未验证 提交 c1eed1fa 编写于 作者: D Double_V 提交者: GitHub

error message opt for XPU, test=kunlun (#27972)

* add stack pool2d roi_align xpu op,test=kunlun

* error message opt, test=kunlun

* add xpu unittest,test=kunlun

* skip check grad,test=kunlun

* fix boostget , test=kunlun

* error message opt for XPU, test=kunlun
上级 4c5b779a
...@@ -43,12 +43,14 @@ class PoolXPUKernel : public framework::OpKernel<T> { ...@@ -43,12 +43,14 @@ class PoolXPUKernel : public framework::OpKernel<T> {
bool exclusive = context.Attr<bool>("exclusive"); bool exclusive = context.Attr<bool>("exclusive");
bool is_test = context.Attr<bool>("is_test"); bool is_test = context.Attr<bool>("is_test");
bool adaptive = context.Attr<bool>("adaptive"); bool adaptive = context.Attr<bool>("adaptive");
PADDLE_ENFORCE_EQ(!adaptive, true, PADDLE_ENFORCE_EQ(
!adaptive, true,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"XPU does not support adaptive == true!")); "The Pool2d XPU OP does not support adaptive == true!"));
PADDLE_ENFORCE_EQ(ksize.size(), 2, PADDLE_ENFORCE_EQ(
ksize.size(), 2,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"XPU only support 2 dimension pooling!")); "The Pool2d XPU OP only support 2 dimension pooling!"));
int* index_data = nullptr; int* index_data = nullptr;
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
...@@ -80,7 +82,10 @@ class PoolXPUKernel : public framework::OpKernel<T> { ...@@ -80,7 +82,10 @@ class PoolXPUKernel : public framework::OpKernel<T> {
stride_w, out_h, out_w); stride_w, out_h, out_w);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS, r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("pool2d XPU kernel error!")); platform::errors::External(
"The pool2d XPU API return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed.",
r));
} }
}; };
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -99,12 +104,15 @@ class PoolGradXPUKernel : public framework::OpKernel<T> { ...@@ -99,12 +104,15 @@ class PoolGradXPUKernel : public framework::OpKernel<T> {
bool exclusive = context.Attr<bool>("exclusive"); bool exclusive = context.Attr<bool>("exclusive");
bool adaptive = context.Attr<bool>("adaptive"); bool adaptive = context.Attr<bool>("adaptive");
const int* index_data = nullptr; const int* index_data = nullptr;
PADDLE_ENFORCE_EQ(!adaptive, true, PADDLE_ENFORCE_EQ(
platform::errors::InvalidArgument( !adaptive, true,
"XPU does not support adaptive == true!"));
PADDLE_ENFORCE_EQ(ksize.size(), 2,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"XPU only support 2 dimension pooling!")); "The Pool2d XPU OP does not support adaptive == true!"));
PADDLE_ENFORCE_EQ(ksize.size(), 2, platform::errors::InvalidArgument(
"The Pool2d XPU OP only support 2 "
"dimension pooling!, but received "
"%d-dimension pool kernel size",
ksize.size()));
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0; paddings[i] = 0;
...@@ -139,16 +147,22 @@ class PoolGradXPUKernel : public framework::OpKernel<T> { ...@@ -139,16 +147,22 @@ class PoolGradXPUKernel : public framework::OpKernel<T> {
int r = int r =
xpu::memset(dev_ctx.x_context(), reinterpret_cast<void**>(input_grad), xpu::memset(dev_ctx.x_context(), reinterpret_cast<void**>(input_grad),
zero, in_x_grad->numel() * sizeof(float)); zero, in_x_grad->numel() * sizeof(float));
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, PADDLE_ENFORCE_EQ(
platform::errors::InvalidArgument( r, xpu::Error_t::SUCCESS,
"There are pool2d grad XPU kernel error raised!")); platform::errors::External(
"The Pool2d XPU OP return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed.",
r));
r = xpu::pooling_backward(dev_ctx.x_context(), input, output, index_data, r = xpu::pooling_backward(dev_ctx.x_context(), input, output, index_data,
output_grad, input_grad, pool_type, c, in_h, in_w, output_grad, input_grad, pool_type, c, in_h, in_w,
pad_left, pad_right, pad_up, pad_down, win_h, pad_left, pad_right, pad_up, pad_down, win_h,
win_w, stride_h, stride_w, out_h, out_w); win_w, stride_h, stride_w, out_h, out_w);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, PADDLE_ENFORCE_EQ(
platform::errors::InvalidArgument( r, xpu::Error_t::SUCCESS,
