提交 bee213e5 编写于 作者: G gongweibao

fix conflict

......@@ -160,6 +160,12 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.stanh ArgSpec(args=['x', 'scale_a', 'scale_b', 'name'], varargs=None, keywords=None, defaults=(0.6666666666666666, 1.7159, None))
paddle.fluid.layers.hard_sigmoid ArgSpec(args=['x', 'slope', 'offset', 'name'], varargs=None, keywords=None, defaults=(0.2, 0.5, None))
paddle.fluid.layers.swish ArgSpec(args=['x', 'beta', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.prelu ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None))
......@@ -276,12 +282,6 @@ paddle.fluid.layers.softsign ArgSpec(args=[], varargs='args', keywords='kwargs',
paddle.fluid.layers.brelu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.leaky_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.soft_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.relu6 ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.stanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.hard_sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.swish ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
......
......@@ -22,6 +22,7 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
......@@ -46,17 +47,15 @@ class ReferenceCountOpHandle : public OpHandleBase {
const std::vector<std::string> &var_names,
GarbageCollector<Tensor> *gc,
AtomicReferenceCountMap *ref_cnts)
: OpHandleBase(node),
scope_(scope),
var_names_(var_names),
gc_(gc),
ref_cnts_(ref_cnts) {
: OpHandleBase(node), scope_(scope), gc_(gc), ref_cnts_(ref_cnts) {
dev_ctx_ = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
if (IsStreamGarabageCollector()) {
PADDLE_ENFORCE(cudaSetDevice(place.device));
PADDLE_ENFORCE(cudaEventCreateWithFlags(&event_, cudaEventDisableTiming));
}
for (auto &name : var_names) AddVar(name);
}
~ReferenceCountOpHandle() {
......@@ -69,20 +68,36 @@ class ReferenceCountOpHandle : public OpHandleBase {
std::string Name() const override { return "reference_count"; }
void AddVar(const std::string &name) {
auto it = var_names_.find(name);
if (it != var_names_.end())
++(it->second);
else
var_names_[name] = 1;
}
protected:
void RunImpl() override {
auto *exec_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
std::vector<LoDTensor *> tensors;
for (auto &name : var_names_) {
std::vector<Tensor *> tensors;
for (auto &pair : var_names_) {
auto &name = pair.first;
auto it = ref_cnts_->find(name);
if (it == ref_cnts_->end()) continue;
auto *var = exec_scope->FindVar(name);
if (var == nullptr || !var->IsType<LoDTensor>()) continue;
if (var == nullptr) continue;
if (it->second.fetch_sub(1) <= 1) {
if (var->IsType<LoDTensor>()) {
if (it->second.fetch_sub(pair.second) <= pair.second) {
tensors.emplace_back(var->GetMutable<LoDTensor>());
}
} else if (var->IsType<SelectedRows>()) {
if (it->second.fetch_sub(pair.second) <= pair.second) {
tensors.emplace_back(
var->GetMutable<SelectedRows>()->mutable_value());
}
}
}
if (!tensors.empty()) {
......@@ -91,7 +106,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
}
private:
void ClearTensors(const std::vector<LoDTensor *> &tensors) {
void ClearTensors(const std::vector<Tensor *> &tensors) {
auto *gc = dynamic_cast<StreamGarbageCollector<Tensor> *>(gc_);
if (gc != nullptr) {
auto compute_stream = dev_ctx_->stream();
......@@ -112,7 +127,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
const Scope *scope_;
platform::CUDADeviceContext *dev_ctx_;
std::vector<std::string> var_names_;
std::unordered_map<std::string, int> var_names_;
GarbageCollector<Tensor> *gc_; // not own
AtomicReferenceCountMap *ref_cnts_; // not own
cudaEvent_t event_;
......
