未验证 提交 c171eca2 编写于 作者: Y Yiqun Liu 提交者: GitHub

Unify the implementation of AlignedVector and simplify the codes of dropout and cast. (#35373)

上级 a9dfebb9
...@@ -13,47 +13,31 @@ See the License for the specific language governing permissions and ...@@ -13,47 +13,31 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/cast_op.h" #include "paddle/fluid/operators/cast_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/gpu_launch_config.h" #include "paddle/fluid/platform/gpu_launch_config.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
};
template <typename T>
inline int VectorizedSize(const T* pointer) {
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value; // NOLINT
if (address % vec4 == 0) {
return 4;
}
return 1;
}
template <typename InT, typename OutT, int VecSize> template <typename InT, typename OutT, int VecSize>
__global__ void VecCastCUDAKernel(const InT* in, const int64_t N, OutT* out) { __global__ void VecCastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
using LoadT = platform::AlignedVector<InT, VecSize>;
using StoreT = platform::AlignedVector<OutT, VecSize>;
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x; int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
using LoadT = AlignedVector<InT, VecSize>;
using StoreT = AlignedVector<OutT, VecSize>;
for (int64_t i = idx * VecSize; i < N; for (int64_t i = idx * VecSize; i < N;
i += blockDim.x * gridDim.x * VecSize) { i += blockDim.x * gridDim.x * VecSize) {
InT in_vec[VecSize]; LoadT in_val;
LoadT* in_value = reinterpret_cast<LoadT*>(&in_vec); platform::Load<InT, VecSize>(&in[i], &in_val);
*in_value = *reinterpret_cast<const LoadT*>(&in[i]);
OutT out_vec[VecSize]; StoreT out_val;
#pragma unroll #pragma unroll
for (int ii = 0; ii < VecSize; ii++) { for (int j = 0; j < VecSize; j++) {
out_vec[ii] = static_cast<OutT>(in_vec[ii]); out_val[j] = static_cast<OutT>(in_val[j]);
} }
*(reinterpret_cast<StoreT*>(&out[i])) = platform::Store<OutT, VecSize>(out_val, &out[i]);
*reinterpret_cast<StoreT*>(&out_vec[0]);
} }
} }
...@@ -78,7 +62,7 @@ struct CastOpFunctor<platform::CUDADeviceContext, InT> { ...@@ -78,7 +62,7 @@ struct CastOpFunctor<platform::CUDADeviceContext, InT> {
auto* out = out_->mutable_data<OutT>(ctx_.GetPlace()); auto* out = out_->mutable_data<OutT>(ctx_.GetPlace());
platform::GpuLaunchConfig config = platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(ctx_, size); platform::GetGpuLaunchConfig1D(ctx_, size);
int vec_size = VectorizedSize<OutT>(out); int vec_size = platform::GetVectorizedSize<OutT>(out);
if (!std::is_same<InT, OutT>::value && vec_size == 4 && size % 4 == 0) { if (!std::is_same<InT, OutT>::value && vec_size == 4 && size % 4 == 0) {
VecCastCUDAKernel<InT, OutT, 4><<< VecCastCUDAKernel<InT, OutT, 4><<<
config.block_per_grid, config.thread_per_block, 0, ctx_.stream()>>>( config.block_per_grid, config.thread_per_block, 0, ctx_.stream()>>>(
......
