提交 bd561384 编写于 作者: S sweetsky0901

format code

上级 d9673cad
...@@ -17,15 +17,13 @@ limitations under the License. */ ...@@ -17,15 +17,13 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
// All tensors are in NCHW format // All tensors are in NCHW format
template <typename T> template <typename T>
class Unpool2dMaxFunctor<platform::CPUPlace, T> { class Unpool2dMaxFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& indices, framework::Tensor* output) {
framework::Tensor * output) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -51,9 +49,6 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> { ...@@ -51,9 +49,6 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
} }
} }
}; };
template <class T> template <class T>
class Unpool2dMaxGradFunctor<platform::CPUPlace, T> { class Unpool2dMaxGradFunctor<platform::CPUPlace, T> {
public: public:
...@@ -62,7 +57,7 @@ public: ...@@ -62,7 +57,7 @@ public:
const framework::Tensor& indices, const framework::Tensor& indices,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
framework::Tensor * input_grad) { framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -89,12 +84,10 @@ public: ...@@ -89,12 +84,10 @@ public:
} }
} }
}; };
template class Unpool2dMaxGradFunctor<platform::CPUPlace, float>; template class Unpool2dMaxGradFunctor<platform::CPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::CPUPlace, double>; template class Unpool2dMaxGradFunctor<platform::CPUPlace, double>;
template class Unpool2dMaxFunctor<platform::CPUPlace, float>; template class Unpool2dMaxFunctor<platform::CPUPlace, float>;
template class Unpool2dMaxFunctor<platform::CPUPlace, double>; template class Unpool2dMaxFunctor<platform::CPUPlace, double>;
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -18,11 +18,9 @@ limitations under the License. */ ...@@ -18,11 +18,9 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
template <typename T> template <typename T>
__global__ void KernelUnpool2dMax(const int nthreads, __global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
const T* input_data, const int* indices_data,
const int * indices_data,
const int input_height, const int input_height,
const int input_width, const int input_width,
const int channels, const int channels,
...@@ -46,8 +44,7 @@ __global__ void KernelUnpool2dMax(const int nthreads, ...@@ -46,8 +44,7 @@ __global__ void KernelUnpool2dMax(const int nthreads,
} }
} }
template <typename T> template <typename T>
__global__ void KernelUnpool2dMaxGrad(const int nthreads, __global__ void KernelUnpool2dMaxGrad(const int nthreads, const T* input_data,
const T* input_data,
const int* indices_data, const int* indices_data,
const int input_height, const int input_height,
const int input_width, const int input_width,
...@@ -78,11 +75,11 @@ __global__ void KernelUnpool2dMaxGrad(const int nthreads, ...@@ -78,11 +75,11 @@ __global__ void KernelUnpool2dMaxGrad(const int nthreads,
*/ */
template <typename T> template <typename T>
class Unpool2dMaxFunctor<platform::GPUPlace, T> { class Unpool2dMaxFunctor<platform::GPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& indices,
framework::Tensor * output) { framework::Tensor* output) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -107,13 +104,13 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> { ...@@ -107,13 +104,13 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
*/ */
template <typename T> template <typename T>
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> { class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& indices,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
framework::Tensor * input_grad) { framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -133,17 +130,13 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> { ...@@ -133,17 +130,13 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
.stream()>>>(input.numel(), input_data, indices_data, .stream()>>>(input.numel(), input_data, indices_data,
input_height, input_width, output_channels, input_height, input_width, output_channels,
output_data, output_grad_data, output_data, output_grad_data,
output_height, output_width, output_height, output_width, input_grad_data);
input_grad_data);
} }
}; };
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>; template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>; template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
template class Unpool2dMaxFunctor<platform::GPUPlace, float>; template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxFunctor<platform::GPUPlace, double>; template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -22,22 +22,21 @@ namespace math { ...@@ -22,22 +22,21 @@ namespace math {
template <typename Place, typename T> template <typename Place, typename T>
class Unpool2dMaxFunctor { class Unpool2dMaxFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& indices, framework::Tensor* output);
framework::Tensor * output);
}; };
template <typename Place, class T> template <typename Place, class T>
class Unpool2dMaxGradFunctor { class Unpool2dMaxGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& indices,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
framework::Tensor * input_grad); framework::Tensor* input_grad);
}; };
} // namespace math } // namespace math
} // namespace operators } // namespace operators
......
...@@ -21,32 +21,39 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -21,32 +21,39 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
Unpool2dOpMaker(framework::OpProto* proto, Unpool2dOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker) framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", AddInput(
"X",
"(Tensor) The input tensor of unpool operator. " "(Tensor) The input tensor of unpool operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the " "The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."); "number of channels, H and W is the height and width of feature.");
AddInput("Indices", AddInput(
"Indices",
"(Tensor) The input tensor of the indices given out by MaxPool2d. " "(Tensor) The input tensor of the indices given out by MaxPool2d. "
"The format of input tensor is NCHW. Where N is batch size, C is the " "The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."); "number of channels, H and W is the height and width of feature.");
AddOutput("Out", AddOutput(
"Out",
"(Tensor) The output tensor of unpool operator." "(Tensor) The output tensor of unpool operator."
"The format of output tensor is also NCHW." "The format of output tensor is also NCHW."
