未验证 提交 b7e88308 编写于 作者: W Wilber 提交者: GitHub

add pass and mkldnn base ut. (#36967)

上级 1305b4f5
......@@ -314,14 +314,17 @@ int EmbeddingEltwiseLayerNormFusePass::BuildFusion(
new_op_desc.SetType("fused_embedding_eltwise_layernorm");
new_op_desc.SetInput("Ids", ids);
new_op_desc.SetInput("Embs", embs);
new_op_desc.SetInput("WordId", {ids[0]});
new_op_desc.SetInput("PosId", {ids[1]});
if (ids.size() > 2) {
new_op_desc.SetInput("SentId", {ids[2]});
}
new_op_desc.SetInput("WordEmbedding", {embs[0]});
new_op_desc.SetInput("PosEmbedding", {embs[1]});
if (embs.size() > 2) {
new_op_desc.SetInput("SentEmbedding", {embs[2]});
}
new_op_desc.SetInput("Bias", {end_pattern_biases[k]->Name()});
new_op_desc.SetInput("Scale", {end_pattern_scales[k]->Name()});
......@@ -380,7 +383,6 @@ EmbeddingEltwiseLayerNormFusePass::EmbeddingEltwiseLayerNormFusePass() {
.IsTensor()
.End()
.AddAttr("axis")
.IsIntIn({0, -1})
.End();
AddOpCompat(OpCompat("layer_norm"))
......@@ -430,6 +432,6 @@ REGISTER_PASS(embedding_eltwise_layernorm_fuse_pass,
REGISTER_PASS_CAPABILITY(embedding_eltwise_layernorm_fuse_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination()
.EQ("lookup_table", 0)
.LE("lookup_table", 1)
.LE("lookup_table_v2", 1)
.EQ("elementweise_add", 0));
.LE("elementweise_add", 1));
......@@ -675,6 +675,8 @@ setlocal enabledelayedexpansion
:: for /F %%# in ('cmd /C nvidia-smi -L ^|find "GPU" /C') do set CUDA_DEVICE_COUNT=%%#
set CUDA_DEVICE_COUNT=1
:: For hypothesis tests(mkldnn op and inference pass), we set use 'ci' profile
set HYPOTHESIS_TEST_PROFILE=ci
echo cmake .. -G %GENERATOR% -DCMAKE_BUILD_TYPE=Release -DWITH_AVX=%WITH_AVX% -DWITH_GPU=%WITH_GPU% -DWITH_MKL=%WITH_MKL% ^
-DWITH_TESTING=%WITH_TESTING% -DWITH_PYTHON=%WITH_PYTHON% -DON_INFER=%ON_INFER% ^
-DWITH_INFERENCE_API_TEST=%WITH_INFERENCE_API_TEST% -DTHIRD_PARTY_PATH=%THIRD_PARTY_PATH% ^
......@@ -692,6 +694,8 @@ echo ========================================
echo Running CPU unit tests in parallel way ...
echo ========================================
:: For hypothesis tests(mkldnn op and inference pass), we set use 'ci' profile
set HYPOTHESIS_TEST_PROFILE=ci
%cache_dir%\tools\busybox64.exe bash %work_dir%\tools\windows\run_unittests.sh %NIGHTLY_MODE% %PRECISION_TEST% %WITH_GPU%
goto:eof
......
......@@ -581,12 +581,16 @@ EOF
if [ "$1" == "cp36-cp36m" ]; then
pip3.6 install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
pip3.6 install --user hypothesis
elif [ "$1" == "cp37-cp37m" ]; then
pip3.7 install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
pip3.7 install --user hypothesis
elif [ "$1" == "cp38-cp38" ]; then
pip3.8 install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
pip3.8 install --user hypothesis
elif [ "$1" == "cp39-cp39" ]; then
pip3.9 install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
pip3.9 install --user hypothesis
fi
tmpfile_rand=`date +%s%N`
tmpfile=$tmp_dir/$tmpfile_rand
......@@ -1893,6 +1897,7 @@ set -ex
function parallel_test() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
pip install hypothesis
pip install ${PADDLE_ROOT}/build/python/dist/*whl
cp ${PADDLE_ROOT}/build/python/paddle/fluid/tests/unittests/op_test.py ${PADDLE_ROOT}/build/python
ut_total_startTime_s=`date +%s`
......
