Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c18f1bd7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c18f1bd7
编写于
10月 31, 2019
作者:
Z
Zhang Ting
提交者:
Aurelius84
10月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the bug of conv_transpose:compatible with Anylayout setting, test=develop (#20897)
上级
3358455c
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
47 addition
and
45 deletion
+47
-45
paddle/fluid/operators/conv_transpose_cudnn_op.cu
paddle/fluid/operators/conv_transpose_cudnn_op.cu
+1
-1
paddle/fluid/operators/conv_transpose_op.h
paddle/fluid/operators/conv_transpose_op.h
+3
-1
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+29
-29
paddle/fluid/operators/math/im2col.cc
paddle/fluid/operators/math/im2col.cc
+1
-1
paddle/fluid/operators/math/im2col.cu
paddle/fluid/operators/math/im2col.cu
+13
-13
未找到文件。
paddle/fluid/operators/conv_transpose_cudnn_op.cu
浏览文件 @
c18f1bd7
...
...
@@ -316,7 +316,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
int
user_workspace_size
=
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
paddle
::
operators
::
DataLayout
data_layout
=
(
data_layout_str
==
"NCHW
"
?
DataLayout
::
kNCHW
:
DataLayout
::
kNHWC
);
(
data_layout_str
!=
"NHWC
"
?
DataLayout
::
kNCHW
:
DataLayout
::
kNHWC
);
// if channel_last, transpose to channel_first
Tensor
input_transpose
;
...
...
paddle/fluid/operators/conv_transpose_op.h
浏览文件 @
c18f1bd7
...
...
@@ -328,8 +328,10 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
col2vol
(
dev_ctx
,
col
,
dilations
,
strides
,
paddings
,
&
out_slice
,
data_layout
);
}
if
(
data_layout
==
framework
::
DataLayout
::
kNHWC
)
{
output_batch_vec
.
push_back
(
out_slice
);
}
}
if
(
data_layout
==
framework
::
DataLayout
::
kNHWC
)
{
concat_functor
(
dev_ctx
,
output_batch_vec
,
static_cast
<
int
>
(
D
-
2
),
&
output_batch
);
...
...
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
c18f1bd7
...
...
@@ -60,7 +60,7 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate_width
;
int
in_offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
}
else
{
...
...
@@ -78,7 +78,7 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
w_in
<
w_end
)
{
int
offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
}
else
{
offset
=
in_offset
+
...
...
@@ -94,7 +94,7 @@ __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
}
}
int
index
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
...
...
@@ -131,7 +131,7 @@ __device__ __inline__ void KernelDepthwiseConvCFilter(
const
int
w_in_end
=
w_in_start
+
c_filter
*
dilate_width
;
int
in_offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
}
else
{
...
...
@@ -150,7 +150,7 @@ __device__ __inline__ void KernelDepthwiseConvCFilter(
if
(
h_in
>=
0
&&
h_in
<
input_height
&&
w_in
>=
0
&&
w_in
<
input_width
)
{
int
offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
}
else
{
offset
=
in_offset
+
...
...
@@ -166,7 +166,7 @@ __device__ __inline__ void KernelDepthwiseConvCFilter(
}
}
int
index
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
...
...
@@ -252,7 +252,7 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
T
value
=
0
;
int
index
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
...
...
@@ -283,7 +283,7 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
int
output_grad_offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
...
...
@@ -335,7 +335,7 @@ __device__ __inline__ void KernelDepthwiseConvInputGradCFilter(
T
value
=
0
;
int
index
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
...
...
@@ -363,7 +363,7 @@ __device__ __inline__ void KernelDepthwiseConvInputGradCFilter(
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
int
output_grad_offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
...
...
@@ -449,7 +449,7 @@ __device__ __inline__ void KernelDepthwiseConvFilterGrad(
#define gaid_nhwc(N, H, W, C) \
((((N)*output_height + (H)) * output_width + (W)) * gridDim.z + (C))
int
input_id
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
input_id
=
((
bid
*
(
gridDim
.
z
/
filter_multiplier
)
+
kernel_id
/
filter_multiplier
)
*
input_height
+
...
...
@@ -528,19 +528,19 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T,
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
const
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
output
->
dims
()[
1
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output
->
dims
()[
1
]
:
output
->
dims
()[
3
]);
const
int
output_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
output
->
dims
()[
2
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output
->
dims
()[
2
]
:
output
->
dims
()[
1
]);
const
int
output_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
output
->
dims
()[
3
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output
->
dims
()[
3
]
:
output
->
dims
()[
2
]);
const
int
ksize_height
=
filter
.
dims
()[
2
];
const
int
ksize_width
=
filter
.
dims
()[
3
];
...
...
@@ -614,19 +614,19 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T,
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
const
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
1
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
1
]
:
output_grad
.
dims
()[
3
]);
const
int
output_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
2
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
2
]
:
output_grad
.
dims
()[
1
]);
const
int
output_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
3
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
3
]
:
output_grad
.
dims
()[
2
]);
const
int
ksize_height
=
filter
.
dims
()[
2
];
const
int
ksize_width
=
filter
.
dims
()[
3
];
...
