Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
baf6be1f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baf6be1f
编写于
5月 22, 2017
作者:
chrisxu2014
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add baidu Analystics
上级
8afbb380
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
2 addition
and
2 deletion
+2
-2
index.cn.html
index.cn.html
+1
-1
index.html
index.html
+1
-1
未找到文件。
index.cn.html
浏览文件 @
baf6be1f
<!DOCTYPE html>
<html
lang=
en
>
<head>
<meta
charset=
UTF-8
>
<title>
PaddlePaddle
</title>
<link
rel=
stylesheet
href=
./css/home.css
>
</head>
<body>
<header
class=
site-header
>
<nav
class=
row
>
<div
class=
logo
>
<img
src=

>
</div>
<nav
class=
top-nav
>
<ul
class=
site-links
>
<li><a
class=
active
>
主页
</a></li>
<li><a
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速开始
</a></li>
<li><a
href=
http://www.paddlepaddle.org/doc_cn/howto/index_cn.html
target=
_blank
>
文档中心
</a></li>
</ul>
<div
class=
language-switcher
>
<a>
版本
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.10.0/doc_cn/
target=
_blank
>
r0.10.0
</a></li>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/
target=
_blank
>
r0.9.0
</a></li>
</ul>
</div>
<div
class=
language-switcher
>
<a>
中文
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
./index.html
>
English
</a></li>
<li><a
href=
./index.cn.html
>
中文
</a></li>
</ul>
</div>
<div
class=
github-fork
>
<a
href=
https://github.com/PaddlePaddle/Paddle
target=
_blank
>
<i
class=
"fa fa-github"
aria-hidden=
true
></i>
<span>
Fork me on Github
</span>
</a>
</div>
</nav>
</nav>
<div
class=
"row banner"
>
<h1><span
class=
ch-title
>
易学易用的分布式深度学习平台
<span></span></span></h1>
<p>
正在为100+项产品提供深度学习算法支持
</p>
<div>
<a
class=
quick-start
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速入门
</a>
</div>
<div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-star"
aria-hidden=
true
></i>
Star
</span>
<span
id=
star-counter
></span>
</div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-code-fork"
aria-hidden=
true
></i>
Fork
</span>
<span
id=
fork-counter
></span>
</div>
</div>
</div>
</header>
<section
class=
services
>
<div
class=
row
>
<h2><span>
丰富的算法服务
</span></h2>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-1.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
机器视觉
</h3>
<p>
卷积神经网络可以识别图像中的主要对象,并输出分类结果
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/03.image_classification/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
</div>
<div
class=
row
>
<div>
<div
class=
service-desc
>
<h3>
自然语言理解
</h3>
<p>
利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/06.understand_sentiment/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
<div>
<img
class=
service-icon
src=
./images/service-2.png
>
</div>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-3.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
搜索引擎排序
</h3>
<p>
分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/05.recommender_system/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
</div>
</section>
<section
class=
features
>
<div
class=
row
>
<h2><span>
技术和服务优势
</span></h2>
</div>
<div
class=
row
>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
易用性
</h3>
<p>
为用户提供了直观、灵活的数据接口和模型配置接口
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
灵活性
</h3>
<p>
支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
高效性
</h3>
<p>
在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
扩展性
</h3>
<p>
全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求
</p>
</div>
</div>
</section>
<section