......@@ -71,4 +71,9 @@ set_tests_properties(test_trt_matmul_quant_dequant PROPERTIES TIMEOUT 100)
set_tests_properties(test_trt_conv3d_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_conv3d_transpose_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_nearest_interp_v2_op PROPERTIES TIMEOUT 30)
set_tests_properties(test_emb_eltwise_layernorm_fuse_pass PROPERTIES TIMEOUT 120)
if (WITH_MKLDNN)
set_tests_properties(test_mkldnn_prelu_op PROPERTIES TIMEOUT 300)
endif()
endif()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestEmbeddingEltwiseLayerNormFusePass(PassAutoScanTest):
'''
in_var1 emb_var in_var2 emb_var in_var3 emb_var in_var emb_var
| | | | | | | |
lookup_table lookup_table lookup_table ... lookup_table
| | | |
lkt_var lkt_var lkt_var lkt_var
\ / | ... |
elementwise_add | |
\ / |
elementwise_add |
| |
elt_var /
\ /
elementwise_add
|
layer_norm
'''
def is_program_valid(self, program_config: ProgramConfig) -> bool:
# is_sparse is only support False
if program_config.ops[0].attrs['is_sparse'] == True:
return False
# is_distributed only support False
if program_config.ops[0].attrs['is_distributed'] == True:
return False
# axis only support -1 and the last dim.
if program_config.ops[3].attrs['axis'] not in [-1, 2]:
return False
if not (program_config.ops[5].attrs['epsilon'] >= 0 and
program_config.ops[5].attrs['epsilon'] <= 0.001):
return False
if program_config.ops[5].attrs['begin_norm_axis'] != 2:
return False
# input check
if program_config.weights['embedding_weight1'].shape[
1] != program_config.weights['layer_norm_scale'].shape[0]:
return False
return True
def sample_program_configs(self, *args, **kwargs):
def generate_input(attrs):
if attrs[0]['op_type'] == 'lookup_table':
return np.random.randint(
0,
attrs[3]['weight_size'][0],
size=(attrs[3]['batch_size'], attrs[3]['input_dim'],
1)).astype(np.int64)
else:
return np.random.randint(
0,
attrs[3]['weight_size'][0],
size=(attrs[3]['batch_size'],
attrs[3]['input_dim'])).astype(np.int64)
def generate_weight1(attrs):
# set embedding weight by attrs
return np.random.random(attrs['weight_size']).astype(np.float32)
def generate_weight2(attrs):
# set layernorm weight by attrs
if attrs[2]['begin_norm_axis'] == 1:
return np.random.random(
attrs[3]['input_dim'] *
attrs[3]['weight_size'][1]).astype(np.float32)
else:
return np.random.random(attrs[3]['weight_size'][1]).astype(
np.float32)
attrs = [{
'is_sparse': kwargs['is_sparse'],
'is_distributed': kwargs['is_distributed'],
'padding_idx': kwargs['padding_idx'],
'op_type': kwargs['op_type']
}, {
'axis': kwargs['axis']
}, {
'begin_norm_axis': kwargs['begin_norm_axis'],
'epsilon': kwargs['epsilon']
}, {
'batch_size': kwargs['batch_size'],
'input_dim': kwargs['input_dim'],
'weight_size': kwargs['weight_size']
}]
ops_config = [{
"op_type": attrs[0]['op_type'],
"op_inputs": {
"Ids": ["input_data1"],
"W": ["embedding_weight1"]
},
"op_outputs": {
"Out": ["embedding_output1"]
},
"op_attrs": {
'is_sparse': attrs[0]['is_sparse'],
'is_distributed': attrs[0]['is_distributed'],
'padding_idx': attrs[0]['padding_idx'],
}
}, {
"op_type": attrs[0]['op_type'],
"op_inputs": {
"Ids": ["input_data2"],
"W": ["embedding_weight2"]
},
"op_outputs": {
"Out": ["embedding_output2"]
},
"op_attrs": {
'is_sparse': attrs[0]['is_sparse'],
'is_distributed': attrs[0]['is_distributed'],
'padding_idx': attrs[0]['padding_idx'],
