diff --git a/python/paddle/fft.py b/python/paddle/fft.py index 975e632558feb7bd132eed51e82bf22be766f063..10d637ff8b9ba02d59ed8ce08487874aabb646b2 100644 --- a/python/paddle/fft.py +++ b/python/paddle/fft.py @@ -15,7 +15,8 @@ from typing import Sequence import numpy as np import paddle -from .tensor.attribute import is_complex, is_floating_point, is_integer, _real_to_complex_dtype, _complex_to_real_dtype +from .tensor.attribute import is_complex, is_floating_point, is_integer +from .tensor.creation import _real_to_complex_dtype, _complex_to_real_dtype from .fluid.framework import _non_static_mode from . import _C_ops from .fluid.data_feeder import check_variable_and_dtype diff --git a/python/paddle/fluid/tests/unittests/test_crop_tensor_op.py b/python/paddle/fluid/tests/unittests/test_crop_tensor_op.py index a4552c8f5ddbbd3a5fa93b6aec42d9eaca6fcfc0..04e47bd30ce244612ab2c83bb5c1388e68ad9008 100644 --- a/python/paddle/fluid/tests/unittests/test_crop_tensor_op.py +++ b/python/paddle/fluid/tests/unittests/test_crop_tensor_op.py @@ -17,6 +17,7 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +import paddle import paddle.fluid as fluid @@ -225,31 +226,30 @@ class TestCropTensorException(unittest.TestCase): offset = fluid.data(name='offset', shape=[1], dtype='int32') def attr_shape_type(): - out = fluid.layers.crop_tensor(input1, shape=3) + out = paddle.crop(input1, shape=3) def attr_shape_dtype(): - out = fluid.layers.crop_tensor(input1, shape=[2, 2.0, 3, 3]) + out = paddle.crop(input1, shape=[2, 2.0, 3, 3]) def attr_shape_value1(): - out = fluid.layers.crop_tensor(input1, shape=[2, -2, dim, 3]) + out = paddle.crop(input1, shape=[2, -2, dim, 3]) def attr_shape_value2(): - out = fluid.layers.crop_tensor(input1, shape=[2, 0, dim, 3]) + out = paddle.crop(input1, shape=[2, 0, dim, 3]) def attr_offsets_type(): - out = fluid.layers.crop_tensor( - input1, shape=[2, 2, 3, 3], offsets=0) + out = paddle.crop(input1, shape=[2, 2, 3, 3], offsets=0) def attr_offsets_dtype(): - out = fluid.layers.crop_tensor( + out = paddle.crop( input1, shape=[2, 2, 3, 3], offsets=[0, 1.0, 0, 0]) def attr_offsets_value(): - out = fluid.layers.crop_tensor( + out = paddle.crop( input1, shape=[2, 2, 3, 3], offsets=[0, -1, offset, 0]) def input_dtype(): - out = fluid.layers.crop_tensor(input2, shape=[2, 2, 3, 3]) + out = paddle.crop(input2, shape=[2, 2, 3, 3]) self.assertRaises(TypeError, attr_shape_type) self.assertRaises(TypeError, attr_shape_dtype) diff --git a/python/paddle/fluid/tests/unittests/test_slice_op.py b/python/paddle/fluid/tests/unittests/test_slice_op.py index a565bba304184384c6e760f56baa3bb069fef5ac..34f296c4b63548bd99aef6a2ebe8df0ae68c8929 100644 --- a/python/paddle/fluid/tests/unittests/test_slice_op.py +++ b/python/paddle/fluid/tests/unittests/test_slice_op.py @@ -534,13 +534,13 @@ class TestSliceAPI(unittest.TestCase): # value_int64 is greater than 2147483647 which is the max of int32 value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648) - out_1 = fluid.layers.slice( + out_1 = paddle.slice( x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1]) - out_2 = fluid.layers.slice( + out_2 = paddle.slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1]) - out_3 = fluid.layers.slice( + out_3 = paddle.slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1]) - out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends) + out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends) out_5 = x[-3:3, 0:100, 2:-1] out_6 = x[minus_3:3, 0:100, :, 2:-1] diff --git a/python/paddle/fluid/tests/unittests/test_strided_slice_op.py b/python/paddle/fluid/tests/unittests/test_strided_slice_op.py index ae17cb9b1b57caad1e5c20aa984d2309335c6842..4954cfc97e4e250e624a0b04666a7c027dbb155e 100644 --- a/python/paddle/fluid/tests/unittests/test_strided_slice_op.py +++ b/python/paddle/fluid/tests/unittests/test_strided_slice_op.py @@ -534,25 +534,25 @@ class TestStridedSliceAPI(unittest.TestCase): shape=[3, 4, 5, 6], append_batch_size=False, dtype="float64") - out_1 = fluid.layers.strided_slice( + out_1 = paddle.strided_slice( x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 100, -1], strides=[1, 1, 1]) - out_2 = fluid.layers.strided_slice( + out_2 = paddle.strided_slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1], strides=[1, 1, 1]) - out_3 = fluid.layers.strided_slice( + out_3 = paddle.strided_slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1], strides=[1, 1, 1]) - out_4 = fluid.layers.strided_slice( + out_4 = paddle.strided_slice( x, axes=[0, 1, 2], starts=starts, ends=ends, strides=strides) out_5 = x[-3:3, 0:100:2, -1:2:-1] diff --git a/python/paddle/tensor/attribute.py b/python/paddle/tensor/attribute.py index 07db7794b6d98e1a7fc4b7e5727cce2c98e1474f..757b93dd880787c296366c84110d807bbbbac874 100644 --- a/python/paddle/tensor/attribute.py +++ b/python/paddle/tensor/attribute.py @@ -14,37 +14,128 @@ from __future__ import print_function -from ..framework import core -from ..fluid.layer_helper import LayerHelper +from ..framework import core, _non_static_mode +from ..framework import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype +from ..fluid.data_feeder import check_type + +from .creation import assign +from .creation import _complex_to_real_dtype # TODO: define functions to get tensor attributes -from ..fluid.layers import rank # noqa: F401 -from ..fluid.layers import shape # noqa: F401 import paddle from paddle import _C_ops -from paddle.static import Variable +from ..static import Variable from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode +import numpy as np + __all__ = [] -def _complex_to_real_dtype(dtype): - if dtype == core.VarDesc.VarType.COMPLEX64: - return core.VarDesc.VarType.FP32 - elif dtype == core.VarDesc.VarType.COMPLEX128: - return core.VarDesc.VarType.FP64 - else: - return dtype +def rank(input): + """ + + The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor. + + Args: + input (Tensor): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary. + + Returns: + Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor. + + Examples: + .. code-block:: python + + import paddle + + input = paddle.rand((3, 100, 100)) + rank = paddle.rank(input) + print(rank) + # 3 + """ + check_type(input, 'input', (Variable), 'input') + ndims = len(input.shape) + out = assign(np.array(ndims, 'int32')) + + return out + + +def shape(input): + """ + :alias_main: paddle.shape + :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape + :old_api: paddle.fluid.layers.shape + + **Shape Layer** + + Get the shape of the input. + + .. code-block:: text + + Case1: + Given N-D Tensor: + input = [ [1, 2, 3, 4], [5, 6, 7, 8] ] + Then: + input.shape = [2, 4] + + Case2: + Given SelectedRows: + input.rows = [0, 4, 19] + input.height = 20 + input.value = [ [1, 2], [3, 4], [5, 6] ] # inner tensor + Then: + input.shape = [3, 2] + + Args: + input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64. + If input variable is type of SelectedRows, returns the shape of it's inner tensor. + + Returns: + Variable (Tensor): The shape of the input variable. + + Examples: + .. code-block:: python -def _real_to_complex_dtype(dtype): - if dtype == core.VarDesc.VarType.FP32: - return core.VarDesc.VarType.COMPLEX64 - elif dtype == core.VarDesc.VarType.FP64: - return core.VarDesc.VarType.COMPLEX128 - else: - return dtype + import paddle.fluid as fluid + import numpy as np + import paddle + paddle.enable_static() + + inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32") + output = fluid.layers.shape(inputs) + + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_startup_program()) + + img = np.ones((3, 100, 100)).astype(np.float32) + + res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output]) + print(res) # [array([ 3, 100, 100], dtype=int32)] + """ + if in_dygraph_mode(): + out = _C_ops.final_state_shape(input) + out.stop_gradient = True + return out + if _in_legacy_dygraph(): + out = _C_ops.shape(input) + out.stop_gradient = True + return out + + check_variable_and_dtype(input, 'input', [ + 'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64', + 'complex128' + ], 'shape') + helper = LayerHelper('shape', **locals()) + out = helper.create_variable_for_type_inference(dtype='int32') + helper.append_op( + type='shape', + inputs={'Input': input}, + outputs={'Out': out}, + stop_gradient=True) + + return out def is_complex(x): diff --git a/python/paddle/tensor/creation.py b/python/paddle/tensor/creation.py index 95f145cf447b5dfa3202cc8bb41431cd1d349433..f4f1e7a3d5067109f20ac50f672e151f327f898e 100644 --- a/python/paddle/tensor/creation.py +++ b/python/paddle/tensor/creation.py @@ -14,27 +14,138 @@ from __future__ import print_function import numpy as np +import math from paddle.common_ops_import import fill_constant from ..fluid.layers import utils - -from ..fluid.layers import tensor from ..static import Variable, device_guard from ..framework import _current_expected_place, _get_paddle_place from ..framework import dygraph_only from ..framework import core -from ..fluid.layer_helper import LayerHelper +from ..framework import in_dygraph_mode, _non_static_mode +from ..framework import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder -from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype # TODO: define functions to get create a tensor -from ..fluid.layers import linspace # noqa: F401 import paddle from paddle import _C_ops -from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _in_eager_without_dygraph_check +from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check +import warnings __all__ = [] +def _complex_to_real_dtype(dtype): + if dtype == core.VarDesc.VarType.COMPLEX64: + return core.VarDesc.VarType.FP32 + elif dtype == core.VarDesc.VarType.COMPLEX128: + return core.VarDesc.VarType.FP64 + else: + return dtype + + +def _real_to_complex_dtype(dtype): + if dtype == core.VarDesc.VarType.FP32: + return core.VarDesc.VarType.COMPLEX64 + elif dtype == core.VarDesc.VarType.FP64: + return core.VarDesc.VarType.COMPLEX128 + else: + return dtype + + +def linspace(start, stop, num, dtype=None, name=None): + r""" + This OP return fixed number of evenly spaced values within a given interval. + + Args: + start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \ + or a Tensor of shape [1] with input data type int32, int64, float32 or float64. + stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \ + or a Tensor of shape [1] with input data type int32, int64, float32 or float64. + num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \ + or a Tensor of shape [1] with data type int32. + dtype(np.dtype|str, optional): The data type of output tensor, it could be + int32, int64, float32 and float64. Default: if None, the data type is float32. + name(str, optional): Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name`.Default: None. + + Returns: + Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \ + the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \ + the value with input :attr:`start`. + + Examples: + .. code-block:: python + + import paddle + data = paddle.linspace(0, 10, 5, 'float32') # [0.0, 2.5, 5.0, 7.5, 10.0] + data = paddle.linspace(0, 10, 1, 'float32') # [0.0] + + """ + if dtype is None: + dtype = 'float32' + tensor_num = num + tensor_start = start + tensor_stop = stop + if not isinstance(num, Variable): + check_type(num, 'num', (int), 'linspace') + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + if not isinstance(start, Variable): + with device_guard("cpu"): + tensor_start = fill_constant([1], dtype, start) + if not isinstance(stop, Variable): + with device_guard("cpu"): + tensor_stop = fill_constant([1], dtype, stop) + if not isinstance(num, Variable): + with device_guard("cpu"): + tensor_num = fill_constant([1], 'int32', num) + if _non_static_mode(): + return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype', + dtype) + + helper = LayerHelper("linspace", **locals()) + + start_dtype = convert_dtype(tensor_start.dtype) + stop_dtype = convert_dtype(tensor_stop.dtype) + out_dtype = convert_dtype(dtype) + if isinstance(start, Variable): + check_dtype(start.dtype, 'start', + ['float32', 'float64', 'int32', 'int64'], 'linspace') + else: + check_type(start, 'start', (int, float), 'linspace') + + if isinstance(stop, Variable): + check_dtype(stop.dtype, 'stop', + ['float32', 'float64', 'int32', 'int64'], 'linspace') + else: + check_type(stop, 'stop', (int, float), 'linspace') + if isinstance(num, Variable): + check_dtype(num.dtype, 'num', ['int32'], 'linspace') + check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], + 'linspace') + if ((stop_dtype == "float64" or start_dtype == "float64") and + out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or + start_dtype == "int64") and + out_dtype == "int32"): + raise ValueError( + "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, " + "which may cause data type overflows. Please reset attr(dtype) of linspace." + .format(start_dtype, stop_dtype, dtype)) + + out = helper.create_variable_for_type_inference(dtype=dtype) + + helper.append_op( + type='linspace', + inputs={'Start': tensor_start, + 'Stop': tensor_stop, + 'Num': tensor_num}, + attrs={'dtype': dtype}, + outputs={'Out': [out]}) + if isinstance(num, int): + out.desc.set_shape((num, )) + return out + + @dygraph_only def to_tensor(data, dtype=None, place=None, stop_gradient=True): r""" @@ -60,7 +171,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): Tensor: A Tensor constructed from ``data`` . Raises: - TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor + TypeError: If the data type of ``data`` is not scalar, list, tuple, np.ndarray, paddle.Tensor ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]] TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. @@ -152,7 +263,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): return data else: raise TypeError( - "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor". + "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor". format(type(data))) if not dtype: if data.dtype in [ @@ -439,11 +550,39 @@ def eye(num_rows, num_columns=None, dtype=None, name=None): dtype = 'float32' if num_columns is None: num_columns = num_rows - return paddle.fluid.layers.eye(num_rows=num_rows, - num_columns=num_columns, - batch_shape=None, - dtype=dtype, - name=name) + + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + if num_columns is not None: + if not isinstance(num_columns, int) or num_columns < 0: + raise TypeError("num_columns should be a non-negative int") + else: + num_columns = num_rows + + if _non_static_mode(): + out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns', + num_columns) + + else: + helper = LayerHelper("eye", **locals()) + check_dtype(dtype, 'dtype', + ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye') + if not isinstance(num_rows, int) or num_rows < 0: + raise TypeError("num_rows should be a non-negative int") + out = helper.create_variable_for_type_inference(dtype=dtype) + helper.append_op( + type='eye', + inputs={}, + outputs={'Out': [out]}, + attrs={ + 'num_rows': num_rows, + 'num_columns': num_columns, + 'dtype': dtype + }, + stop_gradient=True) + + out.stop_gradient = True + return out def full(shape, fill_value, dtype=None, name=None): @@ -564,7 +703,53 @@ def arange(start=0, end=None, step=1, dtype=None, name=None): end = start start = 0 - return paddle.fluid.layers.range(start, end, step, dtype, name) + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + + if not isinstance(start, Variable): + with device_guard("cpu"): + start = fill_constant([1], dtype, start, force_cpu=True) + elif start.dtype != dtype: + start = paddle.cast(start, dtype) + + if not isinstance(end, Variable): + with device_guard("cpu"): + end = fill_constant([1], dtype, end, force_cpu=True) + elif end.dtype != dtype: + end = paddle.cast(end, dtype) + + if not isinstance(step, Variable): + with device_guard("cpu"): + step = fill_constant([1], dtype, step, force_cpu=True) + elif step.dtype != dtype: + step = paddle.cast(step, dtype) + + if in_dygraph_mode(): + return _C_ops.final_state_arange(start, end, step, dtype, + _current_expected_place()) + + if _in_legacy_dygraph(): + out = _C_ops.range(start, end, step) + out.stop_gradient = True + return out + + out_shape = None + if not isinstance(start, Variable) and not isinstance( + end, Variable) and not isinstance(step, Variable): + out_shape = [int(math.ceil((end - start) / step))] + + check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], + 'range/arange') + helper = LayerHelper('range', **locals()) + out = helper.create_variable_for_type_inference(dtype, shape=out_shape) + helper.append_op( + type='range', + inputs={'Start': start, + 'End': end, + 'Step': step}, + outputs={'Out': out}) + out.stop_gradient = True + return out def _tril_triu_op(helper): @@ -1187,7 +1372,7 @@ def assign(x, output=None): The OP copies the :attr:`x` to the :attr:`output`. Parameters: - x (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar, + x (Tensor|np.