...@@ -38,7 +38,7 @@ namespace operators { ...@@ -38,7 +38,7 @@ namespace operators {
template <typename T, typename MaskType> template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed, __global__ void RandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob, const T* src, const float dropout_prob, const T* src,
MaskType* mask_data, T* dst, MaskType* mask, T* dst,
bool is_upscale_in_train, uint64_t increment) { bool is_upscale_in_train, uint64_t increment) {
int idx = blockDim.x * blockIdx.x + threadIdx.x; int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP #ifdef PADDLE_WITH_HIP
...@@ -49,36 +49,36 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed, ...@@ -49,36 +49,36 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
curand_init(seed, idx, increment, &state); curand_init(seed, idx, increment, &state);
#endif #endif
MaskType mask; MaskType mask_val;
T dest; T dst_val;
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (; idx < n; idx += blockDim.x * gridDim.x) { for (; idx < n; idx += blockDim.x * gridDim.x) {
T s = src[idx]; T src_val = src[idx];
#ifdef PADDLE_WITH_HIP #ifdef PADDLE_WITH_HIP
if (hiprand_uniform(&state) < dropout_prob) { if (hiprand_uniform(&state) < dropout_prob) {
#else #else
if (curand_uniform(&state) < dropout_prob) { if (curand_uniform(&state) < dropout_prob) {
#endif #endif
mask = 0; mask_val = 0;
dest = 0; dst_val = 0;
} else {
mask = 1;
if (is_upscale_in_train) {
dest = s / static_cast<T>(1.0f - dropout_prob);
} else { } else {
dest = s; mask_val = 1;
dst_val = is_upscale_in_train ? src_val * factor : src_val;
} }
} mask[idx] = mask_val;
mask_data[idx] = mask; dst[idx] = dst_val;
dst[idx] = dest;
} }
} }
template <typename T, typename MaskType, int VecSize> template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed, __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob, const float dropout_prob,
const T* src, MaskType* mask_data, const T* src, MaskType* mask, T* dst,
T* dst, bool is_upscale_in_train, bool is_upscale_in_train,
uint64_t increment) { uint64_t increment) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
#ifdef PADDLE_WITH_HIP #ifdef PADDLE_WITH_HIP
int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x; int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
hiprandStatePhilox4_32_10_t state; hiprandStatePhilox4_32_10_t state;
...@@ -89,43 +89,33 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed, ...@@ -89,43 +89,33 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
curand_init(seed, idx, increment, &state); curand_init(seed, idx, increment, &state);
#endif #endif
MaskType mask;
T dest;
using LoadT = AlignedVector<T, VecSize>;
using MaskLoadT = AlignedVector<MaskType, VecSize>;
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob)); T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) { for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
T src_vec[VecSize]; LoadT src_val;
LoadT* value = reinterpret_cast<LoadT*>(&src_vec); platform::Load<T, VecSize>(&src[i], &src_val);
*value = *reinterpret_cast<const LoadT*>(&src[i]);
#ifdef PADDLE_WITH_HIP #ifdef PADDLE_WITH_HIP
float4 rand = hiprand_uniform4(&state); float4 rand = hiprand_uniform4(&state);
#else #else
float4 rand = curand_uniform4(&state); float4 rand = curand_uniform4(&state);
#endif #endif
T dest_vec[VecSize]; LoadT dst_val;
MaskType mask_vec[VecSize]; MaskLoadT mask_val;
#pragma unroll #pragma unroll
for (int ii = 0; ii < VecSize; ii++) { for (int j = 0; j < VecSize; j++) {
if ((&rand.x)[ii] < dropout_prob) { if ((&rand.x)[j] < dropout_prob) {
dest_vec[ii] = 0; dst_val[j] = 0;
mask_vec[ii] = 0; mask_val[j] = 0;
} else {
if (is_upscale_in_train) {
dest_vec[ii] = src_vec[ii] * factor;
} else { } else {
dest_vec[ii] = src_vec[ii]; dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
} mask_val[j] = 1;
mask_vec[ii] = 1;
} }
} }
*(reinterpret_cast<LoadT*>(&dst[i])) = platform::Store<T, VecSize>(dst_val, &dst[i]);
*reinterpret_cast<LoadT*>(&dest_vec[0]); platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
*(reinterpret_cast<MaskLoadT*>(&mask_data[i])) =
*reinterpret_cast<MaskLoadT*>(&mask_vec[0]);
} }
} }
...@@ -185,7 +175,7 @@ class GPUDropoutKernel : public framework::OpKernel<T> { ...@@ -185,7 +175,7 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
// same as the previous calls. // same as the previous calls.
uint64_t seed_data; uint64_t seed_data;
uint64_t increment; uint64_t increment;
int vec_size = VectorizedSize<T>(x_data); int vec_size = platform::GetVectorizedSize<T>(x_data);
auto offset = ((x_numel - 1) / (config.block_per_grid.x * auto offset = ((x_numel - 1) / (config.block_per_grid.x *
config.thread_per_block.x * vec_size) + config.thread_per_block.x * vec_size) +
1) * 1) *
......
...@@ -21,54 +21,36 @@ limitations under the License. */ ...@@ -21,54 +21,36 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h" #include "paddle/fluid/platform/gpu_launch_config.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
};
template <typename T>
inline int VectorizedSize(const T* pointer) {
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value; // NOLINT
if (address % vec4 == 0) {
return 4;
}
return 1;
}
#if defined(__NVCC__) || defined(__HIPCC__) #if defined(__NVCC__) || defined(__HIPCC__)
template <typename T, typename MaskType, int VecSize> template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask, __global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
const T factor, const int64_t size, const T factor, const int64_t size,
T* dx) { T* dx) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x; using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;
using LoadT = AlignedVector<T, VecSize>;
using MaskLoadT = AlignedVector<MaskType, VecSize>;
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) { for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
T dout_vec[VecSize]; LoadT dout_val;
LoadT* dout_value = reinterpret_cast<LoadT*>(&dout_vec); platform::Load<T, VecSize>(&dout[i], &dout_val);
*dout_value = *reinterpret_cast<const LoadT*>(&dout[i]);
MaskType mask_vec[VecSize]; MaskLoadT mask_val;
MaskLoadT* mask_value = reinterpret_cast<MaskLoadT*>(&mask_vec); platform::Load<MaskType, VecSize>(&mask[i], &mask_val);
*mask_value = *reinterpret_cast<const MaskLoadT*>(&mask[i]);
T dx_vec[VecSize]; LoadT dx_val;
#pragma unroll #pragma unroll
for (int ii = 0; ii < VecSize; ii++) { for (int j = 0; j < VecSize; j++) {
dx_vec[ii] = dout_vec[ii] * static_cast<T>(mask_vec[ii]) * factor; dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
} }
*(reinterpret_cast<LoadT*>(&dx[i])) = *reinterpret_cast<LoadT*>(&dx_vec[0]); platform::Store<T, VecSize>(dx_val, &dx[i]);
} }
} }
#endif #endif
...@@ -187,7 +169,7 @@ class DropoutGradKernel : public framework::OpKernel<T> { ...@@ -187,7 +169,7 @@ class DropoutGradKernel : public framework::OpKernel<T> {
if (dropout_prob == 1.0f) { if (dropout_prob == 1.0f) {
dX.device(place) = static_cast<T>(0) * dY; dX.device(place) = static_cast<T>(0) * dY;
} else { } else {
int vec_size = VectorizedSize<T>(grad_y->data<T>()); int vec_size = platform::GetVectorizedSize<T>(grad_y->data<T>());
if (platform::is_gpu_place(context.GetPlace()) && vec_size == 4 && if (platform::is_gpu_place(context.GetPlace()) && vec_size == 4 &&
size % 4 == 0) { size % 4 == 0) {
#if defined(__NVCC__) || defined(__HIPCC__) #if defined(__NVCC__) || defined(__HIPCC__)
......
...@@ -199,8 +199,8 @@ struct StridesCalculation { ...@@ -199,8 +199,8 @@ struct StridesCalculation {
template <typename InT, typename OutT, typename Functor, ElementwiseType ET, template <typename InT, typename OutT, typename Functor, ElementwiseType ET,
int VecSize, int kDims> int VecSize, int kDims>
struct BroadcastArgsWrapper { struct BroadcastArgsWrapper {
using InVecType = platform::CudaAlignedVector<InT, VecSize>; using InVecType = platform::AlignedVector<InT, VecSize>;
using OutVecType = platform::CudaAlignedVector<OutT, VecSize>; using OutVecType = platform::AlignedVector<OutT, VecSize>;
OutT *out_data; OutT *out_data;
OutVecType *vec_out_data; OutVecType *vec_out_data;
...@@ -320,7 +320,7 @@ template <typename InT, typename OutT, typename BroadcastArgsWrapper, ...@@ -320,7 +320,7 @@ template <typename InT, typename OutT, typename BroadcastArgsWrapper,
ElementwiseType ET, int VecSize> ElementwiseType ET, int VecSize>
__device__ inline void VectorizedBroadcastKernelImpl( __device__ inline void VectorizedBroadcastKernelImpl(
BroadcastArgsWrapper broadcast_wrapper, int tid) { BroadcastArgsWrapper broadcast_wrapper, int tid) {
using OutVecType = platform::CudaAlignedVector<OutT, VecSize>; using OutVecType = platform::AlignedVector<OutT, VecSize>;
OutVecType args_out; OutVecType args_out;
InT ins[ET]; InT ins[ET];
InT args[ET][VecSize]; InT args[ET][VecSize];
......