},
}, {
"op_type": attrs[0]['op_type'],
"op_inputs": {
"Ids": ["input_data3"],
"W": ["embedding_weight3"]
},
"op_outputs": {
"Out": ["embedding_output3"]
},
"op_attrs": {
'is_sparse': attrs[0]['is_sparse'],
'is_distributed': attrs[0]['is_distributed'],
'padding_idx': attrs[0]['padding_idx'],
},
}, {
"op_type": "elementwise_add",
"op_inputs": {
"X": ["embedding_output2"],
"Y": ["embedding_output3"]
},
"op_outputs": {
"Out": ["elementwise_add_output1"]
},
"op_attrs": {
"axis": attrs[1]['axis'],
}
}, {
"op_type": "elementwise_add",
"op_inputs": {
"X": ["elementwise_add_output1"],
"Y": ["embedding_output1"]
},
"op_outputs": {
"Out": ["elementwise_add_output2"]
},
"op_attrs": {
"axis": attrs[1]['axis'],
}
}, {
"op_type": "layer_norm",
"op_inputs": {
"X": ["elementwise_add_output2"],
"Bias": ["layer_norm_bias"],
"Scale": ["layer_norm_scale"]
},
"op_outputs": {
"Y": ["layer_norm_output1"],
"Mean": ["layer_norm_output2"],
"Variance": ["layer_norm_output3"]
},
"op_attrs": {
'begin_norm_axis': attrs[2]['begin_norm_axis'],
'epsilon': attrs[2]['epsilon'],
}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"embedding_weight1":
TensorConfig(data_gen=partial(generate_weight1, attrs[3])),
"embedding_weight2":
TensorConfig(data_gen=partial(generate_weight1, attrs[3])),
"embedding_weight3":
TensorConfig(data_gen=partial(generate_weight1, attrs[3])),
"layer_norm_bias":
TensorConfig(data_gen=partial(generate_weight2, attrs)),
"layer_norm_scale":
TensorConfig(data_gen=partial(generate_weight2, attrs))
},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input, attrs)),
"input_data2":
TensorConfig(data_gen=partial(generate_input, attrs)),
"input_data3":
TensorConfig(data_gen=partial(generate_input, attrs))
},
outputs=["layer_norm_output1"])
yield program_config
def sample_predictor_configs(self, program_config):
# only used in gpu passes and trt passes.
config = self.create_inference_config(
passes=['embedding_eltwise_layernorm_fuse_pass'], use_gpu=True)
yield config, (10, 5), (1e-5, 1e-5)
# trt static_shape
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=4,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, (10, 3), (1e-5, 1e-5)
# trt dynamic_shape
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=4,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
if program_config.ops[0].type == 'lookup_table':
config.set_trt_dynamic_shape_info({
"input_data1": [1, 4, 1],
"input_data2": [1, 4, 1],
"input_data3": [1, 4, 1]
}, {
"input_data1": [4, 512, 1],
"input_data2": [4, 512, 1],
"input_data3": [4, 512, 1]
}, {
"input_data1": [2, 128, 1],
"input_data2": [2, 128, 1],
"input_data3": [2, 128, 1]
})
else:
config.set_trt_dynamic_shape_info({
"input_data1": [1, 4],
"input_data2": [1, 4],
"input_data3": [1, 4]
}, {
"input_data1": [4, 512],
"input_data2": [4, 512],
"input_data3": [4, 512]
}, {
"input_data1": [2, 128],
"input_data2": [2, 128],
"input_data3": [2, 128]
})
yield config, (10, 3), (1e-5, 1e-5)
def add_skip_pass_case(self):
def teller1(program_config, predictor_config):
if program_config.ops[3].attrs['axis'] in [
-1, 2
] and program_config.ops[5].attrs[
'begin_norm_axis'] == 2 and program_config.weights[
'embedding_weight1'].shape in [(64, 32), (64, 64)]:
return True
return False
self.add_skip_case(teller1, SkipReasons.PASS_ACCURACY_ERROR,
"The pass output has diff in a specific case.")