......@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
......@@ -23,6 +24,25 @@ namespace paddle {
namespace framework {
namespace details {
static ComputationOpHandle *FindNextComputationOpHandle(VarHandle *var_in) {
std::queue<VarHandleBase *> queue;
queue.push(var_in);
do {
auto *var = queue.front();
queue.pop();
for (auto *op : var->PendingOps()) {
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op != nullptr && compute_op->GetPlace() == var_in->place_) {
return compute_op;
}
for (auto *out_var : op->Outputs()) {
queue.push(out_var);
}
}
} while (!queue.empty());
return nullptr;
}
std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto &ref_cnts = Get<DeviceReferenceCountMap>(kGlobalReferenceCount);
......@@ -34,6 +54,9 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std::unordered_set<std::string> names;
std::unordered_map<OpHandleBase *, std::unique_ptr<ReferenceCountOpHandle>>
compute_ref_cnt_map;
auto get_ref_cnts_from_compute_op = [&](
const std::unique_ptr<OpHandleBase> &op,
const std::vector<VarHandleBase *> &vars) {
......@@ -54,16 +77,19 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
VarDesc *var_desc = var_handle->Node()->Var();
auto var_name = var_handle->Node()->Name();
// This is wierd but there is really some variables without var_desc
// This is weird but there is really some variables without var_desc
// in computation_op
if (var_desc == nullptr) {
if (compute_op->Node()->Op()->Block()->FindVar(var_name) == nullptr)
continue;
} else {
if (var_desc->Persistable() ||
var_desc->Proto()->type().type() != proto::VarType::LOD_TENSOR)
if (var_desc->Persistable()) continue;
auto var_type = var_desc->Proto()->type().type();
if (var_type != proto::VarType::LOD_TENSOR &&
var_type != proto::VarType::SELECTED_ROWS) {
continue;
}
}
// compute op only runs in one device
if (ref_cnts[place.device]->count(var_name))
......@@ -93,12 +119,33 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
if (ref_cnts.count(place.device) &&
ref_cnts[place.device]->count(var_name)) {
++(*ref_cnts[place.device])[var_name];
auto *next_compute_op = FindNextComputationOpHandle(var_handle);
if (next_compute_op != nullptr) {
if (compute_ref_cnt_map.count(next_compute_op)) {
compute_ref_cnt_map[next_compute_op]->AddVar(var_name);
VLOG(5) << "Add reference count of " << var_name << " to Operator "
<< next_compute_op->Name();
} else {
// Create new reference_count_op_handle
ir::Node *ref_cnt_node = graph->CreateEmptyNode(
"reference_count", ir::Node::Type::kOperation);
auto *ref_cnt_handle = new ReferenceCountOpHandle(
ref_cnt_node, next_compute_op->GetScope(), place, {var_name},
gcs[place.device].get(), cur_ref_cnts[place.device].get());
if (next_compute_op->Outputs().empty()) {
auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
next_compute_op->AddOutput(dep_var);
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
}
ref_cnt_handle->AddInput(next_compute_op->Outputs().front());
compute_ref_cnt_map[next_compute_op].reset(ref_cnt_handle);
}
}
}
}
};
std::unordered_map<OpHandleBase *, ReferenceCountOpHandle *>
compute_ref_cnt_map;
auto &all_ops = graph->Get<GraphOps>(kGraphOps);
for (auto &op : all_ops) {
auto in_var_names = get_ref_cnts_from_compute_op(op, op->Inputs());
......@@ -113,11 +160,13 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
auto *ref_cnt_handle = new ReferenceCountOpHandle(
ref_cnt_node, compute_op->GetScope(), place, in_var_names,
gcs[place.device].get(), cur_ref_cnts[place.device].get());
if (compute_op->Outputs().empty()) {
auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
compute_op->AddOutput(dep_var);
ref_cnt_handle->AddInput(dep_var);
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
compute_ref_cnt_map[compute_op] = ref_cnt_handle;
}
ref_cnt_handle->AddInput(compute_op->Outputs().front());
compute_ref_cnt_map[compute_op].reset(ref_cnt_handle);
}
for (auto &op : all_ops) {
......@@ -131,7 +180,11 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
new_all_ops.emplace_back(std::move(op));
auto it = compute_ref_cnt_map.find(new_all_ops.back().get());
if (it != compute_ref_cnt_map.end()) {
new_all_ops.emplace_back(it->second);
// Add LeafNode to ReferenceCountOpHandle
auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
it->second->AddOutput(dummy_leaf);
new_all_ops.emplace_back(std::move(it->second));
