Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c32040c3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c32040c3
编写于
2月 01, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
WIP: remove fan_in
上级
3f616152
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
101 addition
and
62 deletion
+101
-62
paddle/operators/listen_and_serv_op.cc
paddle/operators/listen_and_serv_op.cc
+9
-41
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+48
-17
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+35
-0
python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_conv_dist.py
...ests/book_distribute/notest_recognize_digits_conv_dist.py
+9
-4
未找到文件。
paddle/operators/listen_and_serv_op.cc
浏览文件 @
c32040c3
...
...
@@ -75,13 +75,6 @@ class ListenAndServOp : public framework::OperatorBase {
server_thread_
->
join
();
}
std
::
string
GetGradVarNameForTrainer
(
const
std
::
string
&
varname
)
const
{
if
(
grads_counter_
.
find
(
varname
)
==
grads_counter_
.
end
())
{
grads_counter_
[
varname
]
=
0
;
}
return
string
::
Sprintf
(
"%s.trainer_%d"
,
varname
,
grads_counter_
[
varname
]
++
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
...
...
@@ -91,9 +84,8 @@ class ListenAndServOp : public framework::OperatorBase {
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_
->
SetScope
(
&
recv_scope
);
rpc_service_
->
SetDevCtx
(
&
dev_ctx
);
auto
param_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"ParamList"
);
auto
grad_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"GradList"
);
auto
fan_in
=
Attr
<
int
>
(
"Fanin"
);
auto
ins
=
Inputs
(
"X"
);
auto
fan_in
=
ins
.
size
();
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
);
auto
*
program
=
block
->
Program
();
...
...
@@ -109,35 +101,21 @@ class ListenAndServOp : public framework::OperatorBase {
int
batch_barrier
=
0
;
while
(
batch_barrier
!=
fan_in
)
{
const
detail
::
MessageWithName
&
v
=
rpc_service_
->
Get
();
auto
grad
_var_name
=
v
.
first
;
if
(
grad
_var_name
==
LISTEN_TERMINATE_MESSAGE
)
{
auto
recv
_var_name
=
v
.
first
;
if
(
recv
_var_name
==
LISTEN_TERMINATE_MESSAGE
)
{
LOG
(
INFO
)
<<
"received terminate message and exit"
;
exit_flag
=
true
;
break
;
}
else
if
(
grad
_var_name
==
BATCH_BARRIER_MESSAGE
)
{
}
else
if
(
recv
_var_name
==
BATCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"recv batch barrier message"
;
batch_barrier
++
;
continue
;
}
else
{
// receive a variable
VLOG
(
3
)
<<
"received grad: "
<<
recv_var_name
;
recv_var_cnt
++
;
auto
it
=
std
::
find
(
grad_list
.
begin
(),
grad_list
.
end
(),
grad_var_name
);
std
::
string
param_var_name
;
if
(
it
!=
grad_list
.
end
())
{
param_var_name
=
param_list
[
it
-
grad_list
.
begin
()];
}
else
{
LOG
(
ERROR
)
<<
"grad has no paired param:"
<<
grad_var_name
;
}
VLOG
(
3
)
<<
"received grad: "
<<
grad_var_name
<<
" updating param: "
<<
param_var_name
;
if
(
fan_in
>
1
)
{
grad_var_name
=
this
->
GetGradVarNameForTrainer
(
grad_var_name
);
}
auto
*
var
=
recv_scope
.
FindVar
(
grad_var_name
);
auto
*
var
=
recv_scope
.
FindVar
(
recv_var_name
);
if
(
var
==
nullptr
)
{
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
grad
_var_name
;
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
recv
_var_name
;
PADDLE_THROW
(
"Can not find server side var"
);
}
detail
::
DeserializeFromMessage
(
v
.
second
,
dev_ctx
,
var
);
...
...
@@ -171,6 +149,7 @@ class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ListenAndServOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) Variables that server recv."
).
AsDuplicable
();
AddComment
(
R"DOC(
ListenAndServ operator
...
...