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar, or scalar. Its data type supports float16, float32, float64, int32, int64, and bool. Note: the float64 data will be converted to float32 because of current platform protobuf data limitation. @@ -1211,9 +1396,91 @@ def assign(x, output=None): result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ - check_type(x, 'x', (Variable, np.ndarray, list, tuple, float, int, bool), - 'assign') - return tensor.assign(x, output) + input = x + helper = LayerHelper('assign', **locals()) + check_type(input, 'input', (Variable, np.ndarray, list, tuple, float, int, + bool), 'assign') + is_inplace = True if output is not None else False + + if np.isscalar(input) and not isinstance(input, str): + input = np.array([input]) + elif isinstance(input, (list, tuple)): + input = np.array(input) + # NOTE(Aurelius84): Why we judge core.VarBase? + # In case of @to_static, a VarBase can be as input of `assign`, + # but _non_static_mode()==False under @to_static, which means + # isinstance(VarBase, Variable) == False. It will cause return None + # after this api. + if isinstance(input, (Variable, core.VarBase)): + if _non_static_mode(): + if output is None: + if _in_legacy_dygraph(): + output = core.VarBase() + else: + output = core.eager.Tensor() + _C_ops.assign(input, output) + else: + check_dtype(input.dtype, 'input', [ + 'float16', 'uint16', 'float32', 'float64', 'int32', 'int64', + 'uint8', 'bool' + ], 'assign', '(When the type of input in assign is Variable.)') + if output is None: + output = helper.create_variable_for_type_inference( + dtype=input.dtype) + helper.append_op( + type='assign', inputs={'X': [input]}, + outputs={'Out': [output]}) + elif isinstance(input, np.ndarray): + # Not support [var, var, ...] currently. + if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input): + raise TypeError( + "Required type(input) numpy.ndarray, but found `list(Variable)` in input." + ) + dtype = convert_np_dtype_to_dtype_(input.dtype) + if dtype == core.VarDesc.VarType.FP64: + # Setting FP64 numpy data is not supported in Paddle, so we + # use FP32 here + warnings.warn( + "paddle.assign doesn't support float64 input now due " + "to current platform protobuf data limitation, we convert " + "it to float32") + dtype = core.VarDesc.VarType.FP32 + if dtype == core.VarDesc.VarType.BOOL: + value_name = "bool_values" + values = [int(v) for v in input.flat] + elif dtype == core.VarDesc.VarType.FP32: + value_name = "fp32_values" + values = [float(v) for v in input.flat] + elif dtype == core.VarDesc.VarType.INT32: + value_name = "int32_values" + values = [int(v) for v in input.flat] + elif dtype == core.VarDesc.VarType.INT64: + value_name = "int64_values" + values = [int(v) for v in input.flat] + else: + raise TypeError( + "When the type of 'input' in assign is numpy.ndarray, " + "the data type of 'input' must be bool, float32, int32 or int64, but " + "received %s." % convert_dtype(dtype)) + if input.size > 1024 * 1024: + raise ValueError("The size of input is too big. Please consider " + "saving it to file and 'load_op' to load it") + if output is None: + output = helper.create_variable_for_type_inference( + dtype=input.dtype) + helper.append_op( + type='assign_value', + outputs={'Out': [output]}, + attrs={ + 'dtype': dtype, + 'shape': list(input.shape), + value_name: values + }) + + if is_inplace and _non_static_mode(): + output._bump_inplace_version() + + return output def clone(x, name=None): diff --git a/python/paddle/tensor/linalg.py b/python/paddle/tensor/linalg.py index a00ae8046ed68d77f4f329df0e8ebd8913a6a722..4af4ac52209efcaf7a00d055b1058cb43ebee332 100644 --- a/python/paddle/tensor/linalg.py +++ b/python/paddle/tensor/linalg.py @@ -13,14 +13,16 @@ # limitations under the License. import numpy as np -from ..fluid.layer_helper import LayerHelper +from ..framework import LayerHelper from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..static import Variable from ..fluid.framework import _in_legacy_dygraph from .manipulation import cast +from .math import multiply, add +from .logic import logical_not +from .creation import full -from ..fluid import layers import paddle from paddle.common_ops_import import core from paddle.common_ops_import import VarDesc @@ -2532,11 +2534,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None): y = paddle.to_tensor(y, dtype=x.dtype) condition = s > cutoff - cond_int = layers.cast(condition, s.dtype) - cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) - out1 = layers.elementwise_mul(1 / s, cond_int) - out2 = layers.elementwise_mul(1 / y, cond_not_int) - singular = layers.elementwise_add(out1, out2) + cond_int = cast(condition, s.dtype) + cond_not_int = cast(logical_not(condition), s.dtype) + out1 = multiply(1 / s, cond_int) + out2 = multiply(1 / y, cond_not_int) + singular = add(out1, out2) st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2]) dims = list(range(len(vt.shape))) @@ -2559,11 +2561,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None): y = paddle.to_tensor(y, dtype=s.dtype) condition = s_abs > cutoff - cond_int = layers.cast(condition, s.dtype) - cond_not_int = layers.cast(layers.logical_not(condition), s.dtype) - out1 = layers.elementwise_mul(1 / s, cond_int) - out2 = layers.elementwise_mul(1 / y, cond_not_int) - singular = layers.elementwise_add(out1, out2) + cond_int = cast(condition, s.dtype) + cond_not_int = cast(logical_not(condition), s.dtype) + out1 = multiply(1 / s, cond_int) + out2 = multiply(1 / y, cond_not_int) + singular = add(out1, out2) st, _ = _C_ops.unsqueeze2(singular, 'axes', [-2]) out_1 = u * st @@ -2597,17 +2599,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None): 'keep_dim': True, 'reduce_all': False}) - rcond = layers.fill_constant(shape=[1], value=rcond, dtype=dtype) + rcond = full(shape=[1], fill_value=rcond, dtype=dtype) cutoff = rcond * max_singular_val y = float('inf') - y = layers.fill_constant(shape=[1], value=y, dtype=dtype) + y = full(shape=[1], fill_value=y, dtype=dtype) condition = s > cutoff - cond_int = layers.cast(condition, dtype) - cond_not_int = layers.cast(layers.logical_not(condition), dtype) - out1 = layers.elementwise_mul(1 / s, cond_int) - out2 = layers.elementwise_mul(1 / y, cond_not_int) - singular = layers.elementwise_add(out1, out2) + cond_int = cast(condition, dtype) + cond_not_int = cast(logical_not(condition), dtype) + out1 = multiply(1 / s, cond_int) + out2 = multiply(1 / y, cond_not_int) + singular = add(out1, out2) st = helper.create_variable_for_type_inference(dtype=dtype) st_shape = helper.create_variable_for_type_inference(dtype=dtype) @@ -2682,17 +2684,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None): 'keep_dim': True, 'reduce_all': False}) - rcond = layers.fill_constant(shape=[1], value=rcond, dtype=s_type) + rcond = full(shape=[1], fill_value=rcond, dtype=s_type) cutoff = rcond * max_singular_val y = float('inf') - y = layers.fill_constant(shape=[1], value=y, dtype=s_type) + y = full(shape=[1], fill_value=y, dtype=s_type) condition = s_abs > cutoff - cond_int = layers.cast(condition, s_type) - cond_not_int = layers.cast(layers.logical_not(condition), s_type) - out1 = layers.elementwise_mul(1 / s, cond_int) - out2 = layers.elementwise_mul(1 / y, cond_not_int) - singular = layers.elementwise_add(out1, out2) + cond_int = cast(condition, s_type) + cond_not_int = cast(logical_not(condition), s_type) + out1 = multiply(1 / s, cond_int) + out2 = multiply(1 / y, cond_not_int) + singular = add(out1, out2) st = helper.create_variable_for_type_inference(dtype=s_type) st_shape = helper.create_variable_for_type_inference(dtype=s_type) diff --git a/python/paddle/tensor/manipulation.py b/python/paddle/tensor/manipulation.py index 3a79abd2dc06e67507275dc4ab35adb06b293b03..b0e0082c6d9c492bb163f5b7fc93eee3165a4077 100755 --- a/python/paddle/tensor/manipulation.py +++ b/python/paddle/tensor/manipulation.py @@ -16,32 +16,723 @@ from __future__ import print_function from collections import Counter from ..static import Variable, device_guard -from ..framework import core -from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _in_eager_without_dygraph_check, _non_static_mode -from ..fluid.layer_helper import LayerHelper +from ..framework import core, in_dygraph_mode +from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode +from ..framework import LayerHelper from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype from ..fluid.layers import utils import numpy as np # TODO: define functions to manipulate a tensor -from ..fluid.layers import cast # noqa: F401 -from ..fluid.layers import slice # noqa: F401 -from ..fluid.layers import transpose # noqa: F401 -from ..fluid.layers import unstack # noqa: F401 - -from ..fluid.layers import scatter_nd # noqa: F401 -from ..fluid.layers import shard_index # noqa: F401 -from ..fluid.layers import crop_tensor as crop # noqa: F401 from ..fluid.layers.nn import _elementwise_op_in_dygraph -from ..fluid import layers from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only import paddle from paddle import _C_ops -from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype +from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator +import warnings +from .creation import zeros +from .creation import _complex_to_real_dtype +from .creation import _real_to_complex_dtype __all__ = [] +def cast(x, dtype): + """ + + This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it + to the output with :attr:`dtype`. It's meaningless if the output dtype + equals the input dtype, but it's fine if you do so. + + Args: + x(Tensor): An input N-D Tensor with data type bool, float16, + float32, float64, int32, int64, uint8. + dtype(np.dtype|str): Data type of the output: + bool, float16, float32, float64, int8, int32, int64, uint8. + + Returns: + Tensor: A Tensor with the same shape as input's. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([2, 3, 4], 'float64') + y = paddle.cast(x, 'uint8') + """ + if in_dygraph_mode(): + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + return _C_ops.final_state_cast(x, dtype) + + if _non_static_mode(): + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) + out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype) + return out + + check_variable_and_dtype(x, 'x', [ + 'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64', + 'uint8', 'uint16' + ], 'cast') + check_dtype(dtype, 'dtype', [ + 'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32', + 'int64', 'uint8', 'uint16' + ], 'cast') + + helper = LayerHelper('cast', **locals()) + out = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=x.stop_gradient) + helper.append_op( + type='cast', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'in_dtype': x.dtype, + 'out_dtype': out.dtype}) + return out + + +def slice(input, axes, starts, ends): + """ + This operator produces a slice of ``input`` along multiple axes. Similar to numpy: + https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html + Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and + end dimension for each axis in the list of axes and Slice uses this information + to slice the input data tensor. If a negative value is passed to + ``starts`` or ``ends`` such as :math:`-i`, it represents the reverse position of the + axis :math:`i-1` (here 0 is the initial position). + If the value passed to ``starts`` or ``ends`` is greater than n + (the number of elements in this dimension), it represents n. + For slicing to the end of a dimension with unknown size, it is recommended + to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``. + Following examples will explain how slice works: + + .. code-block:: text + + Case1: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + axes = [0, 1] + starts = [1, 0] + ends = [2, 3] + Then: + result = [ [5, 6, 7], ] + + Case2: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + axes = [0, 1] + starts = [0, 1] + ends = [-1, 1000] # -1 denotes the reverse 0th position of dimension 0. + Then: + result = [ [2, 3, 4], ] # result = data[0:1, 1:4] + + Args: + input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``. + axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to . + starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of + it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor. + It represents starting indices of corresponding axis in ``axes``. + ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of + it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor . + It represents ending indices of corresponding axis in ``axes``. + + Returns: + Tensor: A ``Tensor``. The data type is same as ``input``. + + Raises: + TypeError: The type of ``starts`` must be list, tuple or Tensor. + TypeError: The type of ``ends`` must be list, tuple or Tensor. + + Examples: + .. code-block:: python + + import paddle + + input = paddle.rand(shape=[4, 5, 6], dtype='float32') + # example 1: + # attr starts is a list which doesn't contain tensor. + axes = [0, 1, 2] + starts = [-3, 0, 2] + ends = [3, 2, 4] + sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends) + # sliced_1 is input[0:3, 0:2, 2:4]. + + # example 2: + # attr starts is a list which contain tensor. + minus_3 = paddle.full([1], -3, "int32") + sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends) + # sliced_2 is input[0:3, 0:2, 2:4]. + """ + if in_dygraph_mode(): + attrs = () + starts_tensor = None + ends_tensor = None + + if isinstance(axes, (list, tuple)): + axes = list(axes) + if len(axes) == 0: + raise ValueError( + "Input axes should not be an empty list/tuple.") + for i in range(len(axes)): + if axes[i] < 0: + axes[i] = max(0, axes[i] + len(input.shape)) + else: + axes[i] = min(len(input.shape) - 1, axes[i]) + + else: + raise ValueError( + "Input axes must be a python list or tuple, but reveived {}". + format(type(axes))) + + infer_flags = list(1 for i in range(len(axes))) + + tmp_tensor_type = core.eager.Tensor + + if isinstance(starts, (list, tuple)): + starts = [ + item.numpy().item(0) + if isinstance(item, tmp_tensor_type) else item + for item in starts + ] + attrs += ('starts', starts) + elif isinstance(starts, tmp_tensor_type): + starts_tensor = starts + starts.stop_gradient = True + infer_flags = list(-1 for i in range(len(axes))) + + if isinstance(ends, (list, tuple)): + ends = [ + item.numpy().item(0) + if isinstance(item, tmp_tensor_type) else item for item in ends + ] + attrs += ('ends', ends) + elif isinstance(ends, tmp_tensor_type): + ends_tensor = ends + ends_tensor.stop_gradient = True + infer_flags = list(-1 for i in range(len(axes))) + return _C_ops.slice(input, starts_tensor, ends_tensor, None, None, + 'axes', axes, 'infer_flags', infer_flags, *attrs) + else: + if _in_legacy_dygraph(): + attrs = () + starts_tensor = None + ends_tensor = None + + if isinstance(axes, (list, tuple)): + axes = list(axes) + if len(axes) == 0: + raise ValueError( + "Input axes should not be an empty list/tuple.") + for i in range(len(axes)): + if axes[i] < 0: + axes[i] = max(0, axes[i] + len(input.shape)) + else: + axes[i] = min(len(input.shape) - 1, axes[i]) + + else: + raise ValueError( + "Input axes must be a python list or tuple, but reveived {}". + format(type(axes))) + + infer_flags = list(1 for i in range(len(axes))) + + tmp_tensor_type = Variable + + if isinstance(starts, (list, tuple)): + starts = [ + item.numpy().item(0) + if isinstance(item, tmp_tensor_type) else item + for item in starts + ] + attrs += ('starts', starts) + elif isinstance(starts, tmp_tensor_type): + starts_tensor = starts + starts.stop_gradient = True + infer_flags = list(-1 for i in range(len(axes))) + + if isinstance(ends, (list, tuple)): + ends = [ + item.numpy().item(0) + if isinstance(item, tmp_tensor_type) else item + for item in ends + ] + attrs += ('ends', ends) + elif isinstance(ends, tmp_tensor_type): + ends_tensor = ends + ends_tensor.stop_gradient = True + infer_flags = list(-1 for i in range(len(axes))) + + return _C_ops.slice(input, starts_tensor, ends_tensor, None, None, + 'axes', axes, 'infer_flags', infer_flags, + *attrs) + + if not isinstance(starts, (list, tuple, Variable)): + raise ValueError( + "Input starts must be an Variable, python list or tuple.") + if not isinstance(ends, (list, tuple, Variable)): + raise ValueError( + "Input ends must be an Variable, python list or tuple.") + + helper = LayerHelper('slice', **locals()) + + inputs = {'Input': input} + attrs = {'axes': axes} + infer_flags = list(1 for i in range(len(axes))) + + # starts + if isinstance(starts, Variable): + starts.stop_gradient = True + inputs['StartsTensor'] = starts + infer_flags = list(-1 for i in range(len(axes))) + elif isinstance(starts, (list, tuple)): + attrs['starts'] = [] + if utils._contain_var(starts): + inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts) + for i, dim in enumerate(starts): + if isinstance(dim, Variable): + attrs['starts'].append(-1) + infer_flags[i] = -1 + else: + attrs['starts'].append(dim) + else: + attrs['starts'] = starts + + # ends + if isinstance(ends, Variable): + ends.stop_gradient = True + inputs['EndsTensor'] = ends + infer_flags = list(-1 for i in range(len(axes))) + elif isinstance(ends, (list, tuple)): + attrs['ends'] = [] + if utils._contain_var(ends): + inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends) + for i, dim in enumerate(ends): + if isinstance(dim, Variable): + attrs['ends'].append(-1) + infer_flags[i] = -1 + else: + attrs['ends'].append(dim) + else: + attrs['ends'] = ends + + # infer_flags + attrs['infer_flags'] = infer_flags + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype('input')) + helper.append_op( + type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}) + + return out + + +def transpose(x, perm, name=None): + """ + Permute the data dimensions of `input` according to `perm`. + + The `i`-th dimension of the returned tensor will correspond to the + perm[i]-th dimension of `input`. + + Args: + x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32. + perm (list|tuple): Permute the input according to the data of perm. + name (str): The name of this layer. It is optional. + + Returns: + Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64. + + For Example: + + .. code-block:: text + + x = [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] + [[13 14 15 16] [17 18 19 20] [21 22 23 24]]] + shape(x) = [2,3,4] + + # Example 1 + perm0 = [1,0,2] + y_perm0 = [[[ 1 2 3 4] [13 14 15 16]] + [[ 5 6 7 8] [17 18 19 20]] + [[ 9 10 11 12] [21 22 23 24]]] + shape(y_perm0) = [3,2,4] + + # Example 2 + perm1 = [2,1,0] + y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]] + [[ 2 14] [ 6 18] [10 22]] + [[ 3 15] [ 7 19] [11 23]] + [[ 4 16] [ 8 20] [12 24]]] + shape(y_perm1) = [4,3,2] + + Examples: + + .. code-block:: python + + import paddle + + x = paddle.randn([2, 3, 4]) + x_transposed = paddle.transpose(x, perm=[1, 0, 2]) + print(x_transposed.shape) + # [3L, 2L, 4L] + + """ + if in_dygraph_mode(): + return _C_ops.final_state_transpose(x, perm) + else: + if _in_legacy_dygraph(): + out, _ = _C_ops.transpose2(x, 'axis', perm) + return out + + check_variable_and_dtype(x, 'x', [ + 'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64', + 'complex128' + ], 'transpose') + check_type(perm, 'perm', (list, tuple), 'transpose') + if isinstance(perm, tuple): + perm = list(perm) + if len(perm) != len(x.shape): + raise ValueError( + "Input(perm) is the permutation of dimensions of Input(x), " + "its length should be equal to dimensions of Input(x), " + "but received dimension of Input(x) is %s, " + "the length of Input(perm) is %s." % (len(x.shape), len(perm))) + for idx, dim in enumerate(perm): + if dim >= len(x.shape): + raise ValueError( + "Each element in Input(perm) should be less than Input(x)'s dimension, " + "but %d-th element in Input(perm) is %d which exceeds Input(x)'s " + "dimension %d." % (idx, perm[idx], len(x.shape))) + + helper = LayerHelper('transpose', **locals()) + out = helper.create_variable_for_type_inference(x.dtype) + x_shape = helper.create_variable_for_type_inference(x.dtype) + helper.append_op( + type='transpose2', + inputs={'X': [x]}, + outputs={'Out': [out], + 'XShape': [x_shape]}, + attrs={'axis': perm}) + return out + + +def unstack(x, axis=0, num=None): + """ + :alias_main: paddle.unstack + :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack + :old_api: paddle.fluid.layers.unstack + + **UnStack Layer** + + This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`. + + If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`. + If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`, + and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is + raised. + + Args: + x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64. + axis (int): The axis along which the input is unstacked. + num (int|None): The number of output variables. + + Returns: + list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64. + + Raises: + ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D). + + Examples: + .. code-block:: python + + import paddle + x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32') # create a tensor with shape=[2, 3, 5] + y = paddle.unstack(x, axis=1) # unstack with second axis, which results 3 tensors with shape=[2, 5] + + """ + if _non_static_mode(): + if num == None: + num = x.shape[axis] + if num == 0: + return [] + return _C_ops.unstack(x, num, 'axis', int(axis), 'num', num) + + helper = LayerHelper('unstack', **locals()) + if num is None: + if axis is None or x.shape[axis] <= 0: + raise ValueError('unknown unstack number') + else: + num = x.shape[axis] + + outs = [] + for _ in range(num): + outs.append(helper.create_variable_for_type_inference(x.dtype)) + + helper.append_op( + type='unstack', + inputs={'X': [x]}, + outputs={'Y': outs}, + attrs={'axis': axis, + 'num': num}) + return outs + + +def shard_index(input, index_num, nshards, shard_id, ignore_value=-1): + """ + Reset the values of `input` according to the shard it beloning to. + Every value in `input` must be a non-negative integer, and + the parameter `index_num` represents the integer above the maximum + value of `input`. Thus, all values in `input` must be in the range + [0, index_num) and each value can be regarded as the offset to the beginning + of the range. The range is further split into multiple shards. Specifically, + we first compute the `shard_size` according to the following formula, + which represents the number of integers each shard can hold. So for the + i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size). + :: + + shard_size = (index_num + nshards - 1) // nshards + + For each value `v` in `input`, we reset it to a new value according to the + following formula: + :: + + v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value + + That is, the value `v` is set to the new offset within the range represented by the shard `shard_id` + if it in the range. Otherwise, we reset it to be `ignore_value`. + + Args: + input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1. + index_num (int): An integer represents the integer above the maximum value of `input`. + nshards (int): The number of shards. + shard_id (int): The index of the current shard. + ignore_value (int): An integer value out of sharded index range. + + Returns: + Tensor. + + Examples: + .. code-block:: python + + import paddle + label = paddle.to_tensor([[16], [1]], "int64") + shard_label = paddle.shard_index(input=label, + index_num=20, + nshards=2, + shard_id=0) + print(shard_label) + # [[-1], [1]] + """ + if in_dygraph_mode(): + return _C_ops.final_state_shard_index(input, index_num, nshards, + shard_id, ignore_value) + + check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index') + op_type = 'shard_index' + helper = LayerHelper(op_type, **locals()) + if shard_id < 0 or shard_id >= nshards: + raise ValueError('The shard_id(%d) should be in [0, %d)' % + (shard_id, nshards)) + + out = helper.create_variable_for_type_inference(dtype=input.dtype) + helper.append_op( + type=op_type, + inputs={'X': [input]}, + outputs={'Out': out}, + attrs={ + 'index_num': index_num, + 'nshards': nshards, + 'shard_id': shard_id, + 'ignore_value': ignore_value + }, + stop_gradient=True) + return out + + +def crop(x, shape=None, offsets=None, name=None): + """ + Crop input into output, as specified by offsets and shape. + + .. code-block:: text + + * Case 1 (input is a 2-D Tensor): + Input: + X.shape = [3, 5] + X.data = [[0, 1, 2, 0, 0], + [0, 3, 4, 0, 0], + [0, 0, 0, 0, 0]] + Parameters: + shape = [2, 2] + offsets = [0, 1] + Output: + Out.shape = [2, 2] + Out.data = [[1, 2], + [3, 4]] + * Case 2 (input is a 3-D Tensor): + Input: + X.shape = [2, 3, 4] + X.data = [[[0, 1, 2, 3], + [0, 5, 6, 7], + [0, 0, 0, 0]], + [[0, 3, 4, 5], + [0, 6, 7, 8], + [0, 0, 0, 0]]] + Parameters: + shape = [2, 2, -1] + offsets = [0, 0, 1] + Output: + Out.shape = [2, 2, 3] + Out.data = [[[1, 2, 3], + [5, 6, 7]], + [[3, 4, 5], + [6, 7, 8]]] + + Parameters: + x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64. + shape (list|tuple|Tensor): The output shape is specified + by `shape`. Its data type is int32. If a list/tuple, it's length must be + the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor. + When it is a list, each element can be an integer or a Tensor of shape: [1]. + If Variable contained, it is suitable for the case that the shape may + be changed each iteration. + offsets (list|tuple|Variable, optional): Specifies the cropping + offsets at each dimension. Its data type is int32. If a list/tuple, it's length + must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D + Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1]. + If Variable contained, it is suitable for the case that the offsets may be changed + each iteration. Default: None, the offsets are 0 at each dimension. + name(str, optional): The default value is None. Normally there is no need for user to set + this property. For more information, please refer to :ref:`api_guide_Name` . + + Returns: + Tensor: The cropped Tensor has same data type with `x`. + + Examples: + + .. code-block:: python + :name: code-example1 + + import paddle + x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + # x.shape = [3, 3] + # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] + + # shape can be a 1-D Tensor or list or tuple. + shape = paddle.to_tensor([2, 2], dtype='int32') + # shape = [2, 2] + # shape = (2, 2) + out = paddle.crop(x, shape) + # out.shape = [2, 2] + # out = [[1,2], [4,5]] + + # offsets can be a 1-D Tensor or list or tuple. + offsets = paddle.to_tensor([0, 1], dtype='int32') + # offsets = [1, 0] + # offsets = (1, 1) + out = paddle.crop(x, shape, offsets) + # out.shape = [2, 2] + # if offsets = [0, 0], out = [[1,2], [4,5]] + # if offsets = [0, 1], out = [[2,3], [5,6]] + # if offsets = [1, 0], out = [[4,5], [7,8]] + # if offsets = [1, 1], out = [[5,6], [8,9]] + + """ + helper = LayerHelper('crop_tensor', **locals()) + check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], + 'crop_tensor') + check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor') + check_type(offsets, 'offsets', (list, tuple, Variable, type(None)), + 'crop_tensor') + + if offsets is None: + offsets = [0] * len(x.shape) + + out = helper.create_variable_for_type_inference(x.dtype) + ipts = {'X': x} + attrs = {} + + def _attr_shape_check(shape_val): + if not isinstance(shape_val, int): + raise TypeError( + "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s." + % type(shape_val)) + if shape_val == 0: + raise ValueError( + "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s." + % str(shape_val)) + if shape_val < -1: + raise ValueError( + "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s." + % str(shape_val)) + + def _attr_offsets_check(offset_val): + if not isinstance(offset_val, int): + raise TypeError( + "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s." + % type(offset_val)) + if offset_val < 0: + raise ValueError( + "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s." + % str(offset_val)) + + if isinstance(offsets, Variable): + offsets.stop_gradient = True + ipts['Offsets'] = offsets + attrs['offsets'] = [-1] * len(x.shape) + elif utils._contain_var(offsets): + new_offsets_tensor = [] + offsets_attr = [] + for dim in offsets: + if isinstance(dim, Variable): + dim.stop_gradient = True + new_offsets_tensor.append(dim) + offsets_attr.append(-1) + else: + _attr_offsets_check(dim) + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) + new_offsets_tensor.append(temp_out) + offsets_attr.append(dim) + ipts['OffsetsTensor'] = new_offsets_tensor + attrs['offsets'] = offsets_attr + else: + for offset in offsets: + _attr_offsets_check(offset) + attrs['offsets'] = offsets + + if isinstance(shape, Variable): + shape.stop_gradient = True + ipts['Shape'] = shape + elif utils._contain_var(shape): + new_shape_tensor = [] + shape_attr = [] + for dim_size in shape: + if isinstance(dim_size, Variable): + dim_size.stop_gradient = True + new_shape_tensor.append(dim_size) + shape_attr.append(0) + else: + _attr_shape_check(dim_size) + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant( + [1], 'int32', dim_size, force_cpu=True, out=temp_out) + new_shape_tensor.append(temp_out) + shape_attr.append(dim_size) + ipts['ShapeTensor'] = new_shape_tensor + attrs['shape'] = shape_attr + else: + for dim_size in shape: + _attr_shape_check(dim_size) + attrs['shape'] = shape + + helper.append_op( + type='crop_tensor', + inputs=ipts, + outputs={'Out': out}, + attrs=None if len(attrs) == 0 else attrs) + return out + + @dygraph_only def fill_(x, value): """ @@ -328,7 +1019,74 @@ def concat(x, axis=0, name=None): # [11 12 13] # [14 15 16]] """ - return paddle.fluid.layers.concat(input=x, axis=axis, name=name) + input = x + if in_dygraph_mode(): + if isinstance(axis, Variable): + axis = axis.numpy() + axis = axis.item(0) + if not isinstance(input, Variable): + input = [t for t in input if t.shape.count(0) == 0] + return _C_ops.final_state_concat(input, axis) + + if _in_legacy_dygraph(): + if isinstance(axis, Variable): + axis = axis.numpy() + axis = axis.item(0) + if not isinstance(input, Variable): + input = [t for t in input if t.shape.count(0) == 0] + out = _varbase_creator() + _C_ops.concat(input, out, 'axis', axis) + return out + + check_type(input, 'input', (list, tuple, Variable), 'concat') + if not isinstance(input, Variable): + for id, x in enumerate(input): + check_variable_and_dtype( + x, 'input[' + str(id) + ']', + ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], + 'concat') + if x.dtype != input[0].dtype: + raise TypeError( + "All the Tensors in the input must have the same data type.") + else: + input = [input] + check_type(axis, 'axis', (int, Variable), 'concat') + + if isinstance(axis, Variable): + check_dtype( + axis.dtype, 'axis', ['int32', 'int64'], 'concat', + "The data type of axis must be int32 or int64 when axis is a Tensor") + + helper = LayerHelper('concat', **locals()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) + + if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: + # NOTE(liym27): Don't remove this if branch! + # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0] + # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode. + + assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \ + "number of the elements must be 1, but received %s." % len(input) + out_index = helper.create_variable_for_type_inference(dtype="int32") + helper.append_op( + type='tensor_array_to_tensor', + inputs={'X': input[0]}, + outputs={'Out': [out], + 'OutIndex': [out_index]}, + attrs={'axis': axis, + 'use_stack': False}) + else: + inputs = {'X': input} + attrs = {} + if isinstance(axis, Variable): + axis.stop_gradient = True + inputs['AxisTensor'] = axis + else: + attrs['axis'] = axis + + helper.append_op( + type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs) + return out def broadcast_tensors(input, name=None): @@ -900,7 +1658,53 @@ def stack(x, axis=0, name=None): # [3., 4.], # [5., 6.]]] """ - return layers.stack(x, axis, name) + axis = 0 if axis is None else axis + + if in_dygraph_mode(): + return _C_ops.final_state_stack(x, axis) + + if _in_legacy_dygraph(): + return _C_ops.stack(x, 'axis', axis) + + if not isinstance(x, list) and not isinstance(x, tuple): + # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc. + # In that case, Variable is array of tensors indeed. + if isinstance(x, Variable) and x.desc.type( + ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY: + x = [x] + else: + raise TypeError("The type of '%s' in %s must be %s, but received %s" + % ('x', 'stack', + 'list[Tensor], tuple[Tensor] or TensorArray', + type(x))) + + helper = LayerHelper('stack', **locals()) + + out = helper.create_variable_for_type_inference(x[0].dtype) + if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: + assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \ + "number of the elements must be 1, but received %s." % len(x) + out_index = helper.create_variable_for_type_inference(dtype="int32") + + for i in x: + check_variable_and_dtype(i, 'x', \ + ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack') + + helper.append_op( + type='tensor_array_to_tensor', + inputs={'X': x[0]}, + outputs={'Out': [out], + 'OutIndex': [out_index]}, + attrs={'axis': axis, + 'use_stack': True}) + else: + helper.append_op( + type='stack', + inputs={'X': x}, + outputs={'Y': out}, + attrs={'axis': axis}) + + return out def split(x, num_or_sections, axis=0, name=None): @@ -951,8 +1755,110 @@ def split(x, num_or_sections, axis=0, name=None): print(out1.shape) # [3, 3, 5] print(out2.shape) # [3, 3, 5] """ - return paddle.fluid.layers.split( - input=x, num_or_sections=num_or_sections, dim=axis, name=name) + input = x + dim = axis + if _non_static_mode(): + num = None + attrs = () + + if isinstance(dim, Variable): + dim = dim.numpy() + dim = dim.item(0) + assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0" + dim = (len(input.shape) + dim) if dim < 0 else dim + attrs += ('axis', dim) + + if isinstance(num_or_sections, int): + num = num_or_sections + attrs += ('num', num_or_sections) + elif isinstance(num_or_sections, (list, tuple)): + num = len(num_or_sections) + if utils._contain_var(num_or_sections): + for index, item in enumerate(num_or_sections): + if isinstance(item, Variable): + num_or_sections[index] = num_or_sections[index].numpy()[ + 0] + attrs += ('sections', list(num_or_sections)) + else: + attrs += ('sections', list(num_or_sections)) + else: + raise TypeError( + "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but " + "received %s." % (type(num_or_sections))) + out = [_varbase_creator() for n in range(num)] + _C_ops.split(input, out, *attrs) + return out + + check_variable_and_dtype( + input, 'input', + ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'split') + check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split') + check_type(dim, 'dim', (int, Variable), 'split') + if isinstance(dim, Variable): + check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split') + + helper = LayerHelper('split', **locals()) + + input_shape = input.shape + inputs = {'X': input} + attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0} + + def _get_SectionsTensorList(one_list): + tensor_list = [] + unk_dim_idx = -1 + for idx, dim_size in enumerate(one_list): + if isinstance(dim_size, Variable): + dim_size.stop_gradient = True + tensor_list.append(dim_size) + else: + assert (isinstance(dim_size, int)) + if dim_size == -1: + assert unk_dim_idx == -1, ( + "Only one value of 'num_or_section' in split can " + "be -1. But received num_or_section[%d] is also -1." % + idx) + unk_dim_idx = idx + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant( + [1], 'int32', dim_size, force_cpu=True, out=temp_out) + tensor_list.append(temp_out) + return tensor_list + + if isinstance(dim, Variable): + dim.stop_gradient = True + inputs['AxisTensor'] = dim + else: + assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0" + dim = (len(input_shape) + dim) if dim < 0 else dim + attrs['axis'] = dim + + if isinstance(num_or_sections, int): + assert num_or_sections > 1, 'num_or_sections must be more than 1.' + if isinstance(dim, int) and input_shape[dim] > 0: + assert input_shape[dim] % num_or_sections ==0, \ + "The input's size along the split dimension " \ + "must be evenly divisible by Attr(num_or_sections). " \ + "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim]) + num = num_or_sections + else: + if isinstance(dim, int) and input_shape[dim] > 0: + assert len(num_or_sections) <= input_shape[ + dim], 'len(num_or_sections) must not be more than input.shape[dim].' + num = len(num_or_sections) + attrs['sections'] = list( + map(lambda ele: -1 if isinstance(ele, Variable) else ele, + num_or_sections)) + if utils._contain_var(num_or_sections): + inputs['SectionsTensorList'] = _get_SectionsTensorList( + num_or_sections) + + outs = [ + helper.create_variable_for_type_inference(dtype=helper.input_dtype()) + for i in range(num) + ] + helper.append_op( + type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs) + return outs def squeeze(x, axis=None, name=None): @@ -1035,7 +1941,30 @@ def squeeze(x, axis=None, name=None): elif isinstance(axis, tuple): axis = list(axis) - return layers.squeeze(x, axis, name) + input = x + axes = axis + if in_dygraph_mode(): + return _C_ops.final_state_squeeze(input, axes)[1] + if _in_legacy_dygraph(): + out, _ = _C_ops.squeeze2(input, 'axes', axes) + return out + + helper = LayerHelper("squeeze", **locals()) + check_variable_and_dtype(input, 'input', [ + 'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64', + 'complex64', 'complex128' + ], 'squeeze') + check_type(axes, 'axis/axes', (list, tuple), 'squeeze') + out = helper.create_variable_for_type_inference(dtype=input.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) + helper.append_op( + type="squeeze2", + inputs={"X": input}, + attrs={"axes": axes}, + outputs={"Out": out, + "XShape": x_shape}) + + return out @inplace_apis_in_dygraph_only @@ -1335,8 +2264,61 @@ def unsqueeze(x, axis, name=None): print(out3[0, 0, 0, 0, 0]) # [10.] """ + input = x + axes = axis + if _non_static_mode(): + if isinstance(axes, int): + axes = [axes] + elif isinstance(axes, Variable): + axes = axes.numpy().tolist() + elif isinstance(axes, (list, tuple)): + axes = [ + item.numpy().item(0) if isinstance(item, Variable) else item + for item in axes + ] + if _in_legacy_dygraph(): + out, _ = _C_ops.unsqueeze2(input, 'axes', axes) + return out + return _C_ops.final_state_unsqueeze(input, axes)[1] + + check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze') + check_variable_and_dtype(input, 'input', [ + 'float16', + 'float32', + 'float64', + 'bool', + 'int8', + 'int16', + 'int32', + 'int64', + 'complex64', + 'complex128', + ], 'unsqueeze') + helper = LayerHelper("unsqueeze2", **locals()) + inputs = {"X": input} + attrs = {} + + if isinstance(axes, int): + axes = [axes] + if isinstance(axes, Variable): + axes.stop_gradient = True + inputs["AxesTensor"] = axes + elif isinstance(axes, (list, tuple)): + if utils._contain_var(axes): + inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes) + else: + attrs["axes"] = axes + + out = helper.create_variable_for_type_inference(dtype=input.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) + helper.append_op( + type="unsqueeze2", + inputs=inputs, + attrs=attrs, + outputs={"Out": out, + "XShape": x_shape}) - return layers.unsqueeze(x, axis, name) + return out @inplace_apis_in_dygraph_only @@ -1680,7 +2662,70 @@ def scatter_nd_add(x, index, updates, name=None): index = paddle.to_tensor(index_data) output = paddle.scatter_nd_add(x, index, updates) """ - return layers.scatter_nd_add(x, index, updates, name=None) + if in_dygraph_mode(): + op = getattr(_C_ops, 'scatter_nd_add') + return op(x, index, updates) + else: + if _in_legacy_dygraph(): + op = getattr(_C_ops, 'scatter_nd_add') + return op(x, index, updates) + else: + if x.dtype != updates.dtype: + raise ValueError("x and updates must have same data type.") + + helper = LayerHelper('scatter_nd_add', **locals()) + dtype = helper.input_dtype(input_param_name='x') + output = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type="scatter_nd_add", + inputs={"X": x, + "Index": index, + "Updates": updates}, + outputs={"Out": output}) + return output + + +def scatter_nd(index, updates, shape, name=None): + """ + **Scatter_nd Layer** + + Output is obtained by scattering the :attr:`updates` in a new tensor according + to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the + tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` + is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` . + If :attr:`index` has repeated elements, then the corresponding updates are accumulated. + Because of the numerical approximation issues, the different order of repeated elements + in :attr:`index` may cause different results. The specific calculation method can be + seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op. + + Args: + index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape). + Its dtype should be int32 or int64 as it is used as indexes. + updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64. + It must have the shape index.shape[:-1] + shape[index.shape[-1]:] + shape(tuple|list): Shape of output tensor. + name (str|None): The output Tensor name. If set None, the layer will be named automatically. + + Returns: + output (Tensor): The output is a tensor with the same type as :attr:`updates` . + + Examples: + + .. code-block:: python + + import paddle + import numpy as np + + index_data = np.array([[1, 1], + [0, 1], + [1, 3]]).astype(np.int64) + index = paddle.to_tensor(index_data) + updates = paddle.rand(shape=[3, 9, 10], dtype='float32') + shape = [3, 5, 9, 10] + + output = paddle.scatter_nd(index, updates, shape) + """ + return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name) def chunk(x, chunks, axis=0, name=None): @@ -1722,8 +2767,7 @@ def chunk(x, chunks, axis=0, name=None): # out2.shape [3, 3, 5] """ check_type(chunks, 'chunks', (int), 'chunk') - return paddle.fluid.layers.split( - input=x, num_or_sections=chunks, dim=axis, name=name) + return split(x, num_or_sections=chunks, axis=axis, name=name) def tile(x, repeat_times, name=None): @@ -2136,7 +3180,124 @@ def reshape(x, shape, name=None): # the value is [10.] """ - return paddle.fluid.layers.reshape(x=x, shape=shape, name=name) + actual_shape = None + act = None + inplace = False + + if in_dygraph_mode(): + tmp_tensor_type = core.eager.Tensor + #TODO(zhiqiu): enable inplace in dygraph mode. + if inplace: + warnings.warn( + "Inplace on reshape is not allowed and will be discarded in dygraph mode currently." + ) + if isinstance(shape, (list, tuple)): + shape = [ + item.numpy().item(0) if isinstance(item, Variable) else item + for item in shape + ] + out, _ = _C_ops.reshape2(x, None, 'shape', shape) + elif isinstance(shape, tmp_tensor_type): + shape.stop_gradient = True + out, _ = _C_ops.reshape2(x, shape) + else: + raise ValueError( + "shape must be an instance of `list`, `tuple` or `Variable`," + " got '{}.'".format(type(shape))) + + return dygraph_utils._append_activation_in_dygraph(out, act) + else: + if _in_legacy_dygraph(): + tmp_tensor_type = Variable + if inplace: + warnings.warn( + "Inplace on reshape is not allowed and will be discarded in dygraph mode currently." + ) + if isinstance(shape, (list, tuple)): + shape = [ + item.numpy().item(0) if isinstance(item, Variable) else item + for item in shape + ] + out, _ = _C_ops.reshape2(x, None, 'shape', shape) + elif isinstance(shape, tmp_tensor_type): + shape.stop_gradient = True + out, _ = _C_ops.reshape2(x, shape) + else: + raise ValueError( + "shape must be an instance of `list`, `tuple` or `Variable`," + " got '{}.'".format(type(shape))) + + return dygraph_utils._append_activation_in_dygraph(out, act) + + check_variable_and_dtype(x, 'x', [ + 'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool', + 'uint16' + ], 'reshape') + check_type(shape, 'shape', (list, tuple, Variable), 'reshape') + check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape') + + helper = LayerHelper("reshape2", **locals()) + + def get_attr_shape(list_shape): + unk_dim_idx = -1 + attrs_shape = [] + for dim_idx, dim_size in enumerate(list_shape): + if isinstance(dim_size, Variable): + attrs_shape.append(-1) + else: + attrs_shape.append(dim_size) + if dim_size == -1: + assert unk_dim_idx == -1, ( + "Only one dimension value of 'shape' in reshape can " + "be -1. But received shape[%d] is also -1.