...@@ -69,8 +69,8 @@ int GetVectorizedSizeForIO(const std::vector<const framework::Tensor *> &ins, ...@@ -69,8 +69,8 @@ int GetVectorizedSizeForIO(const std::vector<const framework::Tensor *> &ins,
template <ElementwiseType ET, int VecSize, typename InT, typename OutT> template <ElementwiseType ET, int VecSize, typename InT, typename OutT>
struct ElementwiseDataWrapper { struct ElementwiseDataWrapper {
using InVecType = platform::CudaAlignedVector<InT, VecSize>; using InVecType = platform::AlignedVector<InT, VecSize>;
using OutVecType = platform::CudaAlignedVector<OutT, VecSize>; using OutVecType = platform::AlignedVector<OutT, VecSize>;
const InT *__restrict__ in_data[ET]; const InT *__restrict__ in_data[ET];
OutT *out_data; OutT *out_data;
...@@ -117,8 +117,8 @@ template <ElementwiseType ET, int VecSize, typename ElementwiseWrapper, ...@@ -117,8 +117,8 @@ template <ElementwiseType ET, int VecSize, typename ElementwiseWrapper,
typename InT, typename OutT, typename Functor> typename InT, typename OutT, typename Functor>
__device__ inline void VectorizedKernelImpl(ElementwiseWrapper data, __device__ inline void VectorizedKernelImpl(ElementwiseWrapper data,
Functor func, int tid) { Functor func, int tid) {
using InVecType = platform::CudaAlignedVector<InT, VecSize>; using InVecType = platform::AlignedVector<InT, VecSize>;
using OutVecType = platform::CudaAlignedVector<OutT, VecSize>; using OutVecType = platform::AlignedVector<OutT, VecSize>;
InVecType ins_vec[ET]; InVecType ins_vec[ET];
OutVecType out_vec; OutVecType out_vec;
InT *ins_ptr[ET]; InT *ins_ptr[ET];
......
...@@ -96,36 +96,13 @@ __global__ void BroadcastKernelBinary( ...@@ -96,36 +96,13 @@ __global__ void BroadcastKernelBinary(
kernel_primitives::WriteData<OutT, VecSize, 1, 1>(out + fix, result, num); kernel_primitives::WriteData<OutT, VecSize, 1, 1>(out + fix, result, num);
} }
template <typename T>
int GetVectorizedSizeImpl(const T* pointer) {
constexpr int max_load_bits = 128;
int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec8 =
std::alignment_of<platform::CudaAlignedVector<T, 8>>::value; // NOLINT
constexpr int vec4 =
std::alignment_of<platform::CudaAlignedVector<T, 4>>::value; // NOLINT
constexpr int vec2 =
std::alignment_of<platform::CudaAlignedVector<T, 2>>::value; // NOLINT
if (address % vec8 == 0) {
// Note: this line can change from 4 to 8 if it can improve the performance.
return std::min(4, valid_vec_size);
} else if (address % vec4 == 0) {
return std::min(4, valid_vec_size);
} else if (address % vec2 == 0) {
return std::min(2, valid_vec_size);
} else {
return 1;
}
}
// bias add forward impl for "[m, n] + [n] = [m, n]" // bias add forward impl for "[m, n] + [n] = [m, n]"
template <typename T> template <typename T>
void LaunchBiasAddFwKernel(const platform::CUDADeviceContext& ctx, int m, int n, void LaunchBiasAddFwKernel(const platform::CUDADeviceContext& ctx, int m, int n,
const T* in0, const T* in1, T* out) { const T* in0, const T* in1, T* out) {
int in_vec_size = int in_vec_size = std::min(platform::GetVectorizedSize<T>(in0),
std::min(GetVectorizedSizeImpl<T>(in0), GetVectorizedSizeImpl<T>(in1)); platform::GetVectorizedSize<T>(in1));
int out_vec_size = std::min(4, GetVectorizedSizeImpl<T>(out)); int out_vec_size = std::min(4, platform::GetVectorizedSize<T>(out));
int vec_size = std::min(out_vec_size, in_vec_size); int vec_size = std::min(out_vec_size, in_vec_size);
int numel = m * n; int numel = m * n;
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.1 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.1
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace platform {
// Aligned vector generates vectorized load/store on CUDA.