class=
get-started
>
<div
class=
row
>
<h2>
现在开始使用PaddlePaddle
</h2>
<p>
易学易用的分布式深度学习平台
</p>
<div>
<a
role=
button
class=
quick-start
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速入门
</a>
</div>
</div>
</section>
<footer
class=
footer-nav
>
<div
class=
row
>
<div
class=
tr-code
>
<img
src=
./images/pr-code.png
>
<p>
PaddlePaddle 微信公众号
</p>
</div>
<div
class=
contact-us
>
<img
src=

>
<span>
联系我们:
</span>
<img
src=
./images/email-pic.png
>
</div>
</div>
<div
class=
row
>
<ul
class=
friendly-links
>
<li><a
href=
http://ai.baidu.com/
target=
_blank
>
百度大脑
</a></li>
<li><a
href=
http://idl.baidu.com/
target=
_blank
>
百度深度学习实验室
</a></li>
<li><a
href=
http://bdl.baidu.com/
target=
_blank
>
百度大数据实验室
</a></li>
<li><a
href=
http://yuyin.baidu.com/
target=
_blank
>
百度语音
</a></li>
<li><a
href=
http://api.fanyi.baidu.com/
target=
_blank
>
百度翻译开放平台
</a></li>
<li><a
href=
http://nlp.baidu.com/
target=
_blank
>
自然语言处理云(NLPC)
</a></li>
<li><a
href=
http://erised.baidu.com/
target=
_blank
>
大数据用户画像
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
百度知识图谱
</a></li>
<li><a
href=
http://idmapping.baidu.com/
target=
_blank
>
百度大数据ID-Mapping
</a></li>
</ul>
<ul
class=
friendly-links
>
<li><a
href=
http://session.baidu.com/
target=
_blank
>
Global Session(Odin)
</a></li>
<li><a
href=
http://recsys.baidu.com/
target=
_blank
>
Recsys推荐云平台
</a></li>
<li><a
href=
http://offlinedata.baidu.com/
target=
_blank
>
到店大数据(谛听)
</a></li>
<li><a
href=
http://gravity.baidu.com
target=
_blank
>
大数据知识图谱
</a></li>
<li><a
href=
http://pie.baidu.com/
target=
_blank
>
PIE网页信息抽取平台
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
知识图谱开放平台
</a></li>
</ul>
</div>
<div
class=
row
>
<p
class=
copyright
>
©Copyright 2017, PaddlePaddle developers.
</p>
</div>
</footer>
<script
src=
./js/common.bundle.js
></script>
<script
src=
./js/home.bundle.js
></script>
</body>
</html>
\ No newline at end of file
<!DOCTYPE html>
<html
lang=
en
>
<head>
<meta
charset=
UTF-8
>
<title>
PaddlePaddle
</title>
<link
rel=
stylesheet
href=
./css/home.css
>
<script>
var
_hmt
=
_hmt
||
[];
!
function
(){
var
e
=
document
.
createElement
(
"
script
"
);
e
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
a
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
a
.
parentNode
.
insertBefore
(
e
,
a
)}()
</script>
</head>
<body>
<header
class=
site-header
>
<nav
class=
row
>
<div
class=
logo
>
<img
src=

>
</div>
<nav
class=
top-nav
>
<ul
class=
site-links
>
<li><a
class=
active
>
主页
</a></li>
<li><a
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速开始
</a></li>
<li><a
href=
http://www.paddlepaddle.org/doc_cn/howto/index_cn.html
target=
_blank
>
文档中心
</a></li>
</ul>
<div
class=
language-switcher
>
<a>
版本
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.10.0/doc_cn/
target=
_blank
>
r0.10.0
</a></li>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/
target=
_blank
>
r0.9.0
</a></li>
</ul>
</div>
<div
class=
language-switcher
>
<a>
中文
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
./index.html
>
English
</a></li>
<li><a
href=
./index.cn.html
>
中文
</a></li>
</ul>
</div>
<div
class=
github-fork
>
<a
href=
https://github.com/PaddlePaddle/Paddle
target=
_blank
>
<i
class=
"fa fa-github"
aria-hidden=
true
></i>
<span>
Fork me on Github
</span>
</a>
</div>
</nav>
</nav>
<div
class=
"row banner"
>
<h1><span
class=
ch-title
>
易学易用的分布式深度学习平台
<span></span></span></h1>
<p>
正在为100+项产品提供深度学习算法支持
</p>
<div>
<a
class=
quick-start
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速入门
