提交 c3e89f30 编写于 作者: G gaoyuan

update accoding to the code review

上级 02d2b7b6
...@@ -15,8 +15,6 @@ limitations under the License. */ ...@@ -15,8 +15,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename T> template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data, __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data, const T* prior_box_var_data,
......
...@@ -20,41 +20,51 @@ from op_test import OpTest ...@@ -20,41 +20,51 @@ from op_test import OpTest
def box_coder(target_box, prior_box, prior_box_var, output_box, code_type): def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
prior_box_x = (prior_box[:, 2] + prior_box[:, 0]) / 2 prior_box_x = (
prior_box_y = (prior_box[:, 3] + prior_box[:, 1]) / 2 (prior_box[:, 2] + prior_box[:, 0]) / 2).reshape(1, prior_box.shape[0])
prior_box_width = (prior_box[:, 2] - prior_box[:, 0]) prior_box_y = (
prior_box_height = (prior_box[:, 3] - prior_box[:, 1]) (prior_box[:, 3] + prior_box[:, 1]) / 2).reshape(1, prior_box.shape[0])
prior_box_width = (
(prior_box[:, 2] - prior_box[:, 0])).reshape(1, prior_box.shape[0])
prior_box_height = (
(prior_box[:, 3] - prior_box[:, 1])).reshape(1, prior_box.shape[0])
prior_box_var = prior_box_var.reshape(1, prior_box_var.shape[0],
prior_box_var.shape[1])
if (code_type == "EncodeCenterSize"): if (code_type == "EncodeCenterSize"):
target_box_x = (target_box[:, 2] + target_box[:, 0]) / 2 target_box_x = ((target_box[:, 2] + target_box[:, 0]) / 2).reshape(
target_box_y = (target_box[:, 3] + target_box[:, 1]) / 2 target_box.shape[0], 1)
target_box_width = (target_box[:, 2] - target_box[:, 0]) target_box_y = ((target_box[:, 3] + target_box[:, 1]) / 2).reshape(
target_box_height = (target_box[:, 3] - target_box[:, 1]) target_box.shape[0], 1)
target_box_width = ((target_box[:, 2] - target_box[:, 0])).reshape(
for i in range(target_box.shape[0]): target_box.shape[0], 1)
output_box[i,:,0] = (target_box_x[i] - prior_box_x) / prior_box_width / \ target_box_height = ((target_box[:, 3] - target_box[:, 1])).reshape(
prior_box_var[:,0] target_box.shape[0], 1)
output_box[i,:,1] = (target_box_y[i] - prior_box_y) / prior_box_height / \
prior_box_var[:,1] output_box[:,:,0] = (target_box_x - prior_box_x) / prior_box_width / \
output_box[i,:,2] = np.log(np.fabs(target_box_width[i] / prior_box_width)) / \ prior_box_var[:,:,0]
prior_box_var[:,2] output_box[:,:,1] = (target_box_y - prior_box_y) / prior_box_height / \
output_box[i,:,3] = np.log(np.fabs(target_box_height[i] / prior_box_height)) / \ prior_box_var[:,:,1]
prior_box_var[:,3] output_box[:,:,2] = np.log(np.fabs(target_box_width / prior_box_width)) / \
prior_box_var[:,:,2]
output_box[:,:,3] = np.log(np.fabs(target_box_height / prior_box_height)) / \
prior_box_var[:,:,3]
elif (code_type == "DecodeCenterSize"): elif (code_type == "DecodeCenterSize"):
for i in range(target_box.shape[0]): target_box = target_box.reshape(target_box.shape[0], 1,
target_box_x = prior_box_var[:,0] * target_box[i][0] * \ target_box.shape[1])
prior_box_width[:] + prior_box_x[:] target_box_x = prior_box_var[:,:,0] * target_box[:,:,0] * \
target_box_y = prior_box_var[:,1] * target_box[i][1] * \ prior_box_width + prior_box_x
prior_box_height[:] + prior_box_y[:] target_box_y = prior_box_var[:,:,1] * target_box[:,:,1] * \
target_box_width = np.exp(prior_box_var[:,2] * target_box[i][2]) * \ prior_box_height + prior_box_y
prior_box_width[:] target_box_width = np.exp(prior_box_var[:,:,2] * target_box[:,:,2]) * \
target_box_height = np.exp(prior_box_var[:,3] * target_box[i][3]) * \ prior_box_width
prior_box_height[:] target_box_height = np.exp(prior_box_var[:,:,3] * target_box[:,:,3]) * \
output_box[i, :, 0] = target_box_x - target_box_width / 2 prior_box_height
output_box[i, :, 1] = target_box_y - target_box_height / 2 output_box[:, :, 0] = target_box_x - target_box_width / 2
output_box[i, :, 2] = target_box_x + target_box_width / 2 output_box[:, :, 1] = target_box_y - target_box_height / 2
output_box[i, :, 3] = target_box_y + target_box_height / 2 output_box[:, :, 2] = target_box_x + target_box_width / 2
output_box[:, :, 3] = target_box_y + target_box_height / 2
def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type): def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册