Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c07b215d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c07b215d
编写于
6月 15, 2019
作者:
H
hong19860320
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'incubate/lite' of
http://10.87.145.36/inference/paddlelite
into hongming/arm-fix
上级
f66ee3d8
1fe1402b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
184 addition
and
37 deletion
+184
-37
paddle/fluid/lite/arm/math/elementwise.cc
paddle/fluid/lite/arm/math/elementwise.cc
+71
-8
paddle/fluid/lite/arm/math/elementwise.h
paddle/fluid/lite/arm/math/elementwise.h
+4
-0
paddle/fluid/lite/kernels/arm/conv_compute.cc
paddle/fluid/lite/kernels/arm/conv_compute.cc
+2
-2
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
+25
-2
paddle/fluid/lite/kernels/arm/elementwise_add_compute_test.cc
...le/fluid/lite/kernels/arm/elementwise_add_compute_test.cc
+82
-25
未找到文件。
paddle/fluid/lite/arm/math/elementwise.cc
浏览文件 @
c07b215d
...
@@ -41,15 +41,15 @@ void elementwise_add<float>(const float* dinx, const float* diny, float* dout,
...
@@ -41,15 +41,15 @@ void elementwise_add<float>(const float* dinx, const float* diny, float* dout,
float32x4_t
diny2
=
vld1q_f32
(
diny_ptr
+
8
);
float32x4_t
diny2
=
vld1q_f32
(
diny_ptr
+
8
);
float32x4_t
diny3
=
vld1q_f32
(
diny_ptr
+
12
);
float32x4_t
diny3
=
vld1q_f32
(
diny_ptr
+
12
);
float32x4_t
vsum
0
=
vaddq_f32
(
dinx0
,
diny0
);
dinx
0
=
vaddq_f32
(
dinx0
,
diny0
);
float32x4_t
vsum
1
=
vaddq_f32
(
dinx1
,
diny1
);
dinx
1
=
vaddq_f32
(
dinx1
,
diny1
);
float32x4_t
vsum
2
=
vaddq_f32
(
dinx2
,
diny2
);
dinx
2
=
vaddq_f32
(
dinx2
,
diny2
);
float32x4_t
vsum
3
=
vaddq_f32
(
dinx3
,
diny3
);
dinx
3
=
vaddq_f32
(
dinx3
,
diny3
);
vst1q_f32
(
dout_ptr
,
vsum
0
);
vst1q_f32
(
dout_ptr
,
dinx
0
);
vst1q_f32
(
dout_ptr
+
4
,
vsum
1
);
vst1q_f32
(
dout_ptr
+
4
,
dinx
1
);
vst1q_f32
(
dout_ptr
+
8
,
vsum
2
);
vst1q_f32
(
dout_ptr
+
8
,
dinx
2
);
vst1q_f32
(
dout_ptr
+
12
,
vsum
3
);
vst1q_f32
(
dout_ptr
+
12
,
dinx
3
);
}
}
if
(
remain
>
0
)
{
if
(
remain
>
0
)
{
const
float
*
dinx_ptr
=
dinx
+
(
cnt
<<
4
);
const
float
*
dinx_ptr
=
dinx
+
(
cnt
<<
4
);
...
@@ -64,6 +64,69 @@ void elementwise_add<float>(const float* dinx, const float* diny, float* dout,
...
@@ -64,6 +64,69 @@ void elementwise_add<float>(const float* dinx, const float* diny, float* dout,
}
}
}
}
template
<
>
void
elementwise_add_axis
<
float
>
(
const
float
*
dinx
,
const
float
*
diny
,
float
*
dout
,
int
batch
,
int
channels
,
int
num
)
{
#pragma omp parallel for collapse(2)
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
float
*
din_ptr
=
dinx
+
offset
;
const
float
diny_data
=
diny
[
j
];
float
*
dout_ptr
=
dout
+
offset
;
int
cnt
=
num
>>
4
;
int
remain
=
num
%
16
;
float32x4_t
rb
=
vdupq_n_f32
(
diny_data
);
for
(
int
k
=
0
;
k
<
cnt
;
++
k
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
float32x4_t
din2
=
vld1q_f32
(
din_ptr
+
8
);
float32x4_t
din3
=
vld1q_f32
(
din_ptr
+
12
);
din0
=
vaddq_f32
(
din0
,
rb
);
din1
=
vaddq_f32
(
din1
,
rb
);
din2
=
vaddq_f32
(
din2
,
rb
);
din3
=
vaddq_f32
(
din3
,
rb
);
vst1q_f32
(
dout_ptr
,
din0
);
vst1q_f32
(
dout_ptr
+
4
,
din1
);
vst1q_f32
(
dout_ptr
+
8
,
din2
);
vst1q_f32
(
dout_ptr
+
12
,
din3
);
din_ptr
+=
16
;
dout_ptr
+=
16
;
}
if
(
remain
>=
8
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
float32x4_t
din1
=
vld1q_f32
(
din_ptr
+
4
);
din0
=
vaddq_f32
(
din0
,
rb
);
din1
=
vaddq_f32
(
din1
,
rb
);
vst1q_f32
(
dout_ptr
,
din0
);
vst1q_f32
(
dout_ptr
+
4
,
din1
);
din_ptr
+=
8
;
dout_ptr
+=
8
;
remain
-=
8
;
}
if
(
remain
>=
4
)
{
float32x4_t
din0
=
vld1q_f32
(
din_ptr
);
din0
=
vaddq_f32
(
din0
,
rb
);
vst1q_f32
(
dout_ptr
,
din0
);
din_ptr
+=
4
;
dout_ptr
+=
4
;
remain
-=
4
;
}
if
(
remain
>
0
)
{
for
(
int
p
=
0
;
p
<
remain
;
p
++
)
{
*
dout_ptr
=
*
din_ptr
+
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
}
}
// namespace math
}
// namespace math
}
// namespace arm
}
// namespace arm
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/arm/math/elementwise.h
浏览文件 @
c07b215d
...