</a>
</div>
<div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-star"
aria-hidden=
true
></i>
Star
</span>
<span
id=
star-counter
></span>
</div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-code-fork"
aria-hidden=
true
></i>
Fork
</span>
<span
id=
fork-counter
></span>
</div>
</div>
</div>
</header>
<section
class=
services
>
<div
class=
row
>
<h2><span>
丰富的算法服务
</span></h2>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-1.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
机器视觉
</h3>
<p>
卷积神经网络可以识别图像中的主要对象,并输出分类结果
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/03.image_classification/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
</div>
<div
class=
row
>
<div>
<div
class=
service-desc
>
<h3>
自然语言理解
</h3>
<p>
利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/06.understand_sentiment/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
<div>
<img
class=
service-icon
src=
./images/service-2.png
>
</div>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-3.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
搜索引擎排序
</h3>
<p>
分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/05.recommender_system/index.cn.html
target=
_blank
>
查看更多
</a>
</div>
</div>
</div>
</div>
</section>
<section
class=
features
>
<div
class=
row
>
<h2><span>
技术和服务优势
</span></h2>
</div>
<div
class=
row
>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
易用性
</h3>
<p>
为用户提供了直观、灵活的数据接口和模型配置接口
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
灵活性
</h3>
<p>
支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
高效性
</h3>
<p>
在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
扩展性
</h3>
<p>
全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求
</p>
</div>
</div>
</section>
<section
class=
get-started
>
<div
class=
row
>
<h2>
现在开始使用PaddlePaddle
</h2>
<p>
易学易用的分布式深度学习平台
</p>
<div>
<a
role=
button
class=
quick-start
href=
http://book.paddlepaddle.org/index.cn.html
target=
_blank
>
快速入门
</a>
</div>
</div>
</section>
<footer
class=
footer-nav
>
<div
class=
row
>
<div
class=
tr-code
>
<img
src=
./images/pr-code.png
>
<p>
PaddlePaddle 微信公众号
</p>
</div>
<div
class=
contact-us
>
<img
src=

>
<span>
联系我们:
</span>
<img
src=
./images/email-pic.png
>
</div>
</div>
<div
class=
row
>
<ul
class=
friendly-links
>
<li><a
href=
http://ai.baidu.com/
target=
_blank
>
百度大脑
</a></li>
<li><a
href=
http://idl.baidu.com/
target=
_blank
>
百度深度学习实验室
</a></li>
<li><a
href=
http://bdl.baidu.com/
target=
_blank
>
百度大数据实验室
</a></li>
<li><a
href=
http://yuyin.baidu.com/
target=
_blank
>
百度语音
</a></li>
<li><a
href=
http://api.fanyi.baidu.com/
target=
_blank
>
百度翻译开放平台
</a></li>
<li><a
href=
http://nlp.baidu.com/
target=
_blank
>
自然语言处理云(NLPC)
</a></li>
<li><a
href=
http://erised.baidu.com/
target=
_blank
>
大数据用户画像
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
百度知识图谱
</a></li>
<li><a
href=
http://idmapping.baidu.com/
target=
_blank
>
百度大数据ID-Mapping
</a></li>
</ul>
<ul
class=
friendly-links
>
<li><a
href=
http://session.baidu.com/
target=
_blank
>
Global Session(Odin)
</a></li>
<li><a
href=
http://recsys.baidu.com/
target=
_blank
>
Recsys推荐云平台
</a></li>
<li><a
href=
http://offlinedata.baidu.com/
target=
_blank
>
到店大数据(谛听)
</a></li>
<li><a
href=
http://gravity.baidu.com
target=
_blank
>
大数据知识图谱
</a></li>
<li><a
href=
http://pie.baidu.com/
target=
_blank
>
PIE网页信息抽取平台
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
知识图谱开放平台
</a></li>
</ul>
</div>
<div
class=
row
>
<p
class=
copyright
>
©Copyright 2017, PaddlePaddle developers.