...
@@ -702,19 +702,19 @@ class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T,
const
DataLayout
data_layout
=
DataLayout
::
kNCHW
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
1
]
:
input
.
dims
()[
3
]);
const
int
input_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
2
]
:
input
.
dims
()[
1
]);
const
int
input_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
input
.
dims
()[
3
]
:
input
.
dims
()[
2
]);
const
int
output_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
1
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
1
]
:
output_grad
.
dims
()[
3
]);
const
int
output_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
2
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
2
]
:
output_grad
.
dims
()[
1
]);
const
int
output_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
.
dims
()[
3
]
(
data_layout
!=
DataLayout
::
kNHWC
?
output_grad
.
dims
()[
3
]
:
output_grad
.
dims
()[
2
]);
const
int
ksize_height
=
filter_grad
->
dims
()[
2
];
const
int
ksize_width
=
filter_grad
->
dims
()[
3
];
...
...
paddle/fluid/operators/math/im2col.cc
浏览文件 @
c18f1bd7
...
...
@@ -115,7 +115,7 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
if
((
im_row_idx
)
>=
0
&&
(
im_row_idx
)
<
im_height
&&
(
im_col_idx
)
>=
0
&&
(
im_col_idx
)
<
im_width
)
{
int
im_offset
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
im_offset
=
(
c_im
*
im_height
+
im_row_idx
)
*
im_width
+
im_col_idx
;
}
else
{
...
...
paddle/fluid/operators/math/im2col.cu
浏览文件 @
c18f1bd7
...
...
@@ -33,14 +33,14 @@ __global__ void im2col(const T* data_im, int num_outs, int im_height,
const
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
num_outs
)
{
int
w_out
=
(
data_layout
==
DataLayout
::
kNCHW
int
w_out
=
(
data_layout
!=
DataLayout
::
kNHWC
?
index
%
col_width
:
(
index
/
input_channels
)
%
col_width
);
int
h_out
=
(
data_layout
==
DataLayout
::
kNCHW
int
h_out
=
(
data_layout
!=
DataLayout
::
kNHWC
?
(
index
/
col_width
)
%
col_height
:
(
index
/
input_channels
/
col_width
)
%
col_height
);
int
channel_in
=
(
data_layout
==
DataLayout
::
kNCHW
?
index
/
col_width
/
col_height
(
data_layout
!=
DataLayout
::
kNHWC
?
index
/
col_width
/
col_height
:
index
%
input_channels
);
int
channel_out
=
channel_in
*
filter_height
*
filter_width
;
int
h_in
=
h_out
*
stride_height
-
padding_height
;
...
...
@@ -52,7 +52,7 @@ __global__ void im2col(const T* data_im, int num_outs, int im_height,
int
rIdx
=
h_in
+
i
*
dilation_h
;
int
cIdx
=
w_in
+
j
*
dilation_w
;
int
im_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
im_idx
=
(
channel_in
*
im_height
+
rIdx
)
*
im_width
+
cIdx
;
}
else
{
im_idx
=
(
rIdx
*
im_width
+
cIdx
)
*
input_channels
+
channel_in
;
...
...
@@ -86,11 +86,11 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
"The dimension of col should be 5."
);
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
0
]
:
im
.
dims
()[
2
]);
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
1
]
:
im
.
dims
()[
0
]);
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
.
dims
()[
2
]
:
im
.
dims
()[
1
]);
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
col_height
=
col
->
dims
()[
3
];
...
...
@@ -127,14 +127,14 @@ __global__ void col2im(int n, const T* data_col, int im_height, int im_width,
if
(
index
<
n
)
{
T
val
=
0
;
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
int
w
=
(
data_layout
!=
DataLayout
::
kNHWC
?
index
%
im_width
+
padding_width
:
(
index
/
input_channels
)
%
im_width
+
padding_width
);
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
int
h
=
(
data_layout
!=
DataLayout
::
kNHWC
?
(
index
/
im_width
)
%
im_height
+
padding_height
:
(
index
/
input_channels
/
im_width
)
%
im_height
+
padding_height
);
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
index
/
im_width
/
im_height
int
c
=
(
data_layout
!=
DataLayout
::
kNHWC
?
index
/
im_width
/
im_height
:
index
%
input_channels
);
// compute the start and end of the output
...
...
@@ -187,11 +187,11 @@ class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
"The dimension of col should be 5."
);
int
im_channels
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
0
]
:
im
->
dims
()[
2
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
0
]
:
im
->
dims
()[
2
]);
int
im_height
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
1
]
:
im
->
dims
()[
0
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
1
]
:
im
->
dims
()[
0
]);
int
im_width
=
(
data_layout
==
DataLayout
::
kNCHW
?
im
->
dims
()[
2
]
:
im
->
dims
()[
1
]);
(
data_layout
!=
DataLayout
::
kNHWC
?
im
->
dims
()[
2
]
:
im
->
dims
()[
1
]);
int
filter_height
=
col
.
dims
()[
1
];
int
filter_width
=
col
.
dims
()[
2
];
int
col_height
=
col
.
dims
()[
3
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录