
bias
-
mean
*
combile_scale_data
[
i
];
}
rewriter
.
setInsertionPoint
(
create_scale_tensor_op
);
auto
new_scale_op
=
rewriter
.
create
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
create_scale_tensor_op
->
getLoc
(),
create_scale_tensor_op
.
output
().
getType
(),
create_scale_tensor_op
.
context
(),
create_bias_tensor_op
.
dims
(),
::
infrt
::
LayoutAttr
::
get
(
rewriter
.
getContext
(),
::
infrt
::
LayoutType
::
NCHW
),
create_scale_tensor_op
.
lod
(),
rewriter
.
getF32ArrayAttr
(
combile_scale_data
));
rewriter
.
replaceOp
(
create_scale_tensor_op
,
new_scale_op
->
getResults
());
rewriter
.
setInsertionPoint
(
create_bias_tensor_op
);
auto
new_bias_op
=
rewriter
.
create
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
create_bias_tensor_op
->
getLoc
(),
create_bias_tensor_op
.
output
().
getType
(),
create_bias_tensor_op
.
context
(),
create_bias_tensor_op
.
dims
(),
::
infrt
::
LayoutAttr
::
get
(
rewriter
.
getContext
(),
::
infrt
::
LayoutType
::
NCHW
),
create_bias_tensor_op
.
lod
(),
rewriter
.
getF32ArrayAttr
(
combile_bias_data
));
rewriter
.
replaceOp
(
create_bias_tensor_op
,
new_bias_op
->
getResults
());
rewriter
.
setInsertionPoint
(
op
);
trt
::
ScaleNdOp
scaleNd_op
;
// resultTypes
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
casted_op
.
getODSResults
(
0
))
{
...
...
@@ -114,15 +216,6 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
// attributes
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
auto
mode_attr
=
rewriter
.
getI32IntegerAttr
(
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"mode"
),
mode_attr
);
}
{
auto
axis_attr
=
rewriter
.
getI32IntegerAttr
(
-
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"axis"
),
axis_attr
);
}
auto
result
=
rewriter
.
create
<
trt
::
ScaleNdOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
)
...
...
paddle/infrt/dialect/tensorrt/trt_ops.td
浏览文件 @
c4e54acd
...
...
@@ -81,7 +81,9 @@ def TRT_ConvolutionOp : TRT_Op<"Convolution", [NoSideEffect]> {
I32ArrayAttr:$kernel_size,
I32ArrayAttr:$strides,
I32ArrayAttr:$paddings,
StrAttr:$padding_mode,
I32ArrayAttr:$pre_paddings,
I32ArrayAttr:$post_paddings,
DefaultValuedAttr<SI32Attr, "0">:$padding_mode, //kEXPLICIT_ROUND_DOWN
SI32Attr:$groups,
I32ArrayAttr:$dilations
);
...
...
@@ -97,11 +99,11 @@ def TRT_PoolingOp : TRT_Op<"Pooling", [NoSideEffect]> {
}];
let arguments = (ins
DenseTensor:$input_tensor,
I32Attr:$pool_type,
S
I32Attr:$pool_type,
I32ArrayAttr:$window_size,
I32ArrayAttr:$strides,
I32ArrayAttr:$paddings,
I32Attr:$padding_mode,
S
I32Attr:$padding_mode,
BoolAttr:$exclusive,
BoolAttr:$adaptive,
StrAttr:$padding_algorithm
...
...
@@ -195,11 +197,9 @@ def TRT_ScaleNdOp : TRT_Op<"ScaleNd", [NoSideEffect]> {
}];
let arguments = (ins
DenseTensor:$input_tensor,
I32Attr:$mode,
DenseTensor:$shift,
DenseTensor:$scale,
DenseTensor:$power,
I32Attr:$axis
Optional<DenseTensor>:$power
);
let results = (outs DenseTensor:$Out);
...
...
@@ -214,7 +214,8 @@ def TRT_ShuffleOp : TRT_Op<"Shuffle", [NoSideEffect]> {
}];
let arguments = (ins
DenseTensor:$input_tensor,
I32ArrayAttr:$reshape
DefaultValuedAttr<SI32Attr, "1">:$start_axis,
DefaultValuedAttr<SI32Attr, "1">:$stop_axis
);
let results = (outs DenseTensor:$Out);
...