</p>
</div>
</footer>
<script
src=
./js/common.bundle.js
></script>
<script
src=
./js/home.bundle.js
></script>
</body>
</html>
\ No newline at end of file
index.html
浏览文件 @
baf6be1f
<!DOCTYPE html>
<html
lang=
en
>
<head>
<meta
charset=
UTF-8
>
<title>
PaddlePaddle
</title>
<link
rel=
stylesheet
href=
./css/home.css
>
</head>
<body>
<header
class=
site-header
>
<nav
class=
row
>
<div
class=
logo
>
<img
src=

>
</div>
<nav
class=
top-nav
>
<ul
class=
site-links
>
<li><a
class=
active
>
Home
</a></li>
<li><a
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a></li>
<li><a
href=
http://www.paddlepaddle.org/doc/howto/index_en.html
target=
_blank
>
Documents
</a></li>
</ul>
<div
class=
language-switcher
>
<a>
Version
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.10.0/doc/
target=
_blank
>
r0.10.0
</a></li>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.9.0/doc/
target=
_blank
>
r0.9.0
</a></li>
</ul>
</div>
<div
class=
language-switcher
>
<a>
English
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
./index.html
>
English
</a></li>
<li><a
href=
./index.cn.html
>
中文
</a></li>
</ul>
</div>
<div
class=
github-fork
>
<a
href=
https://github.com/PaddlePaddle/Paddle
target=
_blank
>
<i
class=
"fa fa-github"
aria-hidden=
true
></i>
<span>
Fork me on Github
</span>
</a>
</div>
</nav>
</nav>
<div
class=
"row banner"
>
<h1>
Easy to Learn and Use Distributed Deep Learning Platform
</h1>
<p>
Providing deep learning algorithms for 100+ products
</p>
<div>
<a
class=
quick-start
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a>
</div>
<div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-star"
aria-hidden=
true
></i>
Star
</span>
<span
id=
star-counter
></span>
</div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-code-fork"
aria-hidden=
true
></i>
Fork
</span>
<span
id=
fork-counter
></span>
</div>
</div>
</div>
</header>
<section
class=
services
>
<div
class=
row
>
<h2><span>
Extensive Algorithmic Service
</span></h2>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-1.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
Machine Vision
</h3>
<p>
The convoluted neural network can identify the main object in the image and output the classification result
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/03.image_classification/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
</div>
<div
class=
row
>
<div>
<div
class=
service-desc
>
<h3>
Natural Language Understanding
</h3>
<p>
Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/06.understand_sentiment/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
<div>
<img
class=
service-icon
src=
./images/service-2.png
>
</div>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-3.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
Search Engine Ranking
</h3>
<p>
Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/05.recommender_system/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
</div>
</section>
<section
class=
features
>
<div
class=
row
>
<h2><span>
Technology and Service Advantages
</span></h2>
</div>
<div
class=
row
>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Ease of use
</h3>
<p>
Provids an intuitive and flexible interface for loading data and specifying model structure.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Flexibility
</h3>
<p>
Supports CNN, RNN and other neural network. Easy to configure complex models.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Efficiency
</h3>
<p>
Efficient optimization of computing, memory, communications and architecture.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Scalability
</h3>
<p>
Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.