@given(
is_sparse=st.booleans(),
is_distributed=st.booleans(),
padding_idx=st.integers(),
axis=st.integers(
min_value=-4, max_value=4),
op_type=st.sampled_from(['lookup_table', 'lookup_table_v2']),
epsilon=st.floats(
min_value=0, max_value=0.001),
begin_norm_axis=st.integers(
min_value=-4, max_value=4),
batch_size=st.integers(
min_value=1, max_value=4),
input_dim=st.sampled_from([32, 64]),
weight_size=st.sampled_from([[64, 64], [64, 32]]))
def test(self, *args, **kwargs):
assume(kwargs['begin_norm_axis'] == 2)
self.add_skip_pass_case()
self.run_test(quant=False, *args, **kwargs)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import MkldnnAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestMkldnnPreluOp(MkldnnAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
# if mode is channel, and in_shape is 1 rank
if len(program_config.inputs['input_data'].
shape) == 1 and program_config.ops[0].attrs['mode'] == 'channel':
return False
return True
def sample_program_configs(self, *args, **kwargs):
def generate_input(*args, **kwargs):
return np.random.random(kwargs['in_shape']).astype(np.float32)
def generate_alpha(*args, **kwargs):
if kwargs["mode"] == "all":
return np.random.random(size=(1)).astype(np.float32)
elif kwargs["mode"] == "channel":
if len(kwargs['in_shape']) <= 1:
# not valid case, just return 0
return np.zeros((1)).astype(np.float32)
return np.random.random(kwargs['in_shape'][1]).astype(
np.float32)
else:
if len(kwargs['in_shape']) <= 1:
# not valid case, just return 0
return np.zeros((1)).astype(np.float32)
return np.random.random(kwargs['in_shape']).astype(np.float32)
ops_config = [{
"op_type": "prelu",
"op_inputs": {
"X": ["input_data"],
"Alpha": ["alpha_weight"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": {
"mode": kwargs['mode']
}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"alpha_weight":
TensorConfig(data_gen=partial(generate_alpha, *args, **kwargs))
},
inputs={
"input_data":
TensorConfig(data_gen=partial(generate_input, *args, **kwargs)),
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, (1e-5, 1e-5)
def add_skip_pass_case(self):
pass
@given(
mode=st.sampled_from(['all', 'channel', 'element']),
in_shape=st.lists(
st.integers(
min_value=1, max_value=32), min_size=1, max_size=4))
def test(self, *args, **kwargs):
self.add_skip_pass_case()
self.run_test(quant=False, *args, **kwargs)
if __name__ == "__main__":
unittest.main()
......@@ -20,6 +20,10 @@ from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TrtConvertTileTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
......@@ -34,12 +38,11 @@ class TrtConvertTileTest(TrtLayerAutoScanTest):
return True
def sample_program_configs(self):
def sample_program_configs(self, *args, **kwargs):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 2, 3, 4]).astype(np.float32)
for repeat_times in [[100], [1, 2], [0, 3], [1, 2, 100]]:
dics = [{"repeat_times": repeat_times}]
dics = [{"repeat_times": kwargs['repeat_times']}]
ops_config = [{
"op_type": "tile",
......@@ -109,8 +112,9 @@ class TrtConvertTileTest(TrtLayerAutoScanTest):
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-4
def test(self):
self.run_test()
@given(repeat_times=st.sampled_from([[100], [1, 2], [0, 3], [1, 2, 100]]))
def test(self, *args, **kwargs):
self.run_test(*args, **kwargs)
if __name__ == "__main__":
......
......@@ -12,277 +12,4 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import itertools
import abc
import enum
import sys
import os
import logging
import time
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.inference as paddle_infer
import shutil
from paddle import compat as cpt
from typing import Optional, List, Callable, Dict, Any, Set
from program_config import TensorConfig, OpConfig, ProgramConfig, create_fake_model, create_quant_model
from auto_scan_test import AutoScanTest, SkipReasons
logging.basicConfig(level=logging.INFO, format="%(message)s")
class TrtLayerAutoScanTest(AutoScanTest):
class TensorRTParam:
'''
TensorRT subgraph engine parameters.
'''
def __init__(self, workspace_size, max_batch_size, min_subgraph_size,
precision, use_static, use_calib_mode):
self.workspace_size = workspace_size
self.max_batch_size = max_batch_size
self.min_subgraph_size = min_subgraph_size
self.precision = precision
self.use_static = use_static
self.use_calib_mode = use_calib_mode
class DynamicShapeParam:
'''
Prepare TensorRT subgraph engine dynamic shape parameters.
