未验证 提交 c4e04986 编写于 作者: P pangyoki 提交者: GitHub

[NPU] add dropout npu op (#34081)

* add dropout npu op

* fix bugs

* add unittest

* fix bugs

* support 1-D input
上级 4d842050
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class DropoutNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* seed_tensor =
ctx.HasInput("Seed") ? ctx.Input<Tensor>("Seed") : nullptr;
auto* out = ctx.Output<Tensor>("Out");
auto* mask = ctx.Output<Tensor>("Mask");
auto dropout_prob = ctx.Attr<float>("dropout_prob");
auto is_test = ctx.Attr<bool>("is_test");
out->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (dropout_prob == 1.) {
const auto& runner_zeros_out = NpuOpRunner("ZerosLike", {*out}, {*out});
runner_zeros_out.Run(stream);
mask->mutable_data<uint8_t>(ctx.GetPlace());
const auto& runner_zeros_mask =
NpuOpRunner("ZerosLike", {*mask}, {*mask});
runner_zeros_mask.Run(stream);
return;
}
// only achive the default `upscale_in_train` method
if (!is_test) {
Tensor tmp_x(x->type());
Tensor tmp_out(out->type());
tmp_x.ShareDataWith(*x);
tmp_out.ShareDataWith(*out);
if (x->dims().size() == 1) {
// DropOutDoMask will get error result when input
// is 1-D. Make it become 2-D.
std::vector<int> vec_dim = framework::vectorize<int>(x->dims());
tmp_x.Resize(framework::make_ddim({vec_dim[0], 1}));
tmp_out.Resize(framework::make_ddim({vec_dim[0], 1}));
}
int seed = 0;
int seed2 = 0;
float keep_prob = 1. - dropout_prob;
if (seed_tensor) {
std::vector<int> seed_data;
TensorToVector(*seed_tensor, ctx.device_context(), &seed_data);
seed = seed_data[0];
} else {
seed = ctx.Attr<bool>("fix_seed") ? ctx.Attr<int>("seed") : 0;
}
Tensor keep_prob_tensor(x->type());
keep_prob_tensor.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&keep_prob_tensor,
static_cast<T>(keep_prob));
mask->mutable_data<uint8_t>(ctx.GetPlace());
// mask used in `DropOutGenMask` NPU OP is different from
// the output `Mask`.
Tensor npu_mask(framework::proto::VarType::UINT8);
uint32_t length = (x->numel() + 128 - 1) / 128 * 128;
npu_mask.Resize(framework::make_ddim({length / 8}));
npu_mask.mutable_data<uint8_t>(ctx.GetPlace());
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
NpuOpRunner runner_gen_mask;
runner_gen_mask.SetType("DropOutGenMask")
.AddInput(framework::vectorize(tmp_out.dims()))
.AddInput(keep_prob_tensor)
.AddOutput(npu_mask)
.AddAttr("seed", seed)
.AddAttr("seed2", seed2);
runner_gen_mask.Run(stream);
NpuOpRunner runner_dropout;
runner_dropout.SetType("DropOutDoMask")
.AddInput(tmp_x)
.AddInput(npu_mask)
.AddInput(keep_prob_tensor)
.AddOutput(tmp_out);
runner_dropout.Run(stream);
// cast `out` from float/float16 to bool
Tensor cast_mask(framework::proto::VarType::BOOL);
cast_mask.Resize(mask->dims());
cast_mask.mutable_data<bool>(ctx.GetPlace());
auto dst_dtype_bool = ConvertToNpuDtype(cast_mask.type());
const auto& runner_cast_mask_bool =
NpuOpRunner("Cast", {*out}, {cast_mask},
{{"dst_type", static_cast<int>(dst_dtype_bool)}});
runner_cast_mask_bool.Run(stream);
// cast cast_mask from bool to uint8
auto dst_dtype_uint8 = ConvertToNpuDtype(mask->type());
const auto& runner_cast_mask_uint8 =
NpuOpRunner("Cast", {cast_mask}, {*mask},
{{"dst_type", static_cast<int>(dst_dtype_uint8)}});
runner_cast_mask_uint8.Run(stream);
} else {
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
}
}
};
template <typename DeviceContext, typename T>
class DropoutGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = ctx.Input<Tensor>("Mask");
auto dropout_prob = ctx.Attr<float>("dropout_prob");
auto is_test = ctx.Attr<bool>("is_test");
PADDLE_ENFORCE_EQ(is_test, false,
platform::errors::PreconditionNotMet(
"GradOp is only callable when is_test is false"));
dx->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (dropout_prob == 1.) {
const auto& runner_zeros = NpuOpRunner("ZerosLike", {*dx}, {*dx});
runner_zeros.Run(stream);
return;
}
// cast mask from uint8 to float32/float16
Tensor cast_mask(dx->type());
cast_mask.Resize(mask->dims());
cast_mask.mutable_data<T>(ctx.GetPlace());
auto dst_dtype = ConvertToNpuDtype(dx->type());
const auto& runner_cast_mask =
NpuOpRunner("Cast", {*mask}, {cast_mask},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast_mask.Run(stream);
const auto& runner =
NpuOpRunner("MaskedScale", {*dout, cast_mask}, {*dx},
{{"value", static_cast<float>(1. / (1 - dropout_prob))}});
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
dropout, ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
dropout_grad,
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
...@@ -32,6 +32,7 @@ namespace operators { ...@@ -32,6 +32,7 @@ namespace operators {
static std::map<framework::proto::VarType::Type, aclDataType> static std::map<framework::proto::VarType::Type, aclDataType>
DTYPE_2_ACL_DTYPE = { DTYPE_2_ACL_DTYPE = {
{framework::proto::VarType::BOOL, ACL_BOOL}, {framework::proto::VarType::BOOL, ACL_BOOL},
{framework::proto::VarType::UINT8, ACL_UINT8},
{framework::proto::VarType::INT16, ACL_INT16}, {framework::proto::VarType::INT16, ACL_INT16},
{framework::proto::VarType::INT32, ACL_INT32}, {framework::proto::VarType::INT32, ACL_INT32},
{framework::proto::VarType::INT64, ACL_INT64}, {framework::proto::VarType::INT64, ACL_INT64},
...@@ -325,17 +326,24 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor, ...@@ -325,17 +326,24 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
auto dtype = ConvertToNpuDtype(tensor.type()); auto dtype = ConvertToNpuDtype(tensor.type());
auto format = ConvertToNpuFormat(tensor.layout()); auto format = ConvertToNpuFormat(tensor.layout());
auto dims = framework::vectorize(tensor.dims()); auto dims = framework::vectorize(tensor.dims());
int size = dims.size();
