未验证 提交 c06350c9 编写于 作者: Z Zhou Wei 提交者: GitHub

[cherry pick 2.0]support deepcopy for Layer/Tensor/Paramerbase (#29387) (#29873)

* support deepcopy for Layer/Tensor/Paramerbase

* fix some code
上级 878b6972
......@@ -283,6 +283,36 @@ std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
}
}
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
if (SharedVar()->IsEmpty()) {
VLOG(3) << "deep copy Variable from " << src.Name() << " to " << Name();
SetPersistable(src.Persistable());
SetDataType(src.DataType());
SetType(src.Type());
SetOverridedStopGradient(src.OverridedStopGradient());
if (!src.SharedVar()->IsEmpty()) {
const platform::Place& place = src.Place();
if (src.Var().IsType<framework::LoDTensor>()) {
auto& src_tensor = src.Var().Get<framework::LoDTensor>();
auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
dst_tensor->set_lod(src_tensor.lod());
framework::TensorCopy(src_tensor, place, dst_tensor);
} else if (src.Var().IsType<framework::SelectedRows>()) {
auto& src_selected_rows = src.Var().Get<framework::SelectedRows>();
auto* dst_selected_rows =
MutableVar()->GetMutable<framework::SelectedRows>();
dst_selected_rows->set_height(src_selected_rows.height());
dst_selected_rows->set_rows(src_selected_rows.rows());
framework::TensorCopy(src_selected_rows.value(), place,
dst_selected_rows->mutable_value());
}
if (blocking) {
platform::DeviceContextPool::Instance().Get(place)->Wait();
}
}
}
}
void VarBase::BumpInplaceVersion() {
PADDLE_ENFORCE_EQ(
Var().IsInitialized(), true,
......
......@@ -216,6 +216,8 @@ class VarBase {
std::shared_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
const bool blocking) const;
void CopyFrom(const imperative::VarBase& src, bool blocking);
void BumpInplaceVersion();
private:
......
......@@ -526,6 +526,13 @@ void BindImperative(py::module *m_ptr) {
py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
m, "VarBase", R"DOC()DOC")
.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
.def("__init__",
[](imperative::VarBase &self) {
std::string name =
imperative::GetCurrentTracer()->GenerateUniqueName(
"generated_tensor");
new (&self) imperative::VarBase(name);
})
.def("__init__",
[](imperative::VarBase &self, framework::proto::VarType::Type dtype,
const std::vector<int> &dims, const py::handle &name,
......@@ -1023,6 +1030,7 @@ void BindImperative(py::module *m_ptr) {
y = x.cuda(1)
print(y.place) # CUDAPlace(1)
)DOC")
.def("copy_", &imperative::VarBase::CopyFrom)
.def("_copy_to",
[](const imperative::VarBase &self, const platform::CPUPlace &place,
bool blocking) { return self.NewVarBase(place, blocking); },
......
......@@ -21,6 +21,7 @@ import re
import copy
import weakref
import warnings
from copy import deepcopy
from . import parallel_helper
from .. import unique_name
......@@ -1016,14 +1017,25 @@ class Layer(core.Layer):
self._parameters[name] = parameter
return parameter
def __getstate__(self):
return self.__dict__
def __setstate__(self, state):
self.__dict__.update(state)
def __getattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in self._parameters:
return self._parameters[name]
elif name in self._sub_layers:
if '_sub_layers' in self.__dict__:
_sub_layers = self.__dict__['_sub_layers']
if name in self._sub_layers:
return self._sub_layers[name]
elif name in self._buffers:
return self._buffers[name]
else:
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name]
return object.__getattribute__(self, name)
def __setattr__(self, name, value):
......
......@@ -18,6 +18,7 @@ import numpy as np
import paddle
from .. import framework
from .. import core
from .. import unique_name
from ..framework import Variable, Parameter, ParamBase
from .base import switch_to_static_graph
from .math_op_patch import monkey_patch_math_varbase
......@@ -263,6 +264,37 @@ def monkey_patch_varbase():
from paddle.tensor.to_string import to_string
return to_string(self)
def __deepcopy__(self, memo):
"""
Deep copy Tensor, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
x = paddle.to_tensor(2.)
y = copy.deepcopy(x)
print(x)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
print(y)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
"""
if not self.is_leaf:
raise RuntimeError(
"Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
)
new_varbase = core.VarBase()
new_varbase.name = self.name + unique_name.generate("_deepcopy")
memo[id(self)] = new_varbase
new_varbase.copy_(self, True)
return new_varbase
@property
def block(self):
return framework.default_main_program().global_block()
......@@ -283,7 +315,8 @@ def monkey_patch_varbase():
("block", block), ("backward", backward), ("clear_grad", clear_grad),
("inplace_version", inplace_version), ("grad", grad),
("gradient", gradient), ("__str__", __str__), ("__repr__", __str__),
("__module__", "paddle"), ("__name__", "Tensor")):
("__deepcopy__", __deepcopy__), ("__module__", "paddle"),
("__name__", "Tensor")):
setattr(core.VarBase, method_name, method)
# patch math methods for varbase
......