"There are pool2d grad XPU kernel error raised!")); platform::errors::External(
"The Pool2d XPU OP return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed.",
r));
} }
}; };
......
...@@ -44,11 +44,16 @@ class XPUROIAlignOpKernel : public framework::OpKernel<T> { ...@@ -44,11 +44,16 @@ class XPUROIAlignOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
rois_batch_size, batch_size, rois_batch_size, batch_size,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The rois_batch_size and imgs batch_size must be the same.")); "The rois_batch_size and imgs batch_size of roi_align_xpu OP must "
"be the same. But received rois_batch_size %d , batch_size %d",
rois_batch_size, batch_size));
int rois_num_with_lod = rois_lod[rois_batch_size]; int rois_num_with_lod = rois_lod[rois_batch_size];
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod, PADDLE_ENFORCE_EQ(
rois_num, rois_num_with_lod,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The rois_num from input and lod must be the same.")); "The rois_num from input and lod of roi_align_xpu OP must be the "
"same. But received input rois_num %d , input lod %d",
rois_num, rois_num_with_lod));
T* output_data = out->mutable_data<T>(ctx.GetPlace()); T* output_data = out->mutable_data<T>(ctx.GetPlace());
const T* rois_data = rois->data<T>(); const T* rois_data = rois->data<T>();
for (int n = 0; n < rois_batch_size; n++) { for (int n = 0; n < rois_batch_size; n++) {
...@@ -62,7 +67,10 @@ class XPUROIAlignOpKernel : public framework::OpKernel<T> { ...@@ -62,7 +67,10 @@ class XPUROIAlignOpKernel : public framework::OpKernel<T> {
rois_lod[n] * channels * pooled_height * pooled_width); rois_lod[n] * channels * pooled_height * pooled_width);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS, r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument("roi_align XPU kernel error!")); platform::errors::External(
"The roi_align XPU OP return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed.",
r));
} }
} }
} }
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/stack_op.h" #include "paddle/fluid/operators/stack_op.h"
#include <string>
#ifdef PADDLE_WITH_XPU #ifdef PADDLE_WITH_XPU
namespace paddle { namespace paddle {
...@@ -45,8 +46,15 @@ class StackXPUKernel : public framework::OpKernel<T> { ...@@ -45,8 +46,15 @@ class StackXPUKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<DeviceContext>(); auto& dev_ctx = ctx.template device_context<DeviceContext>();
void* x_datas_host = std::malloc(n * sizeof(void*)); void* x_datas_host = std::malloc(n * sizeof(void*));
void* x_datas_device = nullptr; void* x_datas_device = nullptr;
PADDLE_ENFORCE(xpu_malloc(reinterpret_cast<void**>(&x_datas_device), PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&x_datas_device),
n * sizeof(void*)) == XPU_SUCCESS); n * sizeof(void*)),
XPU_SUCCESS,
platform::errors::ResourceExhausted(
"\n\nOut of memory error on XPU, Cannot"
"allocate %s memory on XPU. \n\nPlease "
"check whether there is any other process "
"using XPU.\n",
string::HumanReadableSize(n * sizeof(void*))));
for (auto i = 0; i < n; ++i) { for (auto i = 0; i < n; ++i) {
((const void**)x_datas_host)[i] = x[i]->data<T>(); ((const void**)x_datas_host)[i] = x[i]->data<T>();
} }
...@@ -55,9 +63,12 @@ class StackXPUKernel : public framework::OpKernel<T> { ...@@ -55,9 +63,12 @@ class StackXPUKernel : public framework::OpKernel<T> {
n * sizeof(void*)); n * sizeof(void*));
int r = xpu::stack_forward<float>(dev_ctx.x_context(), pre, post, n, int r = xpu::stack_forward<float>(dev_ctx.x_context(), pre, post, n,
x_datas_device, y_data); x_datas_device, y_data);
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, PADDLE_ENFORCE_EQ(
platform::errors::InvalidArgument( r, xpu::Error_t::SUCCESS,
"There are stack XPU kernel error raised!")); platform::errors::External(
"The stack XPU API return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed.",
r));
dev_ctx.Wait(); dev_ctx.Wait();
std::free(x_datas_host); std::free(x_datas_host);
xpu_free(x_datas_device); xpu_free(x_datas_device);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册