Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b70c94cf
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b70c94cf
编写于
10月 15, 2018
作者:
C
chengduo
提交者:
GitHub
10月 15, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add strategy and parallelExe doc (#13862)
test=release/1.0.0
上级
2c514102
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
115 addition
and
19 deletion
+115
-19
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+96
-17
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+19
-2
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
b70c94cf
...
...
@@ -596,26 +596,58 @@ All parameter, weight, gradient are variables in Paddle.
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
ExecutionStrategy allows the user to more preciously control how to run
the program in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 4
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
exec_strategy=exec_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
exec_strategy
.
def
(
py
::
init
())
.
def_property
(
"num_threads"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
self
.
num_threads_
=
num_threads
;
})
},
R"DOC(The type is INT, num_threads represents the size of thread pool that
used to run the operators of the current program in ParallelExecutor.
If :math:`num\_threads=1`, all the operators will execute one by one,
but the order maybe difference between iterations.
If it is not set, it will be set in ParallelExecutor according to the
device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
:math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
if it is not set, ParallelExecutor will get the cpu count by calling
`multiprocessing.cpu_count()`. Default 0.)DOC"
)
.
def_property
(
"use_cuda"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_cuda_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_cuda
)
{
self
.
use_cuda_
=
use_cuda
;
})
})
// FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
// make user confuse, because ParallelExecutor has a parameter named
// 'use_cuda' too, in current implementation, ParallelExecutor's
// 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
.
def_property
(
"allow_op_delay"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
})
},
R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
communication operators to run, it may make the execution faster.
Note that in some models, allow_op_delay may cause program hang. Default False.)DOC"
)
.
def_property
(
"num_iteration_per_drop_scope"
,
[](
const
ExecutionStrategy
&
self
)
{
...
...
@@ -623,7 +655,19 @@ All parameter, weight, gradient are variables in Paddle.
},
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
});
},
R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
many iterations to clean up the temp variables which
is generated during execution. It may make the execution faster,
because the temp variable's shape maybe the same between two iterations. Default 100.
NOTES:
1. If you fetch data when calling the 'run', the ParallelExecutor
will clean up the temp variables at the end of the current iteration.
2. In some NLP model, it may cause the GPU memory is insufficient,
in this case, you should reduce `num_iteration_per_drop_scope`.
)DOC"
);
exec_strategy
.
def_property
(
"use_experimental_executor"
,
[](
const
ExecutionStrategy
&
self
)
{
...
...
@@ -634,7 +678,22 @@ All parameter, weight, gradient are variables in Paddle.
:
ExecutionStrategy
::
kDefault
;
});
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
);
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
,
R"DOC(
BuildStrategy allows the user to more preciously control how to
build the SSA Graph in ParallelExecutor by setting the property.
Examples:
.. code-block:: python
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=loss.name,
build_strategy=build_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
...
...
@@ -652,31 +711,51 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
self
.
reduce_
=
strategy
;
})
},
R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
'AllReduce' and 'Reduce'. If you want that all the parameters'
optimization are done on all devices independently, you should choose 'AllReduce';
if you choose 'Reduce', all the parameters' optimization will be evenly distributed
to different devices, and then broadcast the optimized parameter to other devices.
In some models, `Reduce` is faster. Default 'AllReduce'. )DOC"
)
.
def_property
(
"gradient_scale_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
})
},
R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
If you want to customize :math:`loss@grad`, you can choose 'Customized'.
Default 'CoeffNumDevice'.)DOC"
)
.
def_property
(
"debug_graphviz_path"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
self
.
debug_graphviz_path_
=
path
;
})
},
R"DOC(The type is STR, debug_graphviz_path indicate the path that
writing the SSA Graph to file in the form of graphviz, you.
It is useful for debugging. Default "")DOC"
)
.
def_property
(
"enable_data_balance"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_data_balance_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_data_balance_
=
b
;
})
.
def_property
(
"fuse_elewise_add_act_ops"
,
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_data_balance_
=
b
;
})
// FIXME(chengudo): enable_data_balance seems not important
.
def_property
(
"fuse_elewise_add_act_ops"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
fuse_elewise_add_act_ops_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
fuse_elewise_add_act_ops_
=
b
;
});
},
R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
to fuse elementwise_add_op and activation_op,
it may make the execution faster. Default False)DOC"
);
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
b70c94cf
...
...
@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
class
ParallelExecutor
(
object
):
"""
ParallelExecutor can run program in parallel.
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Args:
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provi
ed
, it will share variables
share_vars_from(ParallelExecutor): If provi
de
, it will share variables
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录