Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c10cf6d2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c10cf6d2
编写于
8月 21, 2020
作者:
Z
Zhong Hui
提交者:
GitHub
8月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the API of bce loss and add functional API binary_cross_entropy (#26012)
Fix the API of bce loss and add functional API binary_cross_entropy
上级
21ea2976
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
420 addition
and
206 deletion
+420
-206
python/paddle/fluid/tests/unittests/test_bce_loss.py
python/paddle/fluid/tests/unittests/test_bce_loss.py
+179
-69
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+1
-0
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+168
-30
python/paddle/nn/layer/loss.py
python/paddle/nn/layer/loss.py
+72
-107
未找到文件。
python/paddle/fluid/tests/unittests/test_bce_loss.py
浏览文件 @
c10cf6d2
...
...
@@ -19,94 +19,204 @@ import unittest
from
op_test
import
OpTest
class
TestBCELoss
(
unittest
.
TestCase
):
def
test_BCELoss
(
self
):
input_np
=
np
.
random
.
random
(
size
=
(
20
,
30
)).
astype
(
np
.
float64
)
label_np
=
np
.
random
.
random
(
size
=
(
20
,
30
)).
astype
(
np
.
float64
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
reductions
=
[
'sum'
,
'mean'
,
'none'
]
for
place
in
places
:
for
red
in
reductions
:
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
None
,
30
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
30
],
dtype
=
'float64'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
red
)
def
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
input_np
.
shape
,
dtype
=
'float64'
)
label
=
paddle
.
data
(
name
=
'label'
,
shape
=
label_np
.
shape
,
dtype
=
'float64'
)
if
weight_np
is
not
None
:
weight
=
paddle
.
data
(
name
=
'weight'
,
shape
=
weight_np
.
shape
,
dtype
=
'float64'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
,
reduction
=
reduction
)
else
:
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
reduction
)
res
=
bce_loss
(
input
,
label
)
exe
=
paddle
.
static
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"label"
:
label_np
}
if
weight_np
is
None
else
{
"input"
:
input_np
,
"label"
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
res
])
return
static_result
exe
=
fluid
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
def
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
input_np
.
shape
,
dtype
=
'float64'
)
label
=
paddle
.
data
(
name
=
'label'
,
shape
=
label_np
.
shape
,
dtype
=
'float64'
)
if
weight_np
is
not
None
:
weight
=
paddle
.
data
(
name
=
'weight'
,
shape
=
weight_np
.
shape
,
dtype
=
'float64'
)
res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
weight
=
weight
,
reduction
=
reduction
)
else
:
res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
reduction
=
reduction
)
exe
=
paddle
.
static
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"label"
:
label_np
},
"label"
:
label_np
}
if
weight_np
is
None
else
{
"input"
:
input_np
,
"label"
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
res
])
return
static_result
with
fluid
.
dygraph
.
guard
():
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
red
)
dy_res
=
bce_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
def
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
paddle
.
disable_static
()
if
weight_np
is
not
None
:
weight
=
paddle
.
to_tensor
(
weight_np
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
,
reduction
=
reduction
)
else
:
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
reduction
)
dy_res
=
bce_loss
(
paddle
.
to_tensor
(
input_np
),
paddle
.
to_tensor
(
label_np
))
dy_result
=
dy_res
.
numpy
()
paddle
.
enable_static
()
return
dy_result
def
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
paddle
.
disable_static
()
input
=
paddle
.
to_tensor
(
input_np
)
label
=
paddle
.
to_tensor
(
label_np
)
if
weight_np
is
not
None
:
weight
=
paddle
.
to_tensor
(
weight_np
)
dy_res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
weight
=
weight
,
reduction
=
reduction
)
else
:
dy_res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
reduction
=
reduction
)
dy_result
=
dy_res
.
numpy
()
paddle
.
enable_static
()
return
dy_result
def
calc_bceloss
(
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
if
weight_np
is
None
:
expected
=
-
1
*
(
label_np
*
np
.
log
(
input_np
)
+
(
1.
-
label_np
)
*
np
.
log
(
1.
-
input_np
))
if
red
==
'mean'
:
else
:
expected
=
-
1
*
weight_np
*
(
label_np
*
np
.
log
(
input_np
)
+
(
1.
-
label_np
)
*
np
.
log
(
1.
-
input_np
))
if
reduction
==
'mean'
:
expected
=
np
.
mean
(
expected
)
elif
red
==
'sum'
:
elif
reduction
==
'sum'
:
expected
=
np
.
sum
(
expected
)
else
:
expected
=
expected
return
expected
class
TestBCELoss
(
unittest
.
