Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
be6ecec4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
be6ecec4
编写于
8月 10, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix unittests' division issues
上级
59adf7ce
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
42 addition
and
41 deletion
+42
-41
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+12
-12
python/paddle/fluid/tests/unittests/test_conv3d_op.py
python/paddle/fluid/tests/unittests/test_conv3d_op.py
+9
-9
python/paddle/fluid/tests/unittests/test_infer_shape.py
python/paddle/fluid/tests/unittests/test_infer_shape.py
+7
-6
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+2
-2
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+12
-12
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
be6ecec4
...
@@ -550,7 +550,7 @@ def dynamic_lstmp(input,
...
@@ -550,7 +550,7 @@ def dynamic_lstmp(input,
"""
"""
helper
=
LayerHelper
(
'lstmp'
,
**
locals
())
helper
=
LayerHelper
(
'lstmp'
,
**
locals
())
size
=
size
/
4
size
=
size
/
/
4
weight
=
helper
.
create_parameter
(
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
proj_size
,
4
*
size
],
dtype
=
dtype
)
attr
=
helper
.
param_attr
,
shape
=
[
proj_size
,
4
*
size
],
dtype
=
dtype
)
proj_weight
=
helper
.
create_parameter
(
proj_weight
=
helper
.
create_parameter
(
...
@@ -778,7 +778,7 @@ def gru_unit(input,
...
@@ -778,7 +778,7 @@ def gru_unit(input,
helper
=
LayerHelper
(
'gru_unit'
,
**
locals
())
helper
=
LayerHelper
(
'gru_unit'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
size
=
size
/
3
size
=
size
/
/
3
# create weight
# create weight
weight
=
helper
.
create_parameter
(
weight
=
helper
.
create_parameter
(
...
@@ -1258,7 +1258,7 @@ def sequence_conv(input,
...
@@ -1258,7 +1258,7 @@ def sequence_conv(input,
outputs
=
{
"Out"
:
pre_bias
},
outputs
=
{
"Out"
:
pre_bias
},
attrs
=
{
attrs
=
{
'contextStride'
:
filter_stride
,
'contextStride'
:
filter_stride
,
'contextStart'
:
-
int
(
filter_size
/
2
),
'contextStart'
:
-
int
(
filter_size
/
/
2
),
'contextLength'
:
filter_size
'contextLength'
:
filter_size
})
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
)
pre_act
=
helper
.
append_bias_op
(
pre_bias
)
...
@@ -1487,7 +1487,7 @@ def conv2d(input,
...
@@ -1487,7 +1487,7 @@ def conv2d(input,
else
:
else
:
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
num_filter_channels
=
num_channels
/
/
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'filter_size'
)
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
...
@@ -1649,7 +1649,7 @@ def conv3d(input,
...
@@ -1649,7 +1649,7 @@ def conv3d(input,
else
:
else
:
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
num_filter_channels
=
num_channels
/
/
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'filter_size'
)
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
...
@@ -2384,16 +2384,16 @@ def conv2d_transpose(input,
...
@@ -2384,16 +2384,16 @@ def conv2d_transpose(input,
w_in
=
input
.
shape
[
3
]
w_in
=
input
.
shape
[
3
]
filter_size_h
=
(
output_size
[
0
]
-
(
h_in
-
1
)
*
stride
[
0
]
+
2
*
filter_size_h
=
(
output_size
[
0
]
-
(
h_in
-
1
)
*
stride
[
0
]
+
2
*
padding
[
0
]
-
1
)
/
dilation
[
0
]
+
1
padding
[
0
]
-
1
)
/
/
dilation
[
0
]
+
1
filter_size_w
=
(
output_size
[
1
]
-
(
w_in
-
1
)
*
stride
[
1
]
+
2
*
filter_size_w
=
(
output_size
[
1
]
-
(
w_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
padding
[
1
]
-
1
)
/
/
dilation
[
1
]
+
1
filter_size
=
[
filter_size_h
,
filter_size_w
]
filter_size
=
[
filter_size_h
,
filter_size_w
]
else
:
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'conv2d_transpose.filter_size'
)
'conv2d_transpose.filter_size'
)
groups
=
1
if
groups
is
None
else
groups
groups
=
1
if
groups
is
None
else
groups
filter_shape
=
[
input_channel
,
num_filters
/
groups
]
+
filter_size
filter_shape
=
[
input_channel
,
num_filters
/
/
groups
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
...
@@ -2551,18 +2551,18 @@ def conv3d_transpose(input,
...