@@ -184,17 +163,6 @@ from send_op and send back variables to recv_op.
.
AddCustomChecker
([](
const
std
::
string
&
ip
)
{
return
!
ip
.
empty
();
});
AddAttr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
,
"BlockID to run on server side."
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"ParamList"
,
"type list of string"
,
"grad->param name mapping to find which parameters to optimize."
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"GradList"
,
"type list of string"
,
"grad->param name mapping to find which parameters to optimize."
)
.
SetDefault
({});
AddAttr
<
int
>
(
"Fanin"
,
"type int"
,
"Number of trainers in the current cluster job"
)
.
SetDefault
(
1
);
}
};
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
c32040c3
...
...
@@ -82,6 +82,7 @@ class DistributeTranspiler:
def
transpile
(
self
,
optimize_ops
,
params_grads
,
trainer_id
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
...
...
@@ -98,10 +99,19 @@ class DistributeTranspiler:
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param params_grads: list of tuple(weight, gradient)
:type params_grads: list
:param trainer_id: one unique id for each trainer in a job.
:type trainer_id: int
:param program: program to optimize, default is default_main_program
:type program: Program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
:param trainers: total number of workers/trainers in the job
:type trainers: int
:param split_method: A function to determin how to split variables
to different servers equally.
:type split_method: function
"""
assert
(
callable
(
split_method
))
if
program
is
None
:
...
...
@@ -109,6 +119,11 @@ class DistributeTranspiler:
self
.
program
=
program
self
.
trainers
=
trainers
self
.
optimize_ops
=
optimize_ops
# TODO(typhoonzero): currently trainer_id is fetched from cluster system
# like Kubernetes, we should port this to use etcd later when developing
# fluid distributed training with fault-tolerance.
self
.
trainer_id
=
trainer_id
# steps to transpile:
# 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
# 2. modify trainer program add split_op to each Grad.
...
...
@@ -189,10 +204,17 @@ class DistributeTranspiler:
block_map
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
for
varname
,
splited
in
block_map
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
var_mapping
[
varname
]
=
[]
if
len
(
splited
)
==
1
:
var_mapping
[
varname
]
=
[
orig_var
]
# rename var to the trainer_id var
new_var_name
=
"%s.trainer_%d"
%
\
(
orig_var
.
name
,
self
.
trainer_id
)
program
.
global_block
().
rename_var
(
varname
,
new_var_name
)
var_mapping
[
varname
]
=
\
[
program
.
global_block
().
var
(
new_var_name
)]
continue
var_mapping
[
varname
]
=
[]
orig_shape
=
orig_var
.
shape
orig_dim1_flatten
=
1
if
len
(
orig_shape
)
>=
2
:
...
...
@@ -205,11 +227,13 @@ class DistributeTranspiler:
if
len
(
orig_shape
)
>=
2
:
splited_shape
.
extend
(
orig_shape
[
1
:])
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
name
=
"%s.block%d.trainer_%d"
%
(
varname
,
i
,
self
.
trainer_id
),
psersistable
=
False
,
dtype
=
orig_var
.
dtype
,
shape
=
splited_shape
)
# flattend splited var
var_mapping
[
varname
].
append
(
var
)
program
.
global_block
().
sync_with_cpp
()
return
var_mapping
def
_clone_var
(
self
,
block
,
var
):
...
...
@@ -449,6 +473,7 @@ class DistributeTranspiler:
"""
# step5
pserver_program
=
Program
()
recv_inputs
=
[]
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
...
...
@@ -457,13 +482,19 @@ class DistributeTranspiler:
pserver_program
.
global_block
().
create_var
(
name
=
v
.
name
,
persistable
=
True
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
for
trainer_id
in
xrange
(
self
.
trainers
):
# change client side var name to origin name by
# removing ".trainer_%d" suffix
suff_idx
=
v
.
name
.
find
(
".trainer_"
)
if
suff_idx
>=
0
:
orig_var_name
=
v
.
name
[:
suff_idx
]
print
(
"create variable for program: %s.trainer_%d"
%
(
v
.
name
,
trainer_id
))
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d"
%
(
v
.
name
,
trainer_id
),
(
orig_var_
name
,
trainer_id
))
var
=
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d"
%
(
orig_var_
name
,
trainer_id
),
persistable
=
True
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
recv_inputs
.
append
(
var
)
# step6
optimize_sub_program
=
Program
()
# Iterate through the ops and append ops as needed
...
