Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bf6cbbc7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bf6cbbc7
编写于
9月 02, 2020
作者:
T
Tao Luo
提交者:
GitHub
9月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove unused fc_gan unit-test demo (#26889)
上级
030b298e
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
0 addition
and
576 deletion
+0
-576
python/paddle/fluid/tests/demo/executor_train_dataset.py
python/paddle/fluid/tests/demo/executor_train_dataset.py
+0
-96
python/paddle/fluid/tests/demo/fc_gan.py
python/paddle/fluid/tests/demo/fc_gan.py
+0
-173
python/paddle/fluid/tests/demo/pipeline_train.py
python/paddle/fluid/tests/demo/pipeline_train.py
+0
-205
python/paddle/fluid/tests/demo/pyreader.py
python/paddle/fluid/tests/demo/pyreader.py
+0
-102
未找到文件。
python/paddle/fluid/tests/demo/executor_train_dataset.py
已删除
100644 → 0
浏览文件 @
030b298e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
tarfile
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
core
URL
=
'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5
=
'2a405a31508969b3ab823f42c0f522ca'
def
bow_net
(
data
,
label
,
dict_dim
=
89528
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
is_sparse
=
True
)
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bowh
=
fluid
.
layers
.
tanh
(
bow
)
# fc layer after conv
fc_1
=
fluid
.
layers
.
fc
(
input
=
bowh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
# probability of each class
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
# cross entropy loss
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
# mean loss
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
train
():
# Download data
with
tarfile
.
open
(
paddle
.
dataset
.
common
.
download
(
URL
,
"imdb"
,
MD5
))
as
tarf
:
tarf
.
extractall
(
path
=
'./'
)
tarf
.
close
()
# Initialize dataset description
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
128
)
# See API doc for how to change other fields
# define network
# input text data
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
dataset
.
set_use_var
([
data
,
label
])
avg_cost
,
acc
,
prediction
=
bow_net
(
data
,
label
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
opt_ops
,
weight_and_grad
=
sgd_optimizer
.
minimize
(
avg_cost
)
# Run startup program
startup_program
=
fluid
.
default_startup_program
()
place
=
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
executor
.
run
(
startup_program
)
main_program
=
fluid
.
default_main_program
()
epochs
=
10
filelist
=
[
"train_data/part-%d"
%
i
for
i
in
range
(
12
)]
dataset
.
set_filelist
(
filelist
)
for
i
in
range
(
epochs
):
dataset
.
set_thread
(
4
)
executor
.
train_from_dataset
(
main_program
,
# This can be changed during iteration
dataset
,
# This can be changed during iteration
debug
=
False
)
fluid
.
io
.
save_inference_model
(
'imdb/epoch%d.model'
%
i
,
[
data
.
name
,
label
.
name
],
[
acc
],
executor
)
if
__name__
==
"__main__"
:
train
()
python/paddle/fluid/tests/demo/fc_gan.py
已删除
100644 → 0
浏览文件 @
030b298e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
errno
import
math
import
os
import
matplotlib
import
numpy
import
paddle
import
paddle.fluid
as
fluid
matplotlib
.
use
(
'Agg'
)
import
matplotlib.pyplot
as
plt
import
matplotlib.gridspec
as
gridspec
NOISE_SIZE
=
100
NUM_PASS
=
1000
NUM_REAL_IMGS_IN_BATCH
=
121
NUM_TRAIN_TIMES_OF_DG
=
3
LEARNING_RATE
=
2e-5
def
D
(
x
):
hidden
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
200
,
act
=
'relu'
,
param_attr
=
'D.w1'
,
bias_attr
=
'D.b1'
)
logits
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
1
,
act
=
None
,
param_attr
=
'D.w2'
,
bias_attr
=
'D.b2'
)
return
logits
def
G
(
x
):
hidden
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
200
,
act
=
'relu'
,
param_attr
=
'G.w1'
,
bias_attr
=
'G.b1'
)
img
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
28
*
28
,
act
=
'tanh'
,
param_attr
=
'G.w2'
,
bias_attr
=
'G.b2'
)
return
img
def
plot
(
gen_data
):
gen_data
.
resize
(
gen_data
.
shape
[
0
],
28
,
28
)
n
=
int
(
math
.
ceil
(
math
.
sqrt
(
gen_data
.
shape
[
0
])))
fig
=
plt
.
figure
(
figsize
=
(
n
,
n
))
gs
=
gridspec
.