@@ -22,6 +22,10 @@ namespace math {
...
@@ -22,6 +22,10 @@ namespace math {
template
<
typename
T
>
template
<
typename
T
>
void
elementwise_add
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
num
);
void
elementwise_add
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
num
);
template
<
typename
T
>
void
elementwise_add_axis
(
const
T
*
dinx
,
const
T
*
diny
,
T
*
dout
,
int
batch
,
int
channels
,
int
num
);
}
// namespace math
}
// namespace math
}
// namespace arm
}
// namespace arm
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/kernels/arm/conv_compute.cc
浏览文件 @
c07b215d
...
@@ -100,7 +100,7 @@ void ConvCompute::Run() {
...
@@ -100,7 +100,7 @@ void ConvCompute::Run() {
REGISTER_LITE_KERNEL
(
conv2d
,
kARM
,
kFloat
,
kNCHW
,
REGISTER_LITE_KERNEL
(
conv2d
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ConvCompute
,
def
)
paddle
::
lite
::
kernels
::
arm
::
ConvCompute
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
//
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
.
Finalize
();
...
@@ -108,7 +108,7 @@ REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
...
@@ -108,7 +108,7 @@ REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
REGISTER_LITE_KERNEL
(
depthwise_conv2d
,
kARM
,
kFloat
,
kNCHW
,
REGISTER_LITE_KERNEL
(
depthwise_conv2d
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ConvCompute
,
def
)
paddle
::
lite
::
kernels
::
arm
::
ConvCompute
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
//
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
.
Finalize
();
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
浏览文件 @
c07b215d
...
@@ -25,8 +25,31 @@ void ElementwiseAddCompute::Run() {
...
@@ -25,8 +25,31 @@ void ElementwiseAddCompute::Run() {
const
float
*
x_data
=
param
.
X
->
data
<
float
>
();
const
float
*
x_data
=
param
.
X
->
data
<
float
>
();
const
float
*
y_data
=
param
.
Y
->
data
<
float
>
();
const
float
*
y_data
=
param
.
Y
->
data
<
float
>
();
float
*
out_data
=
param
.
Out
->
mutable_data
<
float
>
();
float
*
out_data
=
param
.
Out
->
mutable_data
<
float
>
();
int
n
=
param
.
X
->
dims
().
production
();
int
axis
=
param
.
axis
;
// lite::arm::math::elementwise_add(x_data, y_data, out_data, n);
auto
x_dims
=
param
.
X
->
dims
();
auto
y_dims
=
param
.
Y
->
dims
();
if
(
axis
<
0
)
{
axis
=
x_dims
.
size
()
-
y_dims
.
size
();
}
if
(
x_dims
.
size
()
==
y_dims
.
size
())
{
lite
::
arm
::
math
::
elementwise_add
(
x_data
,
y_data
,
out_data
,
x_dims
.
production
());
}
else
{
int
batch
=
1
;
int
channels
=
1
;
int
num
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
batch
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
channels
*=
y_dims
[
i
];
}
for
(
int
i
=
y_dims
.
size
()
+
axis
;
i
<
x_dims
.
size
();
++
i
)
{
num
*=
x_dims
[
i
];
}
lite
::
arm
::
math
::
elementwise_add_axis
(
x_data
,
y_data
,
out_data
,
batch
,
channels
,
num
);
}
}
}
}
// namespace arm
}
// namespace arm
...
...
paddle/fluid/lite/kernels/arm/elementwise_add_compute_test.cc
浏览文件 @
c07b215d
...