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
HOSTDEVICE inline const T& operator[](int i) const { return val[i]; }
HOSTDEVICE inline T& operator[](int i) { return val[i]; }
};
template <typename T, int Size>
HOSTDEVICE inline void Load(const T* addr, AlignedVector<T, Size>* vec) {
const AlignedVector<T, Size>* addr_vec =
reinterpret_cast<const AlignedVector<T, Size>*>(addr);
*vec = *addr_vec;
}
template <typename T, int Size>
HOSTDEVICE inline void Store(const AlignedVector<T, Size>& vec, T* addr) {
AlignedVector<T, Size>* addr_vec =
reinterpret_cast<AlignedVector<T, Size>*>(addr);
*addr_vec = vec;
}
/*
* Only the address of input data is the multiplier of 1,2,4, vectorized load
* with corresponding multiplier-value is possible. Moreover, the maximum length
* of vectorized load is 128 bits once. Hence, valid length of vectorized load
* shall be determined under both former constraints.
*/
template <typename T>
int GetVectorizedSize(const T* pointer) {
constexpr int max_load_bits = 128;
int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec8 = std::alignment_of<AlignedVector<T, 8>>::value; // NOLINT
constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value; // NOLINT
constexpr int vec2 = std::alignment_of<AlignedVector<T, 2>>::value; // NOLINT
if (address % vec8 == 0) {
/*
* Currently, decide to deal with no more than 4 data once while adopting
* vectorization load/store, if performance test shows that dealing with
* 8 data once in vectorization load/store does get optimized, return code
* below can be changed into " return std::min(8, valid_vec_size); " .
*/
return std::min(4, valid_vec_size);
} else if (address % vec4 == 0) {
return std::min(4, valid_vec_size);
} else if (address % vec2 == 0) {
return std::min(2, valid_vec_size);
} else {
return 1;
}
}
} // namespace platform
} // namespace paddle
...@@ -15,22 +15,17 @@ limitations under the License. */ ...@@ -15,22 +15,17 @@ limitations under the License. */
#pragma once #pragma once
#include <cstdint> #include <cstdint>
#include "paddle/fluid/platform/hostdevice.h" #include "paddle/fluid/platform/aligned_vector.h"
#define INT_BITS 32 #define INT_BITS 32
namespace paddle { namespace paddle {
namespace platform { namespace platform {
template <typename T, int Size>
struct alignas(sizeof(T) * Size) CudaAlignedVector {
T val[Size];
};
struct FastDivMod { struct FastDivMod {
// 1st value represents the result of input number divides by recorded divisor // 1st value represents the result of input number divides by recorded divisor
// 2nd value represents the result of input number modulo by recorded divisor // 2nd value represents the result of input number modulo by recorded divisor
using DivModT = CudaAlignedVector<uint32_t, 2>; using DivModT = AlignedVector<uint32_t, 2>;
FastDivMod() {} FastDivMod() {}
HOSTDEVICE FastDivMod(uint32_t d) : divisor(d) { HOSTDEVICE FastDivMod(uint32_t d) : divisor(d) {
...@@ -65,39 +60,5 @@ struct FastDivMod { ...@@ -65,39 +60,5 @@ struct FastDivMod {
uint32_t multiplier; uint32_t multiplier;
}; };
/*
* Only the address of input data is the multiplier of 1,2,4, vectorized load
* with corresponding multiplier-value is possible. Moreover, the maximum length
* of vectorized load is 128 bits once. Hence, valid length of vectorized load
* shall be determined under both former constraints.
*/
template <typename T>
int GetVectorizedSize(const T *pointer) {
constexpr int max_load_bits = 128;
int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec8 =
std::alignment_of<CudaAlignedVector<T, 8>>::value; // NOLINT
constexpr int vec4 =
std::alignment_of<CudaAlignedVector<T, 4>>::value; // NOLINT
constexpr int vec2 =
std::alignment_of<CudaAlignedVector<T, 2>>::value; // NOLINT
if (address % vec8 == 0) {
/*
* Currently, decide to deal with no more than 4 data once while adopting
* vectorization load/store, if performance test shows that dealing with
* 8 data once in vectorization load/store does get optimized, return code
* below can be changed into " return std::min(8, valid_vec_size); " .
*/
return std::min(4, valid_vec_size);
} else if (address % vec4 == 0) {
return std::min(4, valid_vec_size);
} else if (address % vec2 == 0) {
return std::min(2, valid_vec_size);
} else {
return 1;
}
}
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册