GridSpec
(
n
,
n
)
gs
.
update
(
wspace
=
0.05
,
hspace
=
0.05
)
for
i
,
sample
in
enumerate
(
gen_data
):
ax
=
plt
.
subplot
(
gs
[
i
])
plt
.
axis
(
'off'
)
ax
.
set_xticklabels
([])
ax
.
set_yticklabels
([])
ax
.
set_aspect
(
'equal'
)
plt
.
imshow
(
sample
.
reshape
(
28
,
28
),
cmap
=
'Greys_r'
)
return
fig
def
main
():
try
:
os
.
makedirs
(
"./out"
)
except
OSError
as
e
:
if
e
.
errno
!=
errno
.
EEXIST
:
raise
startup_program
=
fluid
.
Program
()
d_program
=
fluid
.
Program
()
dg_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
d_program
,
startup_program
):
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
784
],
dtype
=
'float32'
)
d_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
D
(
img
),
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'float32'
))
d_loss
=
fluid
.
layers
.
mean
(
d_loss
)
with
fluid
.
program_guard
(
dg_program
,
startup_program
):
noise
=
fluid
.
layers
.
data
(
name
=
'noise'
,
shape
=
[
NOISE_SIZE
],
dtype
=
'float32'
)
g_img
=
G
(
x
=
noise
)
g_program
=
dg_program
.
clone
()
dg_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
D
(
g_img
),
label
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
noise
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
))
dg_loss
=
fluid
.
layers
.
mean
(
dg_loss
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
LEARNING_RATE
)
opt
.
minimize
(
loss
=
d_loss
,
startup_program
=
startup_program
)
opt
.
minimize
(
loss
=
dg_loss
,
startup_program
=
startup_program
,
parameter_list
=
[
p
.
name
for
p
in
g_program
.
global_block
().
all_parameters
()
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
startup_program
)
num_true
=
NUM_REAL_IMGS_IN_BATCH
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
60000
),
batch_size
=
num_true
)
for
pass_id
in
range
(
NUM_PASS
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
num_true
=
len
(
data
)
n
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
[
num_true
*
NOISE_SIZE
]).
astype
(
'float32'
).
reshape
(
[
num_true
,
NOISE_SIZE
])
generated_img
=
exe
.
run
(
g_program
,
feed
=
{
'noise'
:
n
},
fetch_list
=
{
g_img
})[
0
]
real_data
=
numpy
.
array
([
x
[
0
]
for
x
in
data
]).
astype
(
'float32'
)
real_data
=
real_data
.
reshape
(
num_true
,
784
)
total_data
=
numpy
.
concatenate
([
real_data
,
generated_img
])
total_label
=
numpy
.
concatenate
([
numpy
.
ones
(
shape
=
[
real_data
.
shape
[
0
],
1
],
dtype
=
'float32'
),
numpy
.
zeros
(
shape
=
[
real_data
.
shape
[
0
],
1
],
dtype
=
'float32'
)
])
d_loss_np
=
exe
.
run
(
d_program
,
feed
=
{
'img'
:
total_data
,
'label'
:
total_label
},
fetch_list
=
{
d_loss
})[
0
]
for
_
in
range
(
NUM_TRAIN_TIMES_OF_DG
):
n
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
[
2
*
num_true
*
NOISE_SIZE
]).
astype
(
'float32'
).
reshape
(
[
2
*
num_true
,
NOISE_SIZE
,
1
,
1
])
dg_loss_np
=
exe
.
run
(
dg_program
,
feed
=
{
'noise'
:
n
},
fetch_list
=
{
dg_loss
})[
0
]
print
(
"Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}"
.
format
(
pass_id
,
batch_id
,
d_loss_np
,
dg_loss_np
))
# generate image each batch
fig
=
plot
(
generated_img
)
plt
.
savefig
(
'out/{0}.png'
.
format
(
str
(
pass_id
).
zfill
(
3
)),
bbox_inches
=
'tight'
)
plt
.
close
(
fig
)
if
__name__
==
'__main__'
:
main
()
python/paddle/fluid/tests/demo/pipeline_train.py
已删除
100644 → 0
浏览文件 @
030b298e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
numpy
as
np
import
copy
import
pickle
import
os
from
functools
import
partial
import
logging
import
time
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
argparse
import
random
import
sys
import
math
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
is_profile
=
False
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Resnet with pipelie parallel."