"Where N is batch size, C is " "Where N is batch size, C is "
"the number of channels, H and W is the height and " "the number of channels, H and W is the height and "
"width of feature."); "width of feature.");
AddAttr<std::vector<int>>("ksize", AddAttr<std::vector<int>>(
"ksize",
"(vector), the unpooling window size(height, width) " "(vector), the unpooling window size(height, width) "
"of unpooling operator."); "of unpooling operator.");
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>(
"strides",
"(vector, default:{1, 1}), " "(vector, default:{1, 1}), "
"strides (height, width) of unpooling operator.") "strides (height, width) of unpooling operator.")
.SetDefault({1, 1}); .SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", AddAttr<std::vector<int>>(
"paddings",
"(vector defalut:{0,0}), " "(vector defalut:{0,0}), "
"paddings (height, width) of unpooling operator.") "paddings (height, width) of unpooling operator.")
.SetDefault({0, 0}); .SetDefault({0, 0});
AddAttr<std::string>("unpooling_type", AddAttr<std::string>(
"unpooling_type",
"(string), unpooling type, can be \"max\" for max-unpooling ") "(string), unpooling type, can be \"max\" for max-unpooling ")
.InEnum({"max"}); .InEnum({"max"});
AddComment(R"DOC( AddComment(R"DOC(
...@@ -64,12 +71,12 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -64,12 +71,12 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
}; };
int OutputSize(int input_size, int ksize, int padding, int stride) { int OutputSize(int input_size, int ksize, int padding, int stride) {
int output_size = (input_size -1) * stride - 2 * padding + ksize; int output_size = (input_size - 1) * stride - 2 * padding + ksize;
return output_size; return output_size;
} }
class UnpoolOp : public framework::OperatorWithKernel { class UnpoolOp : public framework::OperatorWithKernel {
protected: protected:
framework::OpKernelType GetKernelType( framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType( return framework::OpKernelType(
...@@ -77,7 +84,7 @@ protected: ...@@ -77,7 +84,7 @@ protected:
ctx.device_context()); ctx.device_context());
} }
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp" PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
...@@ -92,7 +99,8 @@ public: ...@@ -92,7 +99,8 @@ public:
ctx->Attrs().Get<std::string>("unpooling_type"); ctx->Attrs().Get<std::string>("unpooling_type");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize"); std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); std::vector<int> paddings =
ctx->Attrs().Get<std::vector<int>>("paddings");
PADDLE_ENFORCE(in_x_dims.size() == 4, PADDLE_ENFORCE(in_x_dims.size() == 4,
"Unpooling intput must be of 4-dimensional."); "Unpooling intput must be of 4-dimensional.");
PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims); PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
...@@ -129,10 +137,10 @@ class UnpoolOpGrad : public framework::OperatorWithKernel { ...@@ -129,10 +137,10 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad, REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
ops::UnpoolOpGrad); ops::UnpoolOpGrad);
REGISTER_OP_CPU_KERNEL(unpool, REGISTER_OP_CPU_KERNEL(
ops::UnpoolKernel<paddle::platform::CPUPlace, float>, unpool,ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
ops::UnpoolKernel<paddle::platform::CPUPlace, double>); ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(unpool_grad, REGISTER_OP_CPU_KERNEL(
ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>, unpool_grad, ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>); ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
...@@ -27,7 +27,7 @@ class UnpoolKernel : public framework::OpKernel<T> { ...@@ -27,7 +27,7 @@ class UnpoolKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
const framework::Tensor* in_x = context.Input<framework::Tensor>("X"); const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
const framework::Tensor* in_y = context.Input<framework::Tensor>("Indices"); const framework::Tensor* in_y = context.Input<framework::Tensor>("Indices");
auto * out = context.Output<framework::Tensor>("Out"); auto* out = context.Output<framework::Tensor>("Out");
std::string unpooling_type = context.Attr<std::string>("unpooling_type"); std::string unpooling_type = context.Attr<std::string>("unpooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
...@@ -65,8 +65,8 @@ class UnpoolGradKernel : public framework::OpKernel<T> { ...@@ -65,8 +65,8 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
zero(device_ctx, in_x_grad, static_cast<T>(0)); zero(device_ctx, in_x_grad, static_cast<T>(0));
} }
math::Unpool2dMaxGradFunctor<Place, T> unpool2d_max_backward; math::Unpool2dMaxGradFunctor<Place, T> unpool2d_max_backward;
unpool2d_max_backward(context.device_context(), *in_x, *in_y, unpool2d_max_backward(context.device_context(), *in_x, *in_y, *out,
*out, *out_grad, in_x_grad); *out_grad, in_x_grad);
} }
}; };
......
...@@ -52,8 +52,10 @@ class TestUnpoolOp(OpTest): ...@@ -52,8 +52,10 @@ class TestUnpoolOp(OpTest):
c_start + arg % self.ksize[1] c_start + arg % self.ksize[1]
output = self.unpool2d_forward_naive(input, indices, self.ksize, \ output = self.unpool2d_forward_naive(input, indices, self.ksize, \
self.strides, self.paddings).astype("float32") self.strides, self.paddings).astype("float32")
self.inputs = {'X': input.astype('float32'), self.inputs = {
'Indices': indices.astype('int32')} 'X': input.astype('float32'),
'Indices': indices.astype('int32')
}
self.attrs = { self.attrs = {
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
...@@ -76,7 +78,5 @@ class TestUnpoolOp(OpTest): ...@@ -76,7 +78,5 @@ class TestUnpoolOp(OpTest):
self.strides = [2, 2] self.strides = [2, 2]
self.paddings = [0, 0] self.paddings = [0, 0]
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册