......@@ -23,6 +23,7 @@ import os
import re
import traceback
import six
import copy
import numpy as np
import subprocess
......@@ -5322,6 +5323,36 @@ class ParamBase(core.VarBase):
return "Parameter containing:\n{tensor}".format(
tensor=super(ParamBase, self).__str__())
def __deepcopy__(self, memo):
"""
Deep copy parameter, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
linear = paddle.nn.Linear(1, 3)
linear_copy = copy.deepcopy(linear)
print(linear.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
print(linear_copy.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
"""
state = copy.deepcopy(self.__dict__, memo)
state["name"] = self.name + unique_name.generate("_deepcopy")
new_param = ParamBase(self.shape, self.dtype, **state)
memo[id(self)] = new_param
new_param.copy_(self, True)
return new_param
__repr__ = __str__
......
......@@ -287,7 +287,6 @@ class TestImperative(unittest.TestCase):
with paddle.no_grad():
self.assertTrue(l1.weight.stop_gradient is False)
tmp = l1.weight * 2
print(tmp)
self.assertTrue(tmp.stop_gradient)
x = fluid.dygraph.to_variable(data)
y = l0(x) + tmp
......@@ -485,15 +484,15 @@ class TestImperative(unittest.TestCase):
for i in range(10):
y = paddle.pow(x, 4.0)
y.backward()
print(x.grad)
self.assertEqual(x.grad, (i + 1) * 500)
x.clear_gradient()
self.assertEqual(x.grad, 0.)
for i in range(5):
for i in range(10):
y = paddle.pow(x, 4.0)
y.backward()
print(x.grad)
self.assertEqual(x.grad, (i + 1) * 500)
x.clear_grad()
self.assertEqual(x.grad, 0.)
def test_simple_net(sort_sum_gradient):
fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
......@@ -504,9 +503,18 @@ class TestImperative(unittest.TestCase):
def fun(x, y, z):
loss1 = x * x * y
loss2 = x * z
loss1.backward(retain_graph=True)
loss2.backward(retain_graph=True)
self.assertTrue(np.array_equal(x.grad, [23.]))
self.assertTrue(np.array_equal(y.grad, [25.]))
self.assertTrue(np.array_equal(z.grad, [5.]))
x.clear_grad()
y.clear_grad()
z.clear_grad()
dx = paddle.grad([loss1], x, create_graph=True)[0]
# loss = x*x*y + x*z + 2*x*y
loss = loss1 + loss2 + dx
# loss = x*x*y + x*z + 2*x*y
return loss
loss = fun(x, y, z)
......@@ -539,12 +547,12 @@ class TestImperative(unittest.TestCase):
# generate the gradient of each step
mlp2 = MLP(input_size=input_size)
expected_weight1_grad = np.zeros(mlp2._linear1.weight.shape)
expected_bias1_grad = np.zeros(mlp2._linear1.bias.shape)
expected_weight2_grad = np.zeros(mlp2._linear2.weight.shape)
expected_bias2_grad = np.zeros(mlp2._linear2.bias.shape)
expected_weight1_grad = 0.
expected_bias1_grad = 0.
expected_weight2_grad = 0.
expected_bias2_grad = 0.
for batch_id in range(24):
for batch_id in range(100):
x = paddle.uniform([10, input_size])
detach_x = x.detach()
clear_loss = mlp2(detach_x)
......@@ -571,12 +579,12 @@ class TestImperative(unittest.TestCase):
mlp2.clear_gradients()
self.assertTrue(np.array_equal(clear_loss.grad, [1]))
if ((batch_id + 1) % 8) == 0:
if ((batch_id + 1) % 10) == 0:
mlp1.clear_gradients()
expected_weight1_grad = np.zeros(mlp2._linear1.weight.shape)
expected_bias1_grad = np.zeros(mlp2._linear1.bias.shape)
expected_weight2_grad = np.zeros(mlp2._linear2.weight.shape)
expected_bias2_grad = np.zeros(mlp2._linear2.bias.shape)
expected_weight1_grad = 0.
expected_bias1_grad = 0.
expected_weight2_grad = 0.
expected_bias2_grad = 0.
with fluid.dygraph.guard():
test_single_api(False)
......
......@@ -15,6 +15,9 @@
from __future__ import print_function
import unittest
import copy
import paddle
from paddle.fluid.dygraph import guard
from paddle.fluid.framework import default_main_program
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
......@@ -26,7 +29,7 @@ main_program = default_main_program()
class ParameterChecks(unittest.TestCase):
def check_param(self):
def check_parameter(self):
shape = [784, 100]
val = 1.0625
b = main_program.global_block()
......@@ -46,6 +49,28 @@ class ParameterChecks(unittest.TestCase):
p = io.get_parameter_value_by_name('fc.w', exe, main_program)
self.assertTrue(np.allclose(np.array(p), np.ones(shape) * val))
def check_parambase(self):
with guard():
linear = paddle.nn.Linear(10, 10)
param = linear.weight
memo = {}
param_copy = copy.deepcopy(param, memo)
self.assertEqual(param_copy.shape, param.shape)
self.assertEqual(param_copy.type, param.type)
self.assertEqual(param_copy.dtype, param.dtype)
self.assertEqual(str(param_copy.place), str(param.place))
self.assertTrue(np.array_equal(param_copy.numpy(), param.numpy()))
self.assertEqual(param_copy.optimize_attr, param.optimize_attr)
self.assertEqual(param_copy.regularizer, param.regularizer)
self.assertEqual(param_copy.do_model_average,
param.do_model_average)
self.assertEqual(param_copy.need_clip, param.need_clip)
self.assertEqual(param_copy.is_distributed, param.is_distributed)
pram_copy2 = copy.deepcopy(param, memo)
self.assertEqual(id(param_copy), id(pram_copy2))
def check_exceptions(self):
b = main_program.global_block()
with self.assertRaises(ValueError):
......@@ -63,8 +88,11 @@ class ParameterChecks(unittest.TestCase):
class TestParameter(ParameterChecks):
def test_param(self):
self.check_param()
def _test_parameter(self):
self.check_parameter()
def test_parambase(self):
self.check_parambase()
def test_exceptions(self):
self.check_exceptions()
......
......@@ -17,6 +17,7 @@ from __future__ import print_function
import unittest
import numpy as np
import six
import copy
import paddle
import paddle.fluid as fluid
......@@ -264,6 +265,68 @@ class TestVarBase(unittest.TestCase):
var.stop_gradient = False
self.assertEqual(var.stop_gradient, False)
def test_deep_copy(self):
with fluid.dygraph.guard():
empty_var = core.VarBase()
empty_var_copy = copy.deepcopy(empty_var)
self.assertEqual(empty_var.stop_gradient,
empty_var_copy.stop_gradient)
self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
self.assertEqual(empty_var.type, empty_var_copy.type)
self.assertEqual(empty_var.dtype, empty_var_copy.dtype)
x = paddle.to_tensor([2.], stop_gradient=False)
y = paddle.to_tensor([3.], stop_gradient=False)
z = x * y
memo = {}
x_copy = copy.deepcopy(x, memo)
y_copy = copy.deepcopy(y, memo)
self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
self.assertEqual(x_copy.persistable, y_copy.persistable)
self.assertEqual(x_copy.type, y_copy.type)
self.assertEqual(x_copy.dtype, y_copy.dtype)
self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))
self.assertNotEqual(id(x), id(x_copy))
x_copy[:] = 5.
self.assertTrue(np.array_equal(x_copy.numpy(), [5.]))
self.assertTrue(np.array_equal(x.numpy(), [2.]))
with self.assertRaises(RuntimeError):
copy.deepcopy(z)
x_copy2 = copy.deepcopy(x, memo)
y_copy2 = copy.deepcopy(y, memo)
self.assertEqual(id(x_copy), id(x_copy2))
self.assertEqual(id(y_copy), id(y_copy2))
# test copy selected rows
x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
"selected_rows",
core.VarDesc.VarType.SELECTED_ROWS, True)
selected_rows = x.value().get_selected_rows()
selected_rows.get_tensor().set(
np.random.rand(3, 100), core.CPUPlace())
selected_rows.set_height(10)
selected_rows.set_rows([3, 5, 7])
x_copy = copy.deepcopy(x)
self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
self.assertEqual(x_copy.persistable, x.persistable)
self.assertEqual(x_copy.type, x.type)
self.assertEqual(x_copy.dtype, x.dtype)
copy_selected_rows = x_copy.value().get_selected_rows()
self.assertEqual(copy_selected_rows.height(),
selected_rows.height())
self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
self.assertTrue(
np.array_equal(
np.array(copy_selected_rows.get_tensor()),
np.array(selected_rows.get_tensor())))
# test some patched methods
def test_set_value(self):
with fluid.dygraph.guard():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册