TestCase
):
def
test_BCELoss
(
self
):
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
20
,
30
)).
astype
(
np
.
float64
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
20
,
30
)).
astype
(
np
.
float64
)
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
reductions
=
[
'sum'
,
'mean'
,
'none'
]
for
place
in
places
:
for
reduction
in
reductions
:
static_result
=
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
)
dy_result
=
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
)
expected
=
calc_bceloss
(
input_np
,
label_np
,
reduction
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
)
dy_functional
=
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCELoss_weight
(
self
):
input_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float64
)
label_np
=
np
.
random
.
random
(
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float64
)
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float64
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float64
)
weight_np
=
np
.
random
.
random
(
size
=
(
3
,
4
,
10
)).
astype
(
np
.
float64
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
None
,
3
,
4
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
3
,
4
,
10
],
dtype
=
'float64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
,
4
,
10
],
dtype
=
'float64'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
)
res
=
bce_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"label"
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
res
])
for
reduction
in
[
'sum'
,
'mean'
,
'none'
]:
static_result
=
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
dy_result
=
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
expected
=
calc_bceloss
(
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
dy_functional
=
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
with
fluid
.
dygraph
.
guard
():
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
bce_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_result
=
dy_res
.
numpy
()
def
test_BCELoss_boardcast
(
self
):
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float64
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
3
,
4
,
10
)).
astype
(
np
.
float64
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
expected
=
np
.
mean
(
-
1
*
weight_np
*
(
label_np
*
np
.
log
(
input_np
)
+
(
1.
-
label_np
)
*
np
.
log
(
1.
-
input_np
))
)
static_result
=
test_static_layer
(
place
,
input_np
,
label_np
)
dy_result
=
test_dygraph_layer
(
place
,
input_np
,
label_np
)
expected
=
calc_bceloss
(
input_np
,
label_np
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
def
test_BCELoss_error
(
self
):
paddle
.
disable_static
()
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
loss
.
BCELoss
,
reduction
=
"unsupport reduction"
)
input
=
paddle
.
to_tensor
([[
0.1
,
0.3
]],
dtype
=
'float32'
)
label
=
paddle
.
to_tensor
([[
0.0
,
1.0
]],
dtype
=
'float32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
functional
.
binary_cross_entropy
,
input
=
input
,
label
=
label
,
reduction
=
"unsupport reduction"
)
paddle
.
enable_static
()
def
bce_loss
(
input
,
label
):
return
-
1
*
(
label
*
np
.
log
(
input
)
+
(
1.
-
label
)
*
np
.
log
(
1.
-
input
))
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
c10cf6d2
...
...
@@ -120,6 +120,7 @@ from .lod import hash #DEFINE_ALIAS
# from .lod import dynamic_gru #DEFINE_ALIAS
# from .lod import dynamic_lstm #DEFINE_ALIAS
# from .lod import dynamic_lstmp #DEFINE_ALIAS
from
.loss
import
binary_cross_entropy
#DEFINE_ALIAS
from
.loss
import
bpr_loss
#DEFINE_ALIAS
from
.loss
import
center_loss
#DEFINE_ALIAS
from
.loss
import
cross_entropy
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
c10cf6d2
...
...
@@ -42,9 +42,11 @@ from ...fluid.layers import huber_loss #DEFINE_ALIAS
from
...fluid.layers
import
sampled_softmax_with_cross_entropy
#DEFINE_ALIAS
from
...fluid.layer_helper
import
LayerHelper
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.framework
import
_varbase_creator
from
...fluid.framework
import
Variable
__all__
=
[
'binary_cross_entropy'
,
'bpr_loss'
,
'center_loss'
,
'cross_entropy'
,
...
...
@@ -73,6 +75,142 @@ __all__ = [
]
def
binary_cross_entropy
(
input
,
label
,
weight
=
None
,
reduction
=
'mean'
,
name
=
None
):
"""
This op measures the binary_cross_entropy loss between input predictions ``input``
and target labels ``label`` . The binary_cross_entropy loss can be described as:
If :attr:`weight` is set, the loss is:
.. math::
Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`weight` is None, the loss is:
.. math::
Out = -1 * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
.. math::
Out = MEAN(Out)
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
.. math::
Out = SUM(Out)
Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
should be numbers between 0 and 1.
Parameters:
input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
N is batch_size, `*` means number of additional dimensions. The ``input``
should always be the output of sigmod. Available dtype is float32, float64.
label (Tensor): The target labels tensor. 2-D tensor with the same shape as
``input``. The target labels which values should be numbers between 0 and 1.