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
if (op_type_ == "DropOutGenMask" && size == 1 && *(dims.data()) == 1) {
size = 0;
}
VLOG(4) << "NPU dtype:" << dtype << " " VLOG(4) << "NPU dtype:" << dtype << " "
<< "rank:" << dims.size() << " dims:" << tensor.dims() << "rank:" << dims.size() << " dims:" << tensor.dims()
<< " format:" << format; << " format:" << format;
auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format); auto *desc = aclCreateTensorDesc(dtype, size, dims.data(), format);
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
desc, platform::errors::External("Call aclCreateTensorDesc failed.")); desc, platform::errors::External("Call aclCreateTensorDesc failed."));
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format)); PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
PADDLE_ENFORCE_NPU_SUCCESS( PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageShape(desc, size, dims.data()));
aclSetTensorStorageShape(desc, dims.size(), dims.data()));
if (mem_type == ACL_MEMTYPE_HOST) { if (mem_type == ACL_MEMTYPE_HOST) {
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type)); PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
} }
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
EPOCH = 100
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOp(OpTest):
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((32, 64)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64)).astype('uint8')
}
def init_dtype(self):
self.dtype = np.float32
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
def test_check_grad_normal(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(
self.place, ['X'], 'Out', check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOpInput1d(TestDropoutOp):
# change input shape
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((3, 62)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((3, 62)).astype('uint8')
}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOpInput1d(TestDropoutOp):
# the input is 1-D
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((2000, )).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((2000)).astype('uint8')
}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOp2(TestDropoutOp):
# the dropout_prob is 1.0
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((32, 64)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 1.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': np.zeros((32, 64)).astype('float32'),
'Mask': np.zeros((32, 64)).astype('uint8')
}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOp3(TestDropoutOp):
# the input dim is 3
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((32, 64, 2)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64, 2)).astype('uint8')
}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
class TestDropoutOpInference(OpTest):
# is_test = True
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((32, 64)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.35,
'fix_seed': True,
'is_test': True,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {'Out': self.inputs['X']}
def init_dtype(self):
self.dtype = np.float32
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
class TestDropoutOpInference2(TestDropoutOpInference):
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((32, 64, 3)).astype(self.dtype)}
self.attrs = {
'dropout_prob': 0.75,
'is_test': True,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {'Out': self.inputs['X']}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOpWithSeed(TestDropoutOp):
# the seed is a Tensor
def setUp(self):
self.op_type = "dropout"
self.set_npu()
self.init_dtype()
self.inputs = {
"X": np.random.random((32, 64)).astype(self.dtype),
"Seed": np.asarray(
[125], dtype="int32")
}
self.attrs = {
'dropout_prob': 0.0,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64)).astype('uint8')
}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutOpFp16(TestDropoutOp):
# float16
def init_dtype(self):
self.dtype = np.float16
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
self.place = paddle.NPUPlace(0)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestDropoutAPI(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.places = [fluid.CPUPlace(), paddle.NPUPlace(0)]
def check_static_result(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[40, 40], dtype="float32")
res1 = paddle.nn.functional.dropout(
x=input, p=0., training=False, mode='upscale_in_train')
res2 = paddle.nn.functional.dropout(
x=input, p=0., axis=0, training=True, mode='upscale_in_train')
res3 = paddle.nn.functional.dropout(
x=input, p=0., axis=0, training=False, mode='upscale_in_train')
res4 = paddle.nn.functional.dropout(
x=input,
p=0.,
axis=[0, 1],
training=True,
mode='upscale_in_train')
res5 = paddle.nn.functional.dropout(
x=input,
p=0.,
axis=[0, 1],
training=False,
mode='upscale_in_train')
res6 = paddle.nn.functional.dropout(
x=input, p=1., training=True, mode='upscale_in_train')
res7 = paddle.fluid.layers.dropout(
x=input,
dropout_prob=0.,
dropout_implementation='upscale_in_train')
res8 = paddle.nn.functional.dropout(
x=input,
p=0.,
axis=(0, 1),
training=False,
mode='upscale_in_train')
in_np = np.random.random([40, 40]).astype("float32")
res_np = in_np
res_np2 = np.zeros_like(in_np)
exe = fluid.Executor(place)
res_list = [res1, res2, res3, res4, res5, res7, res8]
for res in res_list:
fetches = exe.run(fluid.default_main_program(),
feed={"input": in_np},
fetch_list=[res])
self.assertTrue(np.allclose(fetches[0], res_np))
fetches2 = exe.run(fluid.default_main_program(),
feed={"input": in_np},
fetch_list=[res6])
self.assertTrue(np.allclose(fetches2[0], res_np2))
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册