提交 c22f7fcd 编写于 作者: Z zhouxiao-coder

add positive_negative_pair_op evaluator

上级 5d536bcc
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/positive_negative_pair_op.h"
namespace paddle {
namespace operators {
class PositiveNegativePairOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(
ctx->HasInput("Score"),
"Input(Score) of PositiveNegativePairOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("Label"),
"Input(Label) of PositiveNegativePairOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("QueryId"),
"Input(QueryId) of PositiveNegativePairOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("PositivePair"),
"Output(PositivePair) of PositiveNegativePairOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NegativePair"),
"Output(NegativePair) of PositiveNegativePairOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NeutralPair"),
"Output(NeutralPair) of PositiveNegativePairOp should not be null.");
auto score_dim = ctx->GetInputDim("Score");
auto label_dim = ctx->GetInputDim("Label");
auto query_dim = ctx->GetInputDim("QueryId");
PADDLE_ENFORCE(score_dim == label_dim,
"Shape of Score must be the same as Label's shape.");
PADDLE_ENFORCE(query_dim == label_dim,
"Shape of QueryId must be the same as Label's shape.");
PADDLE_ENFORCE(query_dim == label_dim,
"Shape of QueryId must be the same as Label's shape.");
ctx->SetOutputDim("PositivePair", {1});
ctx->SetOutputDim("NegativePair", {1});
ctx->SetOutputDim("NeutralPair", {1});
}
protected:
framework::DataType IndicateDataType(
const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Score")->type());
}
};
class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PositiveNegativePairOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Score",
"(Tensor, float) Output score of the network on <query, document> "
"pair.");
AddInput("Label",
"(Tensor, float or int) Label of current <query, document> pair.");
AddInput("QueryId",
"(Tensor, int) query id of current <query, document> pair.");
AddOutput("PositivePair",
"(float) Number of positive ranking pairs, i.e. the pairs of "
"documents that are ranked correctly");
AddOutput("NegativePair",
"(float) Number of negative ranking pairs, i.e. the pairs of "
"documents that are ranked incorrectly");
AddOutput("NeutralPair",
"(float) Number of neutral ranking pairs. A pair of document "
"(doc#1, doc#2) is classified as \"neutral\" if their scores are "
"the same.");
AddComment(R"DOC(
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model performance. Its outputs are usually
further summarized as positive-negative-ratio: PositivePair/NegativePair.
Its 3 inputs can be viewd as a series of 3 tuples: (predicition score, golden label, query id).
For each unique query id, a list of <score, label> are collected and positive/negative pairs are accumulated to its output.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair,
ops::PositiveNegativePairOp,
ops::PositiveNegativePairOpMaker);
REGISTER_OP_CPU_KERNEL(
positive_negative_pair,
ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_map>
#include <vector>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename Place, typename T>
class PositiveNegativePairKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto score_t = context.Input<Tensor>("Score");
auto label_t = context.Input<Tensor>("Label");
auto query_t = context.Input<Tensor>("QueryId");
auto positive_t = context.Output<Tensor>("PositivePair");
auto negative_t = context.Output<Tensor>("NegativePair");
auto neutral_t = context.Output<Tensor>("NeutralPair");
auto score = score_t->data<float>();
auto label = label_t->data<float>();
auto query = query_t->data<int>();
T* positive = positive_t->mutable_data<T>(context.GetPlace());
T* negative = negative_t->mutable_data<T>(context.GetPlace());
T* neutral = neutral_t->mutable_data<T>(context.GetPlace());
auto score_dim = score_t->dims();
PADDLE_ENFORCE_GE(score_dim.size(), 1L,
"Rank of Score must be at least 1.");
PADDLE_ENFORCE_LE(score_dim.size(), 2L,
"Rank of Score must be less or equal to 2.");
auto batch_size = score_dim[0];
auto width = score_dim.size() > 1 ? score_dim[1] : 1;
// construct document instances for each query: Query => List[<score#0,
// label#0>, ...]
std::unordered_map<int, std::vector<std::pair<float, float>>> predictions;
for (auto i = 0; i < batch_size; ++i) {
if (predictions.find(query[i]) == predictions.end()) {
predictions.emplace(
std::make_pair(query[i], std::vector<std::pair<float, float>>()));
}
predictions[query[i]].push_back(
std::make_pair(score[i * width + width - 1], label[i]));
}
// for each query, accumulate pair counts
T pos = 0, neg = 0, neu = 0;
auto evaluate_one_list = [&pos, &neg,
&neu](std::vector<std::pair<float, float>> vec) {
for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) {
for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) {
if (ite1->second == ite2->second) { // labels are equal, ignore.
continue;
}
if (ite1->first == ite2->first) {
++neu;
}
(ite1->first - ite2->first) * (ite1->second - ite2->second) > 0.0
? pos++
: neg++;
}
}
};
for (auto prediction : predictions) {
evaluate_one_list(prediction.second);
}
*positive = pos;
*negative = neg;
*neutral = neu;
}
};
} // namespace operators
} // namespace paddle
import unittest
import itertools
import numpy as np
from op_test import OpTest
def py_pnpair_op(score, label, query):
# group by query id
predictions = {}
for s, l, q in zip(score, label, query):
if type(s) is list:
s = s[-1]
q = q[0]
if q not in predictions:
predictions[q] = []
predictions[q].append((s, l))
# accumulate statistics
pos, neg, neu = 0, 0, 0
for _, ranks in predictions.items():
for e1, e2 in itertools.combinations(ranks, 2):
s1, s2, l1, l2 = e1[0][0], e2[0][0], e1[1][0], e2[1][0]
if l1 == l2:
continue
if s1 == s2:
neu += 1
elif (s1 - s2) * (l1 - l2) > 0:
pos += 1
else:
neg += 1
return np.array(pos).astype('float32'), np.array(neg).astype(
'float32'), np.array(neu).astype('float32')
class TestPositiveNegativePairOp(OpTest):
def setUp(self):
self.op_type = 'positive_negative_pair'
batch_size = 20
max_query_id = 5
score = np.random.normal(size=(batch_size, 1)).astype('float32')
label = np.random.normal(size=(batch_size, 1)).astype('float32')
query = np.array(
[np.random.randint(max_query_id) for i in range(batch_size)])
query = np.reshape(query, newshape=(batch_size, 1)).astype('int32')
pos, neg, neu = py_pnpair_op(score, label, query)
self.inputs = {}
self.inputs = {'Score': score, 'Label': label, 'QueryId': query}
self.outputs = {
'PositivePair': pos,
'NegativePair': neg,
'NeutralPair': neu
}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册