Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b4a32eaf
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b4a32eaf
编写于
10月 16, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into optimize-sum-seq-pooling-op
test=develop
上级
936926aa
af91d41a
变更
47
显示空白变更内容
内联
并排
Showing
47 changed file
with
901 addition
and
400 deletion
+901
-400
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+3
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+1
-2
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+2
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+43
-41
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+19
-25
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+35
-104
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+4
-0
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-1
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+17
-12
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+5
-0
paddle/fluid/operators/adadelta_op.cc
paddle/fluid/operators/adadelta_op.cc
+12
-0
paddle/fluid/operators/adadelta_op.h
paddle/fluid/operators/adadelta_op.h
+11
-0
paddle/fluid/operators/adagrad_op.h
paddle/fluid/operators/adagrad_op.h
+20
-13
paddle/fluid/operators/adam_op.h
paddle/fluid/operators/adam_op.h
+9
-16
paddle/fluid/operators/adamax_op.cc
paddle/fluid/operators/adamax_op.cc
+10
-0
paddle/fluid/operators/adamax_op.h
paddle/fluid/operators/adamax_op.h
+11
-0
paddle/fluid/operators/decayed_adagrad_op.cc
paddle/fluid/operators/decayed_adagrad_op.cc
+10
-0
paddle/fluid/operators/decayed_adagrad_op.h
paddle/fluid/operators/decayed_adagrad_op.h
+11
-0
paddle/fluid/operators/ftrl_op.cc
paddle/fluid/operators/ftrl_op.cc
+10
-0
paddle/fluid/operators/ftrl_op.h
paddle/fluid/operators/ftrl_op.h
+11
-0
paddle/fluid/operators/math/algorithm.h
paddle/fluid/operators/math/algorithm.h
+44
-0
paddle/fluid/operators/math/selected_rows_functor.cc
paddle/fluid/operators/math/selected_rows_functor.cc
+1
-0
paddle/fluid/operators/math/selected_rows_functor.h
paddle/fluid/operators/math/selected_rows_functor.h
+1
-0
paddle/fluid/operators/math/sequence_pooling.cc
paddle/fluid/operators/math/sequence_pooling.cc
+18
-3
paddle/fluid/operators/momentum_op.cc
paddle/fluid/operators/momentum_op.cc
+5
-0
paddle/fluid/operators/momentum_op.cu
paddle/fluid/operators/momentum_op.cu
+11
-0
paddle/fluid/operators/momentum_op.h
paddle/fluid/operators/momentum_op.h
+6
-0
paddle/fluid/operators/reader/blocking_queue.h
paddle/fluid/operators/reader/blocking_queue.h
+6
-3
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
+6
-4
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
+24
-0
paddle/fluid/operators/rmsprop_op.cc
paddle/fluid/operators/rmsprop_op.cc
+5
-0
paddle/fluid/operators/rmsprop_op.h
paddle/fluid/operators/rmsprop_op.h
+229
-41
paddle/fluid/operators/sgd_op.cc
paddle/fluid/operators/sgd_op.cc
+16
-13
paddle/fluid/operators/sgd_op.cu
paddle/fