Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bfeee8c9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bfeee8c9
编写于
8月 22, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
debug unit test
上级
70a2351a
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
209 addition
and
28 deletion
+209
-28
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
+17
-13
python/paddle/fluid/tests/unittests/dist_text_classification.py
.../paddle/fluid/tests/unittests/dist_text_classification.py
+106
-8
python/paddle/fluid/tests/unittests/test_dist_inference_save_load.py
...le/fluid/tests/unittests/test_dist_inference_save_load.py
+83
-5
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
+2
-1
python/paddle/fluid/tests/unittests/test_dist_text_classification.py
...le/fluid/tests/unittests/test_dist_text_classification.py
+1
-1
未找到文件。
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
浏览文件 @
bfeee8c9
...
@@ -31,18 +31,17 @@ import signal
...
@@ -31,18 +31,17 @@ import signal
from
functools
import
reduce
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
DTYPE
=
"
float32
"
DTYPE
=
"
int64
"
DATA_URL
=
'http://paddle-dist-ce-data.cdn.bcebos.com/train.1000'
DATA_URL
=
'http://paddle-dist-ce-data.cdn.bcebos.com/
simnet.
train.1000'
DATA_MD5
=
'4cc060b0a0939a343fc9242aa1ee2e4e'
DATA_MD5
=
'4cc060b0a0939a343fc9242aa1ee2e4e'
# For Net
# For Net
base_lr
=
0.
005
base_lr
=
0.
2
emb_lr
=
base_lr
*
3
emb_lr
=
base_lr
*
3
dict_dim
=
1451594
dict_dim
=
1451594
emb_dim
=
128
emb_dim
=
128
hid_dim
=
128
hid_dim
=
128
margin
=
0.1
margin
=
0.1
batch_size
=
128
sample_rate
=
1
sample_rate
=
1
# Fix seed for test
# Fix seed for test
...
@@ -50,7 +49,7 @@ fluid.default_startup_program().random_seed = 1
...
@@ -50,7 +49,7 @@ fluid.default_startup_program().random_seed = 1
fluid
.
default_main_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
def
get_acc
(
cos_q_nt
,
cos_q_pt
):
def
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
):
cond
=
fluid
.
layers
.
less_than
(
cos_q_nt
,
cos_q_pt
)
cond
=
fluid
.
layers
.
less_than
(
cos_q_nt
,
cos_q_pt
)
cond
=
fluid
.
layers
.
cast
(
cond
,
dtype
=
'float64'
)
cond
=
fluid
.
layers
.
cast
(
cond
,
dtype
=
'float64'
)
cond_3
=
fluid
.
layers
.
reduce_sum
(
cond
)
cond_3
=
fluid
.
layers
.
reduce_sum
(
cond
)
...
@@ -82,13 +81,14 @@ def get_optimizer():
...
@@ -82,13 +81,14 @@ def get_optimizer():
return
optimizer
return
optimizer
def
train_network
():
def
train_network
(
batch_size
,
is_distributed
=
False
):
# query
# query
q
=
fluid
.
layers
.
data
(
q
=
fluid
.
layers
.
data
(
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
## embedding
## embedding
q_emb
=
fluid
.
layers
.
embedding
(
q_emb
=
fluid
.
layers
.
embedding
(
input
=
q
,
input
=
q
,
is_distributed
=
is_distributed
,
size
=
[
dict_dim
,
emb_dim
],
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
...
@@ -109,6 +109,7 @@ def train_network():
...
@@ -109,6 +109,7 @@ def train_network():
## embedding
## embedding
pt_emb
=
fluid
.
layers
.
embedding
(
pt_emb
=
fluid
.
layers
.
embedding
(
input
=
pt
,
input
=
pt
,
is_distributed
=
is_distributed
,
size
=
[
dict_dim
,
emb_dim
],
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
...
@@ -128,6 +129,7 @@ def train_network():
...
@@ -128,6 +129,7 @@ def train_network():
## embedding
## embedding
nt_emb
=
fluid
.
layers
.
embedding
(
nt_emb
=
fluid
.
layers
.
embedding
(
input
=
nt
,
input
=
nt
,
is_distributed
=
is_distributed
,
size
=
[
dict_dim
,
emb_dim
],
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
...
@@ -146,7 +148,7 @@ def train_network():
...
@@ -146,7 +148,7 @@ def train_network():
# loss
# loss
avg_cost
=
get_loss
(
cos_q_pt
,
cos_q_nt
)
avg_cost
=
get_loss
(
cos_q_pt
,
cos_q_nt
)
# acc
# acc
acc
=
get_acc
(
cos_q_nt
,
cos_q_pt
)
acc
=
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
)
return
[
avg_cost
,
acc
,
cos_q_pt
]
return
[
avg_cost
,
acc
,
cos_q_pt
]
...
@@ -175,10 +177,10 @@ def get_one_data(file_list):
...
@@ -175,10 +177,10 @@ def get_one_data(file_list):
continue
continue
for
each
in
tmp
:
for
each
in
tmp
:
yield
[
one_data
[
2
],
each
[
0
],
each
[
1
],
[
0
]]
yield
[
one_data
[
2
],
0
,
each
[
0
],
each
[
1
]]
def
get_batch_reader
(
file_list
):
def
get_batch_reader
(
file_list
,
batch_size
):
def
batch_reader
():
def
batch_reader
():
res
=
[]
res
=
[]
for
i
in
get_one_data
(
file_list
):
for
i
in
get_one_data
(
file_list
):
...
@@ -191,11 +193,11 @@ def get_batch_reader(file_list):
...
@@ -191,11 +193,11 @@ def get_batch_reader(file_list):
return
batch_reader
return
batch_reader
def
get_train_reader
():
def
get_train_reader
(
batch_size
):
# The training data set.
# The training data set.
train_file
=
os
.
path
.
join
(
paddle
.
dataset
.
common
.
DATA_HOME
,
"simnet"
,
train_file
=
os
.
path
.
join
(
paddle
.
dataset
.
common
.
DATA_HOME
,
"simnet"
,
"train"
)
"train"
)
train_reader
=
get_batch_reader
(
train_fil
e
)
train_reader
=
get_batch_reader
(
[
train_file
],
batch_siz
e
)
train_feed
=
[
"query_ids"
,
"pos_title_ids"
,
"neg_title_ids"
,
"label"
]
train_feed
=
[
"query_ids"
,
"pos_title_ids"
,
"neg_title_ids"
,
"label"
]
return
train_reader
,
train_feed
return
train_reader
,
train_feed
...
@@ -203,7 +205,7 @@ def get_train_reader():
...
@@ -203,7 +205,7 @@ def get_train_reader():
class
TestDistSimnetBow2x2
(
TestDistRunnerBase
):
class
TestDistSimnetBow2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
def
get_model
(
self
,
batch_size
=
2
):
# Train program
# Train program
avg_cost
,
acc
,
predict
=
train_network
()
avg_cost
,
acc
,
predict
=
train_network
(
batch_size
,
False
)
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
...
@@ -212,10 +214,12 @@ class TestDistSimnetBow2x2(TestDistRunnerBase):
...
@@ -212,10 +214,12 @@ class TestDistSimnetBow2x2(TestDistRunnerBase):
opt
.
minimize
(
avg_cost
)
opt
.
minimize
(
avg_cost
)
# Reader
# Reader
train_reader
,
_
=
get_train_reader
()
train_reader
,
_
=
get_train_reader
(
batch_size
)
return
inference_program
,
avg_cost
,
train_reader
,
train_reader
,
acc
,
predict
return
inference_program
,
avg_cost
,
train_reader
,
train_reader
,
acc
,
predict
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
import
os
os
.
environ
[
'CPU_NUM'
]
=
'1'
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
'simnet'
,
DATA_MD5
,
"train"
)
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
'simnet'
,
DATA_MD5
,
"train"
)
runtime_main
(
TestDistSimnetBow2x2
)
runtime_main
(
TestDistSimnetBow2x2
)
python/paddle/fluid/tests/unittests/dist_text_classification.py
浏览文件 @
bfeee8c9
...
@@ -27,17 +27,40 @@ import unittest
...
@@ -27,17 +27,40 @@ import unittest
from
multiprocessing
import
Process
from
multiprocessing
import
Process
import
os
import
os
import
signal
import
signal
import
six
import
tarfile
import
string
import
re
from
functools
import
reduce
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
DTYPE
=
"float32"
DTYPE
=
"float32"
paddle
.
dataset
.
imdb
.
fetch
()
VOCAB_URL
=
'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab'
VOCAB_MD5
=
'23c86a0533c0151b6f12fa52b106dcc2'
DATA_URL
=
'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz'
DATA_MD5
=
'29ebfc94f11aea9362bbb7f5e9d86b8a'
# Fix seed for test
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
# Load the dictionary.
def
load_vocab
(
filename
):
vocab
=
{}
with
open
(
filename
)
as
f
:
for
idx
,
line
in
enumerate
(
f
):
vocab
[
line
.
strip
()]
=
idx
return
vocab
def
get_worddict
(
dict_path
):
word_dict
=
load_vocab
(
dict_path
)
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
dict_dim
=
len
(
word_dict
)
return
(
word_dict
,
dict_dim
)
def
conv_net
(
input
,
def
conv_net
(
input
,
dict_dim
,
dict_dim
,
emb_dim
=
128
,
emb_dim
=
128
,
...
@@ -69,12 +92,10 @@ def inference_network(dict_dim):
...
@@ -69,12 +92,10 @@ def inference_network(dict_dim):
def
get_reader
(
word_dict
,
batch_size
):
def
get_reader
(
word_dict
,
batch_size
):
# The training data set.
# The training data set.
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
train
(
word_dict
),
batch_size
=
batch_size
)
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
batch_size
=
batch_size
)
# The testing data set.
# The testing data set.
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
test
(
word_dict
),
batch_size
=
batch_size
)
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
batch_size
)
return
train_reader
,
test_reader
return
train_reader
,
test_reader
...
@@ -86,8 +107,9 @@ def get_optimizer(learning_rate):
...
@@ -86,8 +107,9 @@ def get_optimizer(learning_rate):
class
TestDistTextClassification2x2
(
TestDistRunnerBase
):
class
TestDistTextClassification2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
def
get_model
(
self
,
batch_size
=
2
):
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
vocab
=
os
.
path
.
join
(
paddle
.
dataset
.
common
.
DATA_HOME
,
dict_dim
=
word_dict
[
"<unk>"
]
"text_classification"
,
"imdb.vocab"
)
word_dict
,
dict_dim
=
get_worddict
(
vocab
)
# Input data
# Input data
data
=
fluid
.
layers
.
data
(
data
=
fluid
.
layers
.
data
(
...
@@ -99,8 +121,8 @@ class TestDistTextClassification2x2(TestDistRunnerBase):
...
@@ -99,8 +121,8 @@ class TestDistTextClassification2x2(TestDistRunnerBase):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
# Optimization
opt
=
get_optimizer
(
learning_rate
=
0.001
)
opt
=
get_optimizer
(
learning_rate
=
0.001
)
opt
.
minimize
(
avg_cost
)
opt
.
minimize
(
avg_cost
)
...
@@ -111,5 +133,81 @@ class TestDistTextClassification2x2(TestDistRunnerBase):
...
@@ -111,5 +133,81 @@ class TestDistTextClassification2x2(TestDistRunnerBase):
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
acc
,
predict
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
acc
,
predict
def
tokenize
(
pattern
):
"""
Read files that match the given pattern. Tokenize and yield each file.
"""
with
tarfile
.
open
(
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
'text_classification'
,
DATA_MD5
))
as
tarf
:
# Note that we should use tarfile.next(), which does
# sequential access of member files, other than
# tarfile.extractfile, which does random access and might
# destroy hard disks.
tf
=
tarf
.
next
()
while
tf
!=
None
:
if
bool
(
pattern
.
match
(
tf
.
name
)):
# newline and punctuations removal and ad-hoc tokenization.
yield
tarf
.
extractfile
(
tf
).
read
().
rstrip
(
six
.
b
(
"
\n\r
"
)).
translate
(
None
,
six
.
b
(
string
.
punctuation
)).
lower
().
split
()
tf
=
tarf
.
next
()
def
reader_creator
(
pos_pattern
,
neg_pattern
,
word_idx
):
UNK
=
word_idx
[
'<unk>'
]
INS
=
[]
def
load
(
pattern
,
out
,
label
):
for
doc
in
tokenize
(
pattern
):
out
.
append
(([
word_idx
.
get
(
w
,
UNK
)
for
w
in
doc
],
label
))
load
(
pos_pattern
,
INS
,
0
)
load
(
neg_pattern
,
INS
,
1
)
def
reader
():
for
doc
,
label
in
INS
:
yield
doc
,
label
return
reader
def
train
(
word_idx
):
"""
IMDB training set creator.
It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].
:param word_idx: word dictionary
:type word_idx: dict
:return: Training reader creator
:rtype: callable
"""
return
reader_creator
(
re
.
compile
(
"train/pos/.*\.txt$"
),
re
.
compile
(
"train/neg/.*\.txt$"
),
word_idx
)
def
test
(
word_idx
):
"""
IMDB test set creator.
It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].
:param word_idx: word dictionary
:type word_idx: dict
:return: Test reader creator
:rtype: callable
"""
return
reader_creator
(
re
.
compile
(
"test/pos/.*\.txt$"
),
re
.
compile
(
"test/neg/.*\.txt$"
),
word_idx
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
paddle
.
dataset
.
common
.
download
(
VOCAB_URL
,
'text_classification'
,
VOCAB_MD5
)
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
'text_classification'
,
DATA_MD5
)
runtime_main
(
TestDistTextClassification2x2
)
runtime_main
(
TestDistTextClassification2x2
)
python/paddle/fluid/tests/unittests/test_dist_inference_save.py
→
python/paddle/fluid/tests/unittests/test_dist_inference_save
_load
.py
浏览文件 @
bfeee8c9
...
@@ -20,19 +20,97 @@ import os
...
@@ -20,19 +20,97 @@ import os
import
sys
import
sys
import
signal
import
signal
import
subprocess
import
subprocess
import
six
import
paddle.compat
as
cpt
import
paddle.compat
as
cpt
class
TestDist
Mnist
2x2
(
TestDistBase
):
class
TestDist
InferenceSaveAndLoad
2x2
(
TestDistBase
):
def
_setup_config
(
self
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_sync_mode
=
True
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
):
@
staticmethod
def
_save_model
(
dirname
,
feeded_var_names
,
target_vars
):
import
paddle.fluid
as
fluid
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
fluid
.
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
exe
)
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
,
sync_mode
=
True
):
import
paddle
import
paddle.fluid
as
fluid
self
.
get_model
(
batch_size
=
2
)
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
,
sync_mode
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
,
sync_mode
=
True
):
import
paddle
import
paddle.fluid
as
fluid
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
self
.
get_model
(
batch_size
=
2
)
if
is_dist
:
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
trainers
,
sync_mode
)
trainer_prog
=
t
.
get_trainer_program
()
else
:
trainer_prog
=
fluid
.
default_main_program
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
strategy
.
allow_op_delay
=
False
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
reader_generator
=
test_reader
()
data
=
next
(
reader_generator
)
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
first_loss
)
dirname
=
"/tmp/simnet.infer.model"
if
trainer_id
==
0
:
self
.
_save_model
(
dirname
,
[],
[
predict
])
def
check_with_save_inference
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs
=
{
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
),
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_cudnn_deterministic"
:
"1"
"FLAGS_cudnn_deterministic"
:
"1"
}
}
...
@@ -139,7 +217,7 @@ class TestDistMnist2x2(TestDistBase):
...
@@ -139,7 +217,7 @@ class TestDistMnist2x2(TestDistBase):
@
unittest
.
skip
(
reason
=
"Not Ready, Debugging"
)
@
unittest
.
skip
(
reason
=
"Not Ready, Debugging"
)
def
test_dist_save_inference_model
(
self
):
def
test_dist_save_inference_model
(
self
):
self
.
check_with_
pla
ce
(
"dist_simnet_bow.py"
,
delta
=
1e-7
)
self
.
check_with_
save_inferen
ce
(
"dist_simnet_bow.py"
,
delta
=
1e-7
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
浏览文件 @
bfeee8c9
...
@@ -22,7 +22,8 @@ class TestDistSimnetBow2x2(TestDistBase):
...
@@ -22,7 +22,8 @@ class TestDistSimnetBow2x2(TestDistBase):
self
.
_sync_mode
=
True
self
.
_sync_mode
=
True
def
test_simnet_bow
(
self
):
def
test_simnet_bow
(
self
):
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-7
)
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
2
,
check_error_log
=
False
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_text_classification.py
浏览文件 @
bfeee8c9
...
@@ -22,7 +22,7 @@ class TestDistTextClassification2x2(TestDistBase):
...
@@ -22,7 +22,7 @@ class TestDistTextClassification2x2(TestDistBase):
self
.
_sync_mode
=
True
self
.
_sync_mode
=
True
def
test_text_classification
(
self
):
def
test_text_classification
(
self
):
self
.
check_with_place
(
"dist_text_classification.py"
,
delta
=
1e-
7
)
self
.
check_with_place
(
"dist_text_classification.py"
,
delta
=
1e-
2
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录