'''
def __init__(self, min_input_shape, max_input_shape, opt_input_shape,
disable_trt_plugin_fp16):
self.min_input_shape = min_input_shape
self.max_input_shape = max_input_shape
self.opt_input_shape = opt_input_shape
self.disable_trt_plugin_fp16 = disable_trt_plugin_fp16
def __init__(self, methodName='runTest'):
super(TrtLayerAutoScanTest, self).__init__(methodName)
self.trt_param = self.TensorRTParam(
workspace_size=1024,
max_batch_size=4,
min_subgraph_size=0,
precision=paddle_infer.PrecisionType.Float32,
use_static=True,
use_calib_mode=False)
self.dynamic_shape = self.DynamicShapeParam({}, {}, {}, False)
self.num_percent_cases = float(
os.getenv(
'TEST_NUM_PERCENT_CASES', default='1.0'))
abs_dir = os.path.abspath(os.path.dirname(__file__))
cache_dir = str(self.__module__) + '_trt_cache_dir'
self.trt_cache_dir = os.path.join(abs_dir, cache_dir)
def create_inference_config(self, use_trt=True) -> paddle_infer.Config:
config = paddle_infer.Config()
config.disable_glog_info()
config.enable_use_gpu(100, 0)
config.set_optim_cache_dir(self.trt_cache_dir)
if use_trt:
config.switch_ir_debug()
config.enable_tensorrt_engine(
max_batch_size=self.trt_param.max_batch_size,
workspace_size=self.trt_param.workspace_size,
min_subgraph_size=self.trt_param.min_subgraph_size,
precision_mode=self.trt_param.precision,
use_static=self.trt_param.use_static,
use_calib_mode=self.trt_param.use_calib_mode)
if len(self.dynamic_shape.min_input_shape
) != 0 and self.dynamic_shape.min_input_shape.keys(
) == self.dynamic_shape.max_input_shape.keys(
) and self.dynamic_shape.min_input_shape.keys(
) == self.dynamic_shape.opt_input_shape.keys():
config.set_trt_dynamic_shape_info(
self.dynamic_shape.min_input_shape,
self.dynamic_shape.max_input_shape,
self.dynamic_shape.opt_input_shape,
self.dynamic_shape.disable_trt_plugin_fp16)
return config
def assert_tensors_near(self,
atol: float,
rtol: float,
tensor: Dict[str, np.array],
baseline: Dict[str, np.array]):
for key, arr in tensor.items():
self.assertTrue(
baseline[key].shape == arr.shape,
"The output shape of GPU and TensorRT are not equal, the baseline shape is "
+ str(baseline[key].shape) + ', but the trt shape is ' +
str(arr.shape))
self.assertTrue(
np.allclose(
baseline[key], arr, atol=atol, rtol=rtol),
"Output has diff between GPU and TensorRT. ")
def assert_op_size(self, trt_engine_num, paddle_op_num):
last_passed_program = os.path.join(
self.trt_cache_dir, 'transpose_flatten_concat_fuse_pass.pdmodel')
model_bytes = paddle.static.load_from_file(last_passed_program)
pg = paddle.static.deserialize_program(model_bytes)
main_block = pg.desc.block(0)
op_size = main_block.op_size()
op_types = [
main_block.op(i).type() == 'tensorrt_engine' for i in range(op_size)
]
trt_engine_size = sum(op_types)
paddle_op_size = op_size - trt_engine_size
self.assertTrue(trt_engine_size == trt_engine_num,
'trt_engine_num is {}, but got {}!'.format(
trt_engine_size, trt_engine_num))
self.assertTrue(paddle_op_size == paddle_op_num,
'paddle_op_num is {}, but got {}!'.format(
paddle_op_size, paddle_op_num))
def skip_log(self, msg: str):
logging.warning("SKIP: " + msg)
def fail_log(self, msg: str):
logging.error("FAILE: " + msg)
def success_log(self, msg: str):
logging.info("SUCCESS: " + msg)
def validate(self, func: Callable[..., bool]):
pass
def generate_op_config(self,
ops_config: List[Dict[str, Any]]) -> List[OpConfig]:
ops = []
for i in range(len(ops_config)):
op_config = ops_config[i]
ops.append(
OpConfig(
type=op_config['op_type'],
inputs=op_config['op_inputs'],
outputs=op_config['op_outputs'],
attrs=op_config['op_attrs']))
return ops
def inference_config_str(self, config: paddle_infer.Config):
dic = {}
enable_trt = config.tensorrt_engine_enabled()
trt_precison = config.tensorrt_precision_mode()
trt_dynamic_shape = config.tensorrt_dynamic_shape_enabled()
if enable_trt:
dic['use_trt'] = True
dic['trt_precision'] = trt_precison
dic['use_dynamic_shape'] = trt_dynamic_shape
else:
dic['use_trt'] = False
return str(dic)
def run_test(self, quant=False):
status = True
# Choose different tests by week
np.random.seed(int(time.strftime("%W")))
run_flags = []
for prog_config in self.sample_program_configs():
# In CI, only run 30% cases
if np.random.rand() < self.num_percent_cases:
run_flags.append(True)
else:
run_flags.append(False)
np.random.seed(1024)
for prog_config, run_flags in zip(self.sample_program_configs(),
run_flags):
if not run_flags:
continue
# if program is invalid, we should skip that cases.
if not self.is_program_valid(prog_config):
continue
model, params = create_fake_model(prog_config)
if quant:
model, params = create_quant_model(model, params)
feed_data = {}
for name, tensor_config in prog_config.inputs.items():
feed_data[name] = {
'data': tensor_config.data,
'lod': tensor_config.lod
}
results: List[Dict[str, Tensor]] = []
# baseline: gpu run
gpu_config = self.create_inference_config(use_trt=False)
results.append(
self.run_test_config(model, params, prog_config, gpu_config,
feed_data))
self.success_log('RUN_GPU_BASELINE ' + str(prog_config) + ' vs ' +
self.inference_config_str(gpu_config))
for pred_config, nodes_num, threshold in self.sample_predictor_configs(
prog_config):
if os.path.exists(self.trt_cache_dir):
shutil.rmtree(self.trt_cache_dir)
if isinstance(threshold, float):
atol = threshold
rtol = 1e-8
elif isinstance(threshold, list) or isinstance(threshold,
tuple):
atol = threshold[0]
rtol = threshold[1]
else:
raise NotImplementedError
if quant and pred_config.tensorrt_precision_mode(
) != paddle_infer.PrecisionType.Int8:
continue
if pred_config.tensorrt_precision_mode(
) == paddle_infer.PrecisionType.Int8 and not quant:
continue
skip_flag = False
for skip_info in self.skip_cases:
if skip_info[0](prog_config, pred_config):
skip_flag = True
if skip_info[1] == SkipReasons.TRT_NOT_IMPLEMENTED:
self.skip_log("[TRT_NOT_IMPLEMENTED] " + skip_info[
2] + ' ' + repr(prog_config) + ' vs ' + self.
inference_config_str(pred_config))
elif skip_info[1] == SkipReasons.TRT_NOT_SUPPORT:
self.skip_log("[TRT_NOT_SUPPORT] " + skip_info[
2] + ' ' + repr(prog_config) + ' vs ' + self.
inference_config_str(pred_config))
else:
raise NotImplementedError
break
try:
pred_config_deserialize = paddle_infer.Config(pred_config)
results.append(
self.run_test_config(model, params, prog_config,
pred_config, feed_data))
self.assert_tensors_near(atol, rtol, results[-1],
results[0])
if not skip_flag:
self.assert_op_size(nodes_num[0], nodes_num[1])
# deserialize test
if nodes_num[0] > 0:
self.run_test_config(model, params, prog_config,
pred_config_deserialize, feed_data)
except Exception as e:
self.fail_log(
str(prog_config) + ' vs ' + self.inference_config_str(
pred_config) +
'\033[1;31m \nERROR INFO: {}\033[0m'.format(str(e)))
if not skip_flag:
status = False
continue
self.success_log('RUN ' + str(prog_config) + ' vs ' +
self.inference_config_str(pred_config))
self.assertTrue(status)
from auto_scan_test import TrtLayerAutoScanTest, SkipReasons
......@@ -3,6 +3,7 @@ coverage
pycrypto ; platform_system != "Windows"
mock
gym
hypothesis
opencv-python<=4.2.0.32
visualdl
paddle2onnx>=0.8.2
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册