Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b7496bcb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b7496bcb
编写于
7月 29, 2022
作者:
F
fwenguang
提交者:
GitHub
7月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add pytest for mlu strided_slice kernel (#44523)
上级
3d88816e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
632 addition
and
0 deletion
+632
-0
python/paddle/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
...le/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
+632
-0
未找到文件。
python/paddle/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
0 → 100644
浏览文件 @
b7496bcb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
test_strided_slice_op
import
strided_slice_native_forward
import
numpy
as
np
import
unittest
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
class
TestStrideSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
op_type
=
'strided_slice'
self
.
python_api
=
paddle
.
strided_slice
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
set
([
'Input'
]),
'Out'
,
check_eager
=
False
)
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
-
4
]
self
.
ends
=
[
-
3
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp1
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp2
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
5
]
self
.
ends
=
[
0
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp3
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
3
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp4
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp5
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
1
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp6
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
3
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp7
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp8
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
]
self
.
starts
=
[
1
]
self
.
ends
=
[
2
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp9
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
2
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp10
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStrideSliceOp11
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOp12
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOp13
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
class
TestStrideSliceOp14
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
4
,
4
,
4
,
4
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
,
2
,
3
]
self
.
starts
=
[
-
5
,
0
,
-
7
]
self
.
ends
=
[
-
1
,
2
,
4
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOpBool
(
TestStrideSliceOp
):
def
test_check_grad
(
self
):
pass
class
TestStrideSliceOpBool1D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
"bool"
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOpBool2D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStrideSliceOpBool3D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOpBool4D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOpBool5D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOpBool6D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
class
TestStridedSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
starts_infer
=
[
1
,
10
,
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends_infer
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
ends_infer
=
[
3
,
1
,
4
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_starts_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_ends_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_listTensor_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
config
()
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
op_type
=
"strided_slice"
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensorList"
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_strides_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StridesTensor"
:
np
.
array
(
self
.
strides
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
#'strides': self.strides,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
-
1
,
2
]
self
.
ends
=
[
2
,
0
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Test python API
class
TestStridedSliceAPI
(
unittest
.
TestCase
):
def
test_1
(
self
):
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
minus_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
1
)
minus_3
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
3
)
starts
=
fluid
.
layers
.
data
(
name
=
'starts'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
ends
=
fluid
.
layers
.
data
(
name
=
'ends'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
strides
=
fluid
.
layers
.
data
(
name
=
'strides'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
dtype
=
"float32"
)
out_1
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_2
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_3
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
],
strides
=
[
1
,
1
,
1
])
out_4
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
,
strides
=
strides
)
out_5
=
x
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
:
1
,
0
:
100
:
2
,
:,
minus_1
:
2
:
minus_1
]
out_7
=
x
[
minus_1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
]
exe
=
fluid
.
Executor
(
place
=
fluid
.
MLUPlace
(
0
))
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
input
,
'starts'
:
np
.
array
([
-
3
,
0
,
2
]).
astype
(
"int32"
),
'ends'
:
np
.
array
([
3
,
2147483648
,
-
1
]).
astype
(
"int64"
),
'strides'
:
np
.
array
([
1
,
1
,
1
]).
astype
(
"int32"
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
])
assert
np
.
array_equal
(
res_1
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_2
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_3
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_4
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_5
,
input
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_6
,
input
[
-
3
:
3
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
assert
np
.
array_equal
(
res_7
,
input
[
-
1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
def
test_dygraph_op
(
self
):
x
=
paddle
.
zeros
(
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"float32"
)
axes
=
[
1
,
2
,
3
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
strides_1
=
[
1
,
1
,
1
]
sliced_1
=
paddle
.
strided_slice
(
x
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
,
strides
=
strides_1
)
assert
sliced_1
.
shape
==
(
3
,
2
,
2
,
2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录