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
100
,
help
=
'input batch size'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.001
,
help
=
'learning rate'
)
return
parser
.
parse_args
()
def
conv_bn_layer
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
)
def
shortcut
(
input
,
ch_out
,
stride
,
is_first
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
or
is_first
==
True
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
bottleneck_block
(
input
,
num_filters
,
stride
):
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
short
=
shortcut
(
input
,
num_filters
*
4
,
stride
,
is_first
=
False
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
basic_block
(
input
,
num_filters
,
stride
,
is_first
):
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
'relu'
,
stride
=
stride
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
)
short
=
shortcut
(
input
,
num_filters
,
stride
,
is_first
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
def
network
(
input
,
layers
=
50
,
class_dim
=
1000
):
supported_layers
=
[
18
,
34
,
50
,
101
,
152
]
assert
layers
in
supported_layers
depth
=
None
if
layers
==
18
:
depth
=
[
2
,
2
,
2
,
2
]
elif
layers
==
34
or
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
with
fluid
.
device_guard
(
"gpu:0"
):
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
with
fluid
.
device_guard
(
"gpu:1"
):
for
i
in
range
(
depth
[
block
]):
conv
=
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
with
fluid
.
device_guard
(
"gpu:2"
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
else
:
for
block
in
range
(
len
(
depth
)):
with
fluid
.
device_guard
(
"gpu:1"
):
for
i
in
range
(
depth
[
block
]):
conv
=
basic_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
is_first
=
block
==
i
==
0
)
with
fluid
.
device_guard
(
"gpu:2"
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
train
():
args
=
parse_args
()
lr
=
args
.
lr
with
fluid
.
device_guard
(
"gpu:0"
):
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
False
)
fc
=
build_network
(
image
,
layers
=
50
)
with
fluid
.
device_guard
(
"gpu:3"
):
out
,
prob
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
fc
,
label
=
label
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
out
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
prob
,
label
=
label
,
k
=
5
)
optimizer
=
fluid
.
optimizer
.
SGD
(
lr
)
optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
optimizer
,
num_microbatches
=
2
)
optimizer
.
minimize
(
loss
)
def
train_reader
():
for
_
in
range
(
4000
):
img
=
np
.
random
.
random
(
size
=
[
3
,
224
,
224
]).
astype
(
'float32'
)
label
=
np
.
random
.
random
(
size
=
[
1
]).
astype
(
'int64'
)
yield
img
,
label
data_loader
.
set_sample_generator
(
train_reader
,
batch_size
=
args
.
batch_size
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
data_loader
.
start
()
logger
.
info
(
"begin training..."
)
exe
.
train_from_dataset
(
fluid
.
default_main_program
(),
debug
=
is_profile
)
if
__name__
==
"__main__"
:
train
()
python/paddle/fluid/tests/demo/pyreader.py
已删除
100644 → 0
浏览文件 @
030b298e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
import
six
import
paddle
import
paddle.dataset.mnist
as
mnist
import
paddle.fluid
as
fluid
def
network
(
is_train
):
reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
((
-
1
,
784
),
(
-
1
,
1
)),
dtypes
=
(
'float32'
,
'int64'
),
name
=
"train_reader"
if
is_train
else
"test_reader"
,
use_double_buffer
=
True
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
i
in
six
.
moves
.
xrange
(
2
):
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
100
,
act
=
'tanh'
)
hidden
=
fluid
.
layers
.
dropout
(
hidden
,
dropout_prob
=
0.5
,
is_test
=
not
is_train
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
return
fluid
.
layers
.
mean
(
loss
),
reader
def
main
():
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
loss
,
train_reader
=
network
(
True
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
adam
.
minimize
(
loss
)
test_prog
=
fluid
.
Program
()
test_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_prog
,
test_startup
):
with
fluid
.
unique_name
.
guard
():
test_loss
,
test_reader
=
network
(
False
)
use_cuda
=
fluid
.
core
.
is_compiled_with_cuda
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
fluid
.
Executor
(
place
).
run
(
startup_prog
)
fluid
.
Executor
(
place
).
run
(
test_startup
)
trainer
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
train_prog
)
tester
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
share_vars_from
=
trainer
,
main_program
=
test_prog
)
train_reader
.
decorate_paddle_reader
(
paddle
.
reader
.
shuffle
(
paddle
.
batch
(
mnist
.
train
(),
512
),
buf_size
=
8192
))
test_reader
.
decorate_paddle_reader
(
paddle
.
batch
(
mnist
.
test
(),
512
))
for
epoch_id
in
six
.
moves
.
xrange
(
10
):
train_reader
.
start
()
try
:
while
True
:
print
(
'train_loss'
,
numpy
.
array
(
trainer
.
run
(
fetch_list
=
[
loss
.
name
])))
except
fluid
.
core
.
EOFException
:
print
(
'End of epoch'
,
epoch_id
)
train_reader
.
reset
()
test_reader
.
start
()
try
:
while
True
:
print
(
'test loss'
,
numpy
.
array
(
tester
.
run
(
fetch_list
=
[
test_loss
.
name
])))
except
fluid
.
core
.
EOFException
:
print
(
'End of testing'
)
test_reader
.
reset
()
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录