}
}
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
......@@ -306,26 +307,43 @@ class AdamOpKernel : public framework::OpKernel<T> {
VLOG(3) << "grad row size is 0!!";
return;
}
std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
bool is_strict_sorted = true;
for (size_t i = 1; i < cpu_rows.size(); ++i) {
if (cpu_rows[i - 1] >= cpu_rows[i]) {
is_strict_sorted = false;
break;
}
}
const framework::SelectedRows* grad_merge_ptr;
if (is_strict_sorted) {
grad_merge_ptr = &grad;
} else {
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter::MergeAdd<DeviceContext, T> merge_func;
auto& grad_merge = *(ctx.scope()
.NewScope()
.Var("sparse_adam_grad_merge")
->GetMutable<framework::SelectedRows>());
auto* grad_merge_var = const_cast<framework::Scope&>(ctx.scope())
.Var()
->GetMutable<framework::SelectedRows>();
merge_func(ctx.template device_context<DeviceContext>(), grad,
&grad_merge);
grad_merge_var);
grad_merge_ptr = grad_merge_var;
}
auto& grad_merge = *grad_merge_ptr;
auto& grad_tensor = grad_merge.value();
const T* grad_data = grad_tensor.template data<T>();
int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAMutableData() interface should not be
const int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAData() interface should not be
// provided.
#if defined(PADDLE_WITH_CUDA)
if (platform::is_gpu_place(ctx.GetPlace())) {
rows = grad_merge.mutable_rows()->CUDAMutableData(ctx.GetPlace());
rows = grad_merge.rows().CUDAData(ctx.GetPlace());
} else {
#endif
rows = grad_merge.mutable_rows()->data();
rows = grad_merge.rows().data();
#if defined(PADDLE_WITH_CUDA)
}
......
......@@ -45,8 +45,9 @@ __all__ = [
'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
'log', 'crop', 'rank_loss', 'prelu', 'flatten', 'sequence_mask', 'stack',
'pad2d', 'unstack', 'sequence_enumerate', 'expand', 'sequence_concat',
'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid',
'swish', 'prelu', 'flatten', 'sequence_mask', 'stack', 'pad2d', 'unstack',
'sequence_enumerate', 'expand', 'sequence_concat',
'uniform_random_batch_size_like', 'gaussian_random', 'sampling_id',
'gaussian_random_batch_size_like', 'sum', 'slice', 'shape'
]
......@@ -5828,6 +5829,148 @@ def pad2d(input,
return out
@templatedoc()
def elu(x, alpha=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|1.0): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('elu', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='elu',
inputs={'X': x},
outputs={'Out': out},
attrs={'alpha': alpha})
return out
@templatedoc()
def relu6(x, threshold=6.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|6.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('relu6', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='relu6',
inputs={'X': x},
outputs={'Out': out},
attrs={'threshold': threshold})
return out
@templatedoc()
def pow(x, factor=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
factor(${factor_type}|1.0): ${factor_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('pow', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='pow',
inputs={'X': x},
outputs={'Out': out},
attrs={'factor': factor})
return out
@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('stanh', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='stanh',
inputs={'X': x},
outputs={'Out': out},
attrs={'scale_a': scale_a,
'scale_b': scale_b})
return out
@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
slope(${slope_type}|0.2): ${slope_comment}
offset(${offset_type}|0.5): ${offset_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('hard_sigmoid', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='hard_sigmoid',
inputs={'X': x},
outputs={'Out': out},
attrs={'slope': slope,
'offset': offset})
return out
@templatedoc()
def swish(x, beta=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
beta(${beta_type}|1.0): ${beta_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper = LayerHelper('swish', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='swish',
inputs={'X': x},
outputs={'Out': out},
attrs={'slope': beta})
return out
def prelu(x, mode, param_attr=None, name=None):
"""
Equation:
......
......@@ -36,12 +36,6 @@ __activations__ = [
'brelu',
'leaky_relu',
'soft_relu',
'elu',
'relu6',
'pow',
'stanh',
'hard_sigmoid',
'swish',
]
__all__ = [
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册