...
paddle/infrt/kernel/tensorrt/trt_kernels.cc
浏览文件 @
c4e54acd
...
...
@@ -141,6 +141,12 @@ namespace tensorrt {
ConvFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
PoolingOp
op
=
llvm
::
dyn_cast
<
trt
::
PoolingOp
>
(
operation
))
{
PoolFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
ShuffleOp
op
=
llvm
::
dyn_cast
<
trt
::
ShuffleOp
>
(
operation
))
{
ShuffleFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
ScaleNdOp
op
=
llvm
::
dyn_cast
<
trt
::
ScaleNdOp
>
(
operation
))
{
ScaleNdFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
{
CHECK
(
false
)
<<
"not supported operation."
;
}
...
...
paddle/infrt/kernel/tensorrt/trt_layers.h
浏览文件 @
c4e54acd
...
...
@@ -151,6 +151,77 @@ inline void FcFunc(trt::FullyConnectedOp& op, // NOLINT
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
0
);
value_to_trt_tensor_map
[
out_repr
]
=
out_tensor
;
}
inline
void
ShuffleFunc
(
trt
::
ShuffleOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
nvinfer1
::
ITensor
*
input
=
value_to_trt_tensor_map
[
input_tensor_repr
];
int
dims
=
input
->
getDimensions
().
nbDims
;
int
start_axis
=
op
.
start_axisAttr
().
getInt
();
int
stop_axis
=
op
.
start_axisAttr
().
getInt
();
nvinfer1
::
IShuffleLayer
*
layer
=
nullptr
;
if
(
start_axis
<
0
)
start_axis
+=
dims
+
1
;
if
(
stop_axis
<
0
)
stop_axis
+=
dims
+
1
;
int
dim_prod
=
1
;
nvinfer1
::
Dims
flatten_dim
;
flatten_dim
.
nbDims
=
dims
-
(
stop_axis
-
start_axis
);
for
(
int
i
=
0
,
j
=
0
;
i
<
dims
;
++
i
)
{
if
(
start_axis
<=
i
+
1
&&
i
+
1
<=
stop_axis
)
{
int
dim_i
=
input
->
getDimensions
().
d
[
i
];
CHECK_GT
(
dim_i
,
0
);
dim_prod
*=
dim_i
;
if
(
i
+
1
==
stop_axis
)
{
flatten_dim
.
d
[
j
++
]
=
dim_prod
;
}
}
else
{
flatten_dim
.
d
[
j
++
]
=
input
->
getDimensions
().
d
[
i
];
}
}
layer
=
network
->
addShuffle
(
*
value_to_trt_tensor_map
[
input_tensor_repr
]);
CHECK_NOTNULL
(
layer
);
layer
->
setReshapeDimensions
(
flatten_dim
);
for
(
size_t
i
=
0
;
i
<
op
->
getNumResults
();
++
i
)
{
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
i
);
mlir
::
Value
out_value
=
op
->
getResult
(
i
);
value_to_trt_tensor_map
[
out_value
]
=
out_tensor
;
}
}
inline
void
ScaleNdFunc
(
trt
::
ScaleNdOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
nvinfer1
::
ITensor
*
input
=
value_to_trt_tensor_map
[
input_tensor_repr
];
mlir
::
Value
shift_tensor_repr
=
op
.
shift
();
nvinfer1
::
Weights
shift
=
TensorToWeights
(
value_to_tensor_map
[
shift_tensor_repr
]);
mlir
::
Value
scale_tensor_repr
=
op
.
scale
();
nvinfer1
::
Weights
scale
=
TensorToWeights
(
value_to_tensor_map
[
scale_tensor_repr
]);
nvinfer1
::
Weights
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
nvinfer1
::
IScaleLayer
*
layer
=
nullptr
;
layer
=
network
->
addScaleNd
(
*
input
,
nvinfer1
::
ScaleMode
::
kCHANNEL
,
shift
,
scale
,
power_weights
,
0
);
CHECK_NOTNULL
(
layer
);
for
(
size_t
i
=
0
;
i
<
op
->
getNumResults
();
++
i
)
{
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
i
);
mlir
::
Value
out_value
=
op
->
getResult
(
i
);
value_to_trt_tensor_map
[
out_value
]
=
out_tensor
;
}
}
}
// namespace tensorrt
}
// namespace kernel
}
// namespace infrt
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录