Available dtype is float32, float64.
weight (Tensor, optional): A manual rescaling weight given to the loss of each
batch element. If given, has to be a Tensor of size nbatch and the data type
is float32, float64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default is ``'mean'``.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
same as ``input`` , else the shape of output is scalar.
Examples:
.. code-block:: python
import paddle
import numpy as np
input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
paddle.disable_static()
input = paddle.to_tensor(input_data)
label = paddle.to_tensor(label_data)
output = paddle.nn.functional.binary_cross_entropy(input, label)
print(output.numpy()) # [0.65537095]
paddle.enable_static()
"""
if
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
raise
ValueError
(
"The value of 'reduction' in binary_cross_entropy should be 'sum', "
"'mean' or 'none', but received %s, which is not allowed."
%
reduction
)
if
in_dygraph_mode
():
one
=
_varbase_creator
(
dtype
=
input
.
dtype
)
core
.
ops
.
fill_constant
(
one
,
'value'
,
float
(
1.0
),
'force_cpu'
,
False
,
'dtype'
,
one
.
dtype
,
'str_value'
,
'1.0'
,
'shape'
,
[
1
])
one
.
stop_gradient
=
True
label_minus
=
core
.
ops
.
elementwise_sub
(
label
,
one
)
input_minus
=
core
.
ops
.
elementwise_sub
(
one
,
input
)
input_minus_log
=
core
.
ops
.
log
(
input_minus
)
input_log
=
core
.
ops
.
log
(
input
)
loss_1
=
core
.
ops
.
elementwise_mul
(
label_minus
,
input_minus_log
)
loss_2
=
core
.
ops
.
elementwise_mul
(
label
,
input_log
)
out
=
core
.
ops
.
elementwise_sub
(
loss_1
,
loss_2
)
if
weight
is
not
None
:
out
=
core
.
ops
.
elementwise_mul
(
out
,
weight
,
'axis'
,
-
1
)
if
reduction
==
'sum'
:
return
core
.
ops
.
reduce_sum
(
out
,
'dim'
,
[
0
],
'keep_dim'
,
False
,
"reduce_all"
,
True
)
elif
reduction
==
'mean'
:
return
core
.
ops
.
reduce_mean
(
out
,
'dim'
,
[
0
],
'keep_dim'
,
False
,
"reduce_all"
,
True
)
else
:
return
out
fluid
.
data_feeder
.
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'binary_cross_entropy'
)
fluid
.
data_feeder
.
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
],
'binary_cross_entropy'
)
one
=
paddle
.
fill_constant
(
shape
=
[
1
],
value
=
1.0
,
dtype
=
input
.
dtype
)
one
.
stop_gradient
=
True
label_minus
=
paddle
.
elementwise_sub
(
label
,
one
)
input_minus
=
paddle
.
elementwise_sub
(
one
,
input
)
input_minus_log
=
paddle
.
log
(
input_minus
)
input_log
=
paddle
.
log
(
input
)
loss_1
=
paddle
.
multiply
(
label_minus
,
input_minus_log
)
loss_2
=
paddle
.
multiply
(
label
,
input_log
)
sub_name
=
name
if
weight
is
None
and
reduction
is
'none'
else
None
out
=
paddle
.
elementwise_sub
(
loss_1
,
loss_2
,
name
=
sub_name
)
if
weight
is
not
None
:
if
isinstance
(
weight
,
paddle
.
framework
.
Variable
):
weight_name
=
name
if
reduction
is
'none'
else
None
out
=
paddle
.
multiply
(
out
,
weight
,
axis
=-
1
,
name
=
weight_name
)
else
:
raise
ValueError
(
"The weight is not a Tensor, please convert to Tensor."
)
if
reduction
==
'sum'
:
return
paddle
.
sum
(
out
,
name
=
name
)
elif
reduction
==
'mean'
:
return
paddle
.
mean
(
out
,
name
=
name
)
else
:
return
out
def
smooth_l1_loss
(
input
,
label
,
reduction
=
'mean'
,
delta
=
1.0
,
name
=
None
):
"""
This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
...
...
python/paddle/nn/layer/loss.py
浏览文件 @
c10cf6d2
...
...
@@ -18,6 +18,7 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
import
paddle
from
..
import
functional
as
F
from
paddle.fluid.framework
import
core
,
in_dygraph_mode
,
_varbase_creator
__all__
=
[
# 'NCELoss',
...
...