</p>
</div>
</div>
</section>
<section
class=
get-started
>
<div
class=
row
>
<h2>
Start Using PaddlePaddle
</h2>
<p>
Easy to Learn and Use Distributed Deep Learning Platform
</p>
<div>
<a
role=
button
class=
quick-start
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a>
</div>
</div>
</section>
<footer
class=
footer-nav
>
<div
class=
row
>
<div
class=
contact-us
>
<img
src=

>
<span>
Contact:
</span>
<img
src=
./images/email-pic.png
>
</div>
</div>
<div
class=
row
>
<ul
class=
friendly-links
>
<li><a
href=
http://ai.baidu.com/
target=
_blank
>
Baidu Brain
</a></li>
<li><a
href=
http://idl.baidu.com/
target=
_blank
>
Baidu IDL
</a></li>
<li><a
href=
http://bdl.baidu.com/
target=
_blank
>
Baidu BDL
</a></li>
<li><a
href=
http://yuyin.baidu.com/
target=
_blank
>
Baidu Speech
</a></li>
<li><a
href=
http://api.fanyi.baidu.com/
target=
_blank
>
Baidu translation open platform
</a></li>
<li><a
href=
http://nlp.baidu.com/
target=
_blank
>
NLPC
</a></li>
<li><a
href=
http://erised.baidu.com/
target=
_blank
>
User Profile
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
Baidu KG
</a></li>
<li><a
href=
http://idmapping.baidu.com/
target=
_blank
>
ID-Mapping
</a></li>
</ul>
<ul
class=
friendly-links
>
<li><a
href=
http://session.baidu.com/
target=
_blank
>
Global Session(Odin)
</a></li>
<li><a
href=
http://recsys.baidu.com/
target=
_blank
>
Recsys
</a></li>
<li><a
href=
http://offlinedata.baidu.com/
target=
_blank
>
GOD
</a></li>
<li><a
href=
http://gravity.baidu.com
target=
_blank
>
Big Data KG
</a></li>
<li><a
href=
http://pie.baidu.com/
target=
_blank
>
PIE
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
KG open
</a></li>
</ul>
</div>
<div
class=
row
>
<p
class=
copyright
>
©Copyright 2017, PaddlePaddle developers.
</p>
</div>
</footer>
<script
src=
./js/common.bundle.js
></script>
<script
src=
./js/home.bundle.js
></script>
</body>
</html>
\ No newline at end of file
<!DOCTYPE html>
<html
lang=
en
>
<head>
<meta
charset=
UTF-8
>
<title>
PaddlePaddle
</title>
<link
rel=
stylesheet
href=
./css/home.css
>
<script>
var
_hmt
=
_hmt
||
[];
!
function
(){
var
e
=
document
.
createElement
(
"
script
"
);
e
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
a
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
a
.
parentNode
.
insertBefore
(
e
,
a
)}()
</script>
</head>
<body>
<header
class=
site-header
>
<nav
class=
row
>
<div
class=
logo
>
<img
src=

>
</div>
<nav
class=
top-nav
>
<ul
class=
site-links
>
<li><a
class=
active
>
Home
</a></li>
<li><a
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a></li>
<li><a
href=
http://www.paddlepaddle.org/doc/howto/index_en.html
target=
_blank
>
Documents
</a></li>
</ul>
<div
class=
language-switcher
>
<a>
Version
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.10.0/doc/
target=
_blank
>
r0.10.0
</a></li>
<li><a
href=
http://www.paddlepaddle.org/release_doc/0.9.0/doc/
target=
_blank
>
r0.9.0
</a></li>
</ul>
</div>
<div
class=
language-switcher
>
<a>
English
<i
class=
fa
aria-hidden=
true
></i></a>
<ul>
<li><a
href=
./index.html
>
English
</a></li>
<li><a
href=
./index.cn.html
>
中文
</a></li>
</ul>
</div>
<div
class=
github-fork
>
<a
href=
https://github.com/PaddlePaddle/Paddle
target=
_blank
>
<i
class=
"fa fa-github"
aria-hidden=
true
></i>
<span>
Fork me on Github
</span>
</a>
</div>
</nav>
</nav>
<div
class=
"row banner"
>
<h1>
Easy to Learn and Use Distributed Deep Learning Platform
</h1>
<p>
Providing deep learning algorithms for 100+ products
</p>
<div>
<a
class=
quick-start
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a>
</div>
<div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-star"
aria-hidden=
true
></i>
Star
</span>
<span
id=
star-counter
></span>
</div>
<div
class=
github-counter
>
<span><i
class=
"fa fa-code-fork"
aria-hidden=
true
></i>
Fork
</span>
<span
id=
fork-counter
></span>
</div>
</div>
</div>
</header>
<section
class=
services