\n" + "\n\t# N = x.shape()[2]\t\t# N is an int. " + "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t" + "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])" + "\t# z.shape is [-1, -1, 4]\n\n" + " If your target shape in Reshape represents dynamic shape, " + "please turn it into a Tensor under @to_static. See above example for details." + % dim_idx) + unk_dim_idx = dim_idx + elif dim_size == 0: + assert dim_idx < len(x.shape), ( + "The index of 0 in `shape` must be less than " + "the input tensor X's dimensions. " + "But received shape[%d] = 0, X's dimensions = %d." % + (dim_idx, len(x.shape))) + else: + assert dim_size > 0, ( + "Each dimension value of 'shape' in reshape must not " + "be negative except one unknown dimension. " + "But received shape[%d] = %s." % + (dim_idx, str(dim_size))) + return attrs_shape + + inputs = {"X": x} + attrs = {} + if isinstance(shape, Variable): + shape.stop_gradient = True + inputs["Shape"] = shape + elif isinstance(shape, (list, tuple)): + assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, " + "but received %s." % len(shape)) + attrs["shape"] = get_attr_shape(shape) + if utils._contain_var(shape): + inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape) + elif isinstance(actual_shape, Variable): + actual_shape.stop_gradient = True + inputs["Shape"] = actual_shape + + out = x if inplace else helper.create_variable_for_type_inference( + dtype=x.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op( + type="reshape2", + inputs=inputs, + attrs=attrs, + outputs={"Out": out, + "XShape": x_shape}) + + return helper.append_activation(out) @inplace_apis_in_dygraph_only @@ -2231,8 +3392,24 @@ def gather_nd(x, index, name=None): output = paddle.gather_nd(x, index) #[[3, 4]] """ - - return paddle.fluid.layers.gather_nd(input=x, index=index, name=name) + if in_dygraph_mode(): + return _C_ops.final_state_gather_nd(x, index) + else: + if _in_legacy_dygraph(): + return _C_ops.gather_nd(x, index) + check_variable_and_dtype( + x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'], + 'gather_np') + check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np') + helper = LayerHelper('gather_nd', **locals()) + dtype = helper.input_dtype() + output = helper.create_variable_for_type_inference(dtype) + helper.append_op( + type="gather_nd", + inputs={"X": x, + "Index": index}, + outputs={"Out": output}) + return output def strided_slice(x, axes, starts, ends, strides, name=None): @@ -2318,8 +3495,115 @@ def strided_slice(x, axes, starts, ends, strides, name=None): # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2]. """ - return paddle.fluid.layers.strided_slice( - input=x, axes=axes, starts=starts, ends=ends, strides=strides) + helper = LayerHelper('strided_slice', **locals()) + + check_variable_and_dtype(x, 'x', + ['bool', 'float32', 'float64', 'int32', 'int64'], + 'strided_slice') + check_type(axes, 'axes', (list, tuple), 'strided_slice') + check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice') + check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice') + check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice') + + def check_list_elements_dtype(list_input, input_name): + if isinstance(list_input, Variable): + check_dtype(list_input.dtype, input_name, ['int32'], + 'strided_slice') + else: + for i, var in enumerate(list_input): + var_name = input_name + '[' + str(i) + ']' + if isinstance(var, Variable): + check_dtype(var.dtype, var_name, ['int32'], 'strided_slice') + + check_list_elements_dtype(axes, 'axes') + check_list_elements_dtype(starts, 'starts') + check_list_elements_dtype(ends, 'ends') + check_list_elements_dtype(strides, 'strides') + + def get_new_list_tensor(old_list): + new_list_tensor = [] + for dim in old_list: + if isinstance(dim, Variable): + dim.stop_gradient = True + new_list_tensor.append(dim) + else: + assert (isinstance(dim, int)) + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) + new_list_tensor.append(temp_out) + return new_list_tensor + + inputs = {'Input': x} + attrs = {'axes': axes} + infer_flags = list(1 for i in range(len(axes))) + + if _non_static_mode(): + inputs = {'Input': x} + attrs = { + 'axes': axes, + 'starts': starts, + 'ends': ends, + 'strides': strides, + 'infer_flags': infer_flags + } + else: + # starts + if isinstance(starts, Variable): + starts.stop_gradient = True + inputs['StartsTensor'] = starts + elif isinstance(starts, (list, tuple)): + attrs['starts'] = [] + if utils._contain_var(starts): + inputs['StartsTensorList'] = get_new_list_tensor(starts) + for i, dim in enumerate(starts): + if isinstance(dim, Variable): + attrs['starts'].append(-1) + infer_flags[i] = -1 + else: + attrs['starts'].append(dim) + else: + attrs['starts'] = starts + + # ends + if isinstance(ends, Variable): + ends.stop_gradient = True + inputs['EndsTensor'] = ends + elif isinstance(ends, (list, tuple)): + attrs['ends'] = [] + if utils._contain_var(ends): + inputs['EndsTensorList'] = get_new_list_tensor(ends) + for i, dim in enumerate(ends): + if isinstance(dim, Variable): + attrs['ends'].append(-1) + infer_flags[i] = -1 + else: + attrs['ends'].append(dim) + else: + attrs['ends'] = ends + + # strides + if isinstance(strides, Variable): + strides.stop_gradient = True + inputs['StridesTensor'] = strides + elif isinstance(strides, (list, tuple)): + attrs['strides'] = [] + if utils._contain_var(strides): + inputs['StridesTensorList'] = get_new_list_tensor(strides) + for i, dim in enumerate(strides): + if isinstance(dim, Variable): + attrs['strides'].append(-1) + infer_flags[i] = -1 + else: + attrs['strides'].append(dim) + else: + attrs['strides'] = strides + attrs['infer_flags'] = infer_flags + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype('x')) + helper.append_op( + type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}) + + return out def tensordot(x, y, axes=2, name=None): diff --git a/python/paddle/tensor/random.py b/python/paddle/tensor/random.py index 3d0617e40d6b6a15bfcac7936da689a0bbafafc2..b82f58ea3d08771dcf8ca9231fd0d8744994be7a 100644 --- a/python/paddle/tensor/random.py +++ b/python/paddle/tensor/random.py @@ -16,7 +16,7 @@ from ..framework import core from ..framework import convert_np_dtype_to_dtype_, dygraph_only -from ..fluid.layer_helper import LayerHelper +from ..framework import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape from ..fluid.layers import utils import paddle diff --git a/python/paddle/tensor/search.py b/python/paddle/tensor/search.py index b2fb9d6c37ff22af702d9b26192792b8024864b6..6855b8f0f70610a8d1ba9891e2c819b5c52e2e71 100644 --- a/python/paddle/tensor/search.py +++ b/python/paddle/tensor/search.py @@ -14,7 +14,7 @@ from __future__ import print_function import numpy as np import paddle -from ..fluid.layer_helper import LayerHelper +from ..framework import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..fluid import layers from ..framework import core, in_dygraph_mode, _non_static_mode diff --git a/python/paddle/tensor/stat.py b/python/paddle/tensor/stat.py index 89462e2a8721f53e594e822066a18ccec3032465..9863abe1becbb3647b789fa46b58c9263df61d6a 100644 --- a/python/paddle/tensor/stat.py +++ b/python/paddle/tensor/stat.py @@ -16,7 +16,7 @@ import numpy as np from ..static import Variable -from ..fluid.layer_helper import LayerHelper +from ..framework import LayerHelper from ..framework import core from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode from .search import where