@@ -335,45 +336,38 @@ class L1Loss(fluid.dygraph.Layer):
class
BCELoss
(
fluid
.
dygraph
.
Layer
):
"""
:alias_main: paddle.nn.BCELoss
:alias: paddle.nn.BCELoss,paddle.nn.layer.BCELoss,paddle.nn.layer.loss.BCELoss
This interface is used to construct a callable object of the ``BCELoss`` class.
The BCELoss layer measures the binary_cross_entropy loss between input predictions
and target labels. The binary_cross_entropy loss can be described as:
The BCELoss layer measures the binary_cross_entropy loss between input predictions
``input``
and target labels
``label``
. The binary_cross_entropy loss can be described as:
If :attr:`weight` is set, the loss is:
.. math::
Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`weight` is None, the loss is:
.. math::
Out = -1 * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`reduction` set to ``'none'``, the
unreduced loss is:
If :attr:`reduction` set to ``'none'``, the
interface will return the original loss `Out`.
.. math::
Out = Out
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
.. math::
Out = MEAN(Out)
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
.. math::
Out = SUM(Out)
Note that the input predictions
always be the output of sigmoid, and the target labels
Note that the input predictions
``input`` always be the output of sigmoid, and the target labels ``label``
should be numbers between 0 and 1.
The shape of input predictions and target labels are [N, *], where N is batch_size and `*`
means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of
output is scalar, else the shape of output is same as input.
Parameters:
weight (
Variable, optional): A manual rescaling weight given to the loss of each
batch element. If given, has to be a
Variable
of size nbatch and the data type
weight (
Tensor, optional): A manual rescaling weight given to the loss of each
batch element. If given, has to be a
Tensor
of size nbatch and the data type
is float32, float64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
...
...
@@ -381,6 +375,18 @@ class BCELoss(fluid.dygraph.Layer):
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default is ``'mean'``.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
input (Tensor): 2-D tensor with shape: (N, *), N is batch_size, `*` means
number of additional dimensions. The input ``input`` should always
be the output of sigmod. Available dtype is float32, float64.
label (Tensor): 2-D tensor with the same shape as ``input``. The target
labels which values should be numbers between 0 and 1. Available
dtype is float32, float64.
output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
same as ``input`` , else the shape of output is scalar.
Returns:
A callable object of BCELoss.
...
...
@@ -388,37 +394,22 @@ class BCELoss(fluid.dygraph.Layer):
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
import paddle
input = fluid.data(name="input", shape=[3, 1], dtype='float32')
label = fluid.data(name="label", shape=[3, 1], dtype='float32')
bce_loss = paddle.nn.loss.BCELoss()
output = bce_loss(input, label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data) # [array([0.65537095], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
paddle.disable_static()
input = paddle.to_variable(input_data)
label = paddle.to_variable(label_data)
bce_loss = paddle.nn.loss.BCELoss()
output = bce_loss(input, label)
print(output.numpy()) # [0.65537095]
paddle.enable_static()
"""
def
__init__
(
self
,
weight
=
None
,
reduction
=
'mean'
):
def
__init__
(
self
,
weight
=
None
,
reduction
=
'mean'
,
name
=
None
):
if
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
raise
ValueError
(
"The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
...
...
@@ -427,37 +418,11 @@ class BCELoss(fluid.dygraph.Layer):
super
(
BCELoss
,
self
).
__init__
()
self
.
weight
=
weight
self
.
reduction
=
reduction
self
.
name
=
name
def
forward
(
self
,
input
,
label
):
dtype
=
self
.
_helper
.
input_dtype
(
input
)
fluid
.
data_feeder
.
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'bce_loss'
)
fluid
.
data_feeder
.
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
],
'bce_loss'
)
out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
self
.
_helper
.
append_op
(
type
=
'bce_loss'
,
inputs
=
{
'X'
:
[
input
],
'Label'
:
[
label
],
},
outputs
=
{
'Out'
:
[
out
]})
if
self
.
weight
is
not
None
:
if
isinstance
(
self
.
weight
,
fluid
.
framework
.
Variable
):
w
=
self
.
weight
out
=
fluid
.
layers
.
elementwise_mul
(
out
,
w
,
axis
=-
1
)
else
:
raise
ValueError
(
"The weight is not a Variable, please convert to Variable."
)
if
self
.
reduction
==
'sum'
:
return
fluid
.
layers
.
reduce_sum
(
out
)
elif
self
.
reduction
==
'mean'
:
return
fluid
.
layers
.
reduce_mean
(
out
)
else
:
out
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
self
.
weight
,
self
.
reduction
,
self
.
name
)
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录