>
<div
class=
row
>
<h2><span>
Extensive Algorithmic Service
</span></h2>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-1.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
Machine Vision
</h3>
<p>
The convoluted neural network can identify the main object in the image and output the classification result
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/03.image_classification/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
</div>
<div
class=
row
>
<div>
<div
class=
service-desc
>
<h3>
Natural Language Understanding
</h3>
<p>
Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/06.understand_sentiment/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
<div>
<img
class=
service-icon
src=
./images/service-2.png
>
</div>
</div>
<div
class=
row
>
<div>
<img
class=
service-icon
src=
./images/service-3.png
>
</div>
<div>
<div
class=
service-desc
>
<h3>
Search Engine Ranking
</h3>
<p>
Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies
</p>
<div>
<a
role=
button
class=
view-more
href=
http://book.paddlepaddle.org/05.recommender_system/index.html
target=
_blank
>
Read more
</a>
</div>
</div>
</div>
</div>
</section>
<section
class=
features
>
<div
class=
row
>
<h2><span>
Technology and Service Advantages
</span></h2>
</div>
<div
class=
row
>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Ease of use
</h3>
<p>
Provids an intuitive and flexible interface for loading data and specifying model structure.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Flexibility
</h3>
<p>
Supports CNN, RNN and other neural network. Easy to configure complex models.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Efficiency
</h3>
<p>
Efficient optimization of computing, memory, communications and architecture.
</p>
</div>
<div
class=
feature-desc
>
<div
class=
feature-icon
>
<img
src=

>
</div>
<h3>
Scalability
</h3>
<p>
Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.
</p>
</div>
</div>
</section>
<section
class=
get-started
>
<div
class=
row
>
<h2>
Start Using PaddlePaddle
</h2>
<p>
Easy to Learn and Use Distributed Deep Learning Platform
</p>
<div>
<a
role=
button
class=
quick-start
href=
http://book.paddlepaddle.org/index.html
target=
_blank
>
Quick Start
</a>
</div>
</div>
</section>
<footer
class=
footer-nav
>
<div
class=
row
>
<div
class=
contact-us
>
<img
src=

>
<span>
Contact:
</span>
<img
src=
./images/email-pic.png
>
</div>
</div>
<div
class=
row
>
<ul
class=
friendly-links
>
<li><a
href=
http://ai.baidu.com/
target=
_blank
>
Baidu Brain
</a></li>
<li><a
href=
http://idl.baidu.com/
target=
_blank
>
Baidu IDL
</a></li>
<li><a
href=
http://bdl.baidu.com/
target=
_blank
>
Baidu BDL
</a></li>
<li><a
href=
http://yuyin.baidu.com/
target=
_blank
>
Baidu Speech
</a></li>
<li><a
href=
http://api.fanyi.baidu.com/
target=
_blank
>
Baidu translation open platform
</a></li>
<li><a
href=
http://nlp.baidu.com/
target=
_blank
>
NLPC
</a></li>
<li><a
href=
http://erised.baidu.com/
target=
_blank
>
User Profile
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
Baidu KG
</a></li>
<li><a
href=
http://idmapping.baidu.com/
target=
_blank
>
ID-Mapping
</a></li>
</ul>
<ul
class=
friendly-links
>
<li><a
href=
http://session.baidu.com/
target=
_blank
>
Global Session(Odin)
</a></li>
<li><a
href=
http://recsys.baidu.com/
target=
_blank
>
Recsys
</a></li>
<li><a
href=
http://offlinedata.baidu.com/
target=
_blank
>
GOD
</a></li>
<li><a
href=
http://gravity.baidu.com
target=
_blank
>
Big Data KG
</a></li>
<li><a
href=
http://pie.baidu.com/
target=
_blank
>
PIE
</a></li>
<li><a
href=
http://kg.baidu.com/
target=
_blank
>
KG open
</a></li>
</ul>
</div>
<div
class=
row
>
<p
class=
copyright
>
©Copyright 2017, PaddlePaddle developers.
</p>
</div>
</footer>
<script
src=
./js/common.bundle.js
></script>
<script
src=
./js/home.bundle.js
></script>
</body>
</html>
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录