@@ -2551,18 +2551,18 @@ def conv3d_transpose(input,
w_in
=
input
.
shape
[
4
]
w_in
=
input
.
shape
[
4
]
filter_size_d
=
(
output_size
[
0
]
-
(
d_in
-
1
)
*
stride
[
0
]
+
2
*
filter_size_d
=
(
output_size
[
0
]
-
(
d_in
-
1
)
*
stride
[
0
]
+
2
*
padding
[
0
]
-
1
)
/
dilation
[
0
]
+
1
padding
[
0
]
-
1
)
/
/
dilation
[
0
]
+
1
filter_size_h
=
(
output_size
[
1
]
-
(
h_in
-
1
)
*
stride
[
1
]
+
2
*
filter_size_h
=
(
output_size
[
1
]
-
(
h_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
padding
[
1
]
-
1
)
/
/
dilation
[
1
]
+
1
filter_size_w
=
(
output_size
[
2
]
-
(
w_in
-
1
)
*
stride
[
2
]
+
2
*
filter_size_w
=
(
output_size
[
2
]
-
(
w_in
-
1
)
*
stride
[
2
]
+
2
*
padding
[
2
]
-
1
)
/
dilation
[
2
]
+
1
padding
[
2
]
-
1
)
/
/
dilation
[
2
]
+
1
filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
else
:
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'conv3d_transpose.filter_size'
)
'conv3d_transpose.filter_size'
)
groups
=
1
if
groups
is
None
else
groups
groups
=
1
if
groups
is
None
else
groups
filter_shape
=
[
input_channel
,
num_filters
/
groups
]
+
filter_size
filter_shape
=
[
input_channel
,
num_filters
/
/
groups
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
...
...
python/paddle/fluid/tests/unittests/test_conv3d_op.py
浏览文件 @
be6ecec4
...
@@ -24,14 +24,14 @@ def conv3d_forward_naive(input, filter, group, conv_param):
...
@@ -24,14 +24,14 @@ def conv3d_forward_naive(input, filter, group, conv_param):
out_c
,
f_c
,
f_d
,
f_h
,
f_w
=
filter
.
shape
out_c
,
f_c
,
f_d
,
f_h
,
f_w
=
filter
.
shape
assert
f_c
*
group
==
in_c
assert
f_c
*
group
==
in_c
assert
np
.
mod
(
out_c
,
group
)
==
0
assert
np
.
mod
(
out_c
,
group
)
==
0
sub_out_c
=
out_c
/
group
sub_out_c
=
out_c
/
/
group
stride
,
pad
,
dilation
=
conv_param
[
'stride'
],
conv_param
[
'pad'
],
conv_param
[
stride
,
pad
,
dilation
=
conv_param
[
'stride'
],
conv_param
[
'pad'
],
conv_param
[
'dilations'
]
'dilations'
]
out_d
=
1
+
(
in_d
+
2
*
pad
[
0
]
-
(
dilation
[
0
]
*
(
f_d
-
1
)
+
1
))
/
stride
[
0
]
out_d
=
1
+
(
in_d
+
2
*
pad
[
0
]
-
(
dilation
[
0
]
*
(
f_d
-
1
)
+
1
))
/
/
stride
[
0
]
out_h
=
1
+
(
in_h
+
2
*
pad
[
1
]
-
(
dilation
[
1
]
*
(
f_h
-
1
)
+
1
))
/
stride
[
1
]
out_h
=
1
+
(
in_h
+
2
*
pad
[
1
]
-
(
dilation
[
1
]
*
(
f_h
-
1
)
+
1
))
/
/
stride
[
1
]
out_w
=
1
+
(
in_w
+
2
*
pad
[
2
]
-
(
dilation
[
2
]
*
(
f_w
-
1
)
+
1
))
/
stride
[
2
]
out_w
=
1
+
(
in_w
+
2
*
pad
[
2
]
-
(
dilation
[
2
]
*
(
f_w
-
1
)
+
1
))
/
/
stride
[
2
]
out
=
np
.
zeros
((
in_n
,
out_c
,
out_d
,
out_h
,
out_w
))
out
=
np
.
zeros
((
in_n
,
out_c
,
out_d
,
out_h
,
out_w
))
...
@@ -166,7 +166,7 @@ class TestConv3dOp(OpTest):
...
@@ -166,7 +166,7 @@ class TestConv3dOp(OpTest):
self
.
stride
=
[
1
,
1
,
1
]
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
def
init_dilation
(
self
):
def
init_dilation
(
self
):
...
@@ -185,7 +185,7 @@ class TestCase1(TestConv3dOp):
...
@@ -185,7 +185,7 @@ class TestCase1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
...
@@ -205,7 +205,7 @@ class TestWith1x1(TestConv3dOp):
...
@@ -205,7 +205,7 @@ class TestWith1x1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCHW
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
def
init_dilation
(
self
):
def
init_dilation
(
self
):
...
@@ -221,7 +221,7 @@ class TestWithInput1x1Filter1x1(TestConv3dOp):
...