@@ -41,40 +41,97 @@ void elementwise_add_compute_ref(const operators::ElementwiseParam& param) {
...
@@ -41,40 +41,97 @@ void elementwise_add_compute_ref(const operators::ElementwiseParam& param) {
const
dtype
*
x_data
=
param
.
X
->
data
<
const
dtype
>
();
const
dtype
*
x_data
=
param
.
X
->
data
<
const
dtype
>
();
const
dtype
*
y_data
=
param
.
Y
->
data
<
const
dtype
>
();
const
dtype
*
y_data
=
param
.
Y
->
data
<
const
dtype
>
();
dtype
*
out_data
=
param
.
Out
->
mutable_data
<
dtype
>
();
dtype
*
out_data
=
param
.
Out
->
mutable_data
<
dtype
>
();
DDim
dim
=
param
.
X
->
dims
();
auto
x_dims
=
param
.
X
->
dims
();
ASSERT_EQ
(
dim
.
data
(),
param
.
Out
->
dims
().
data
());
auto
y_dims
=
param
.
Y
->
dims
();
for
(
int
i
=
0
;
i
<
dim
.
production
();
i
++
)
{
int
axis
=
param
.
axis
;
out_data
[
i
]
=
x_data
[
i
]
+
y_data
[
i
];
if
(
axis
<
0
)
{
axis
=
x_dims
.
size
()
-
y_dims
.
size
();
}
int
batch
=
1
;
int
channels
=
1
;
int
num
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
batch
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
channels
*=
y_dims
[
i
];
}
for
(
int
i
=
y_dims
.
size
()
+
axis
;
i
<
x_dims
.
size
();
++
i
)
{
num
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
+
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
}
}
TEST
(
elementwise_add
,
compute
)
{
TEST
(
elementwise_add
,
compute
)
{
ElementwiseAddCompute
elementwise_add
;
ElementwiseAddCompute
elementwise_add
;
operators
::
ElementwiseParam
param
;
operators
::
ElementwiseParam
param
;
lite
::
Tensor
x
,
y
,
output
,
output_ref
;
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
c
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
h
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
w
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
axis
:
{
-
1
,
0
,
1
,
2
,
3
})
{
for
(
auto
yd
:
{
std
::
vector
<
int64_t
>
({
n
}),
std
::
vector
<
int64_t
>
({
c
}),
std
::
vector
<
int64_t
>
({
h
}),
std
::
vector
<
int64_t
>
({
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
}),
std
::
vector
<
int64_t
>
({
c
,
h
}),
std
::
vector
<
int64_t
>
({
h
,
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
,
h
}),
std
::
vector
<
int64_t
>
({
c
,
h
,
w
}),
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})})
{
auto
x_dim
=
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
}));
auto
y_dim
=
DDim
(
yd
);
int
axis_t
=
axis
<
0
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
;
if
(
axis_t
+
y_dim
.
size
()
>
4
)
continue
;
bool
flag
=
false
;
for
(
int
i
=
0
;
i
<
y_dim
.
size
();
i
++
)
{
if
(
x_dim
[
i
+
axis_t
]
!=
y_dim
[
i
])
flag
=
true
;
}
if
(
flag
)
continue
;
lite
::
Tensor
x
,
y
,
out
,
out_ref
;
x
.
Resize
(
x_dim
);
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
2
,
3
,
4
,
5
})));
y
.
Resize
(
y_dim
);
y
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
2
,
3
,
4
,
5
})));
output
.
Resize
(
x_dim
);
out
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
2
,
3
,
4
,
5
})));
output_ref
.
Resize
(
x_dim
);
out_ref
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
2
,
3
,
4
,
5
})));
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
y_data
=
y
.
mutable_data
<
float
>
();
auto
*
y_data
=
y
.
mutable_data
<
float
>
();
auto
*
out_data
=
out
.
mutable_data
<
float
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
i
++
)
{
x_data
[
i
]
=
y_data
[
i
]
=
i
;
x_data
[
i
]
=
i
;
}
for
(
int
i
=
0
;
i
<
y_dim
.
production
();
i
++
)
{
y_data
[
i
]
=
i
;
}
}
param
.
X
=
&
x
;
param
.
X
=
&
x
;
param
.
Y
=
&
y
;
param
.
Y
=
&
y
;
param
.
Out
=
&
out
;
param
.
axis
=
axis
;
param
.
Out
=
&
output
;
elementwise_add
.
SetParam
(
param
);
elementwise_add
.
SetParam
(
param
);
elementwise_add
.
Run
();
elementwise_add
.
Run
();
param
.
Out
=
&
output_ref
;
param
.
Out
=
&
out_ref
;
elementwise_add_compute_ref
<
float
>
(
param
);
elementwise_add_compute_ref
<
float
>
(
param
);
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-5
);
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
}
}
}
}
}
}
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录