...
@@ -481,20 +512,20 @@ class DistributeTranspiler:
# Append the listen_and_serv op
pserver_program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{},
inputs
=
{
'X'
:
recv_inputs
},
outputs
=
{},
attrs
=
{
"OptimizeBlock"
:
optimize_sub_program
.
global_block
(),
"endpoint"
:
endpoint
,
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
],
"Fanin"
:
self
.
trainers
#
"ParamList": [
#
p.name
#
for p in self.param_grad_ep_mapping[endpoint]["params"]
#
],
#
"GradList": [
#
p.name
#
for p in self.param_grad_ep_mapping[endpoint]["grads"]
#
],
#
"Fanin": self.trainers
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
c32040c3
...
...
@@ -282,6 +282,10 @@ class Variable(object):
def
name
(
self
):
return
self
.
desc
.
name
()
@
name
.
setter
def
name
(
self
,
new_name
):
self
.
desc
.
set_name
(
new_name
)
@
property
def
shape
(
self
):
# convert to tuple, make it as same as numpy API.
...
...
@@ -530,6 +534,12 @@ class Operator(object):
"""
return
self
.
desc
.
input
(
name
)
def
rename_input
(
self
,
old_name
,
new_name
):
self
.
desc
.
rename_input
(
old_name
,
new_name
)
def
rename_output
(
self
,
old_name
,
new_name
):
self
.
desc
.
rename_output
(
old_name
,
new_name
)
@
property
def
input_names
(
self
):
"""
...
...
@@ -539,6 +549,14 @@ class Operator(object):
"""
return
self
.
desc
.
input_names
()
@
property
def
input_arg_names
(
self
):
return
self
.
desc
.
input_arg_names
()
@
property
def
output_arg_names
(
self
):
return
self
.
desc
.
output_arg_names
()
def
output
(
self
,
name
):
"""
Get output arguments by the output parameter name
...
...
@@ -716,6 +734,22 @@ class Block(object):
def
has_var
(
self
,
name
):
return
name
in
self
.
vars
def
rename_var
(
self
,
name
,
new_name
):
"""
Rename variable in vars and ops' inputs and outputs
"""
if
not
self
.
has_var
(
name
):
raise
ValueError
(
"var %s is not in current"
%
name
)
orig_var
=
self
.
var
(
name
)
del
self
.
vars
[
name
]
orig_var
.
name
=
new_name
self
.
vars
[
new_name
]
=
orig_var
for
op
in
self
.
ops
:
if
name
in
op
.
input_arg_names
:
op
.
rename_input
(
name
,
new_name
)
if
name
in
op
.
output_arg_names
:
op
.
rename_output
(
name
,
new_name
)
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
...
...
@@ -803,6 +837,7 @@ class Block(object):
for
p
in
other
.
iter_parameters
():
assert
isinstance
(
p
,
Parameter
)
v
=
self
.
vars
.
get
(
p
.
name
,
None
)
print
(
"var shape to copy"
,
v
)
if
v
is
None
:
raise
ValueError
(
"copy_param_info_from should be invoked with "
"same topology"
)
...
...
python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_conv_dist.py
浏览文件 @
c32040c3
...
...
@@ -58,14 +58,19 @@ trainers = int(os.getenv("TRAINERS")) # total trainer count
current_endpoint
=
os
.
getenv
(
"SERVER_ENDPOINT"
)
# current pserver endpoint
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
# get the training role: trainer/pserver
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
optimize_ops
,
params_grads
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
optimize_ops
,
params_grads
,
0
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
exe
.
run
(
pserver_startup
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录