@@ -221,7 +221,7 @@ class TestWithInput1x1Filter1x1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
1
,
1
,
1
]
# NCHW
self
.
input_size
=
[
2
,
3
,
1
,
1
,
1
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
def
init_dilation
(
self
):
def
init_dilation
(
self
):
...
@@ -237,7 +237,7 @@ class TestWithDilation(TestConv3dOp):
...
@@ -237,7 +237,7 @@ class TestWithDilation(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
6
,
6
,
6
]
# NCDHW
self
.
input_size
=
[
2
,
3
,
6
,
6
,
6
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
2
,
2
,
2
]
self
.
filter_size
=
[
6
,
f_c
,
2
,
2
,
2
]
def
init_dilation
(
self
):
def
init_dilation
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_infer_shape.py
浏览文件 @
be6ecec4
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
import
unittest
import
unittest
import
six
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
...
@@ -27,14 +28,14 @@ class TestInferShape(unittest.TestCase):
...
@@ -27,14 +28,14 @@ class TestInferShape(unittest.TestCase):
shape
=
[
10
,
20
]
shape
=
[
10
,
20
]
# prepare input/output
# prepare input/output
x1
=
block
.
var
(
"x1"
)
x1
=
block
.
var
(
six
.
b
(
"x1"
)
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_shape
(
shape
)
x1
.
set_shape
(
shape
)
x2
=
block
.
var
(
"x2"
)
x2
=
block
.
var
(
six
.
b
(
"x2"
)
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_shape
(
shape
)
x2
.
set_shape
(
shape
)
out
=
block
.
var
(
"out"
)
out
=
block
.
var
(
six
.
b
(
"out"
)
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
# prepare the operator
# prepare the operator
...
@@ -57,14 +58,14 @@ class TestInferShape(unittest.TestCase):
...
@@ -57,14 +58,14 @@ class TestInferShape(unittest.TestCase):
y_shape
=
[
20
,
30
]
y_shape
=
[
20
,
30
]
# prepare input/output
# prepare input/output
x1
=
block
.
var
(
"x"
)
x1
=
block
.
var
(
six
.
b
(
"x"
)
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_shape
(
x_shape
)
x1
.
set_shape
(
x_shape
)
x2
=
block
.
var
(
"y"
)
x2
=
block
.
var
(
six
.
b
(
"y"
)
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_shape
(
y_shape
)
x2
.
set_shape
(
y_shape
)
out
=
block
.
var
(
"out"
)
out
=
block
.
var
(
six
.
b
(
"out"
)
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
# prepare the operator
# prepare the operator
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
be6ecec4
...
@@ -158,7 +158,7 @@ class TestBook(unittest.TestCase):
...
@@ -158,7 +158,7 @@ class TestBook(unittest.TestCase):
input
=
crf_decode
,
input
=
crf_decode
,
label
=
label
,
label
=
label
,
chunk_scheme
=
"IOB"
,
chunk_scheme
=
"IOB"
,
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
num_chunk_types
=
(
label_dict_len
-
1
)
/
/
2
)
self
.
assertFalse
(
crf
is
None
)
self
.
assertFalse
(
crf
is
None
)
self
.
assertFalse
(
crf_decode
is
None
)
self
.
assertFalse
(
crf_decode
is
None
)
...
@@ -285,7 +285,7 @@ class TestBook(unittest.TestCase):
...
@@ -285,7 +285,7 @@ class TestBook(unittest.TestCase):
name
=
'word_{0}'
.
format
(
i
),
shape
=
[
1
],
dtype
=
'int64'
))
name
=
'word_{0}'
.
format
(
i
),
shape
=
[
1
],
dtype
=
'int64'
))
dict_size
=
10000
dict_size
=
10000
label_word
=
int
(
window_size
/
2
)
+
1
label_word
=
int
(
window_size
/
/
2
)
+
1
embs
=
[]
embs
=
[]
for
i
in
range
(
window_size
):
for
i
in
range
(
window_size
):
...
...
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
be6ecec4
...
@@ -29,14 +29,14 @@ def max_pool3D_forward_naive(x,
...
@@ -29,14 +29,14 @@ def max_pool3D_forward_naive(x,
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
)
/
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
paddings
[
0
])
/
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
)
/
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
paddings
[
1
])
/
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
)
/
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
paddings
[
2
])
/
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
for
k
in
range
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
@@ -63,14 +63,14 @@ def avg_pool3D_forward_naive(x,
...
@@ -63,14 +63,14 @@ def avg_pool3D_forward_naive(x,
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
)
/
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
paddings
[
0
])
/
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
)
/
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
paddings
[
1
])
/
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
)
/
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
paddings
[
2
])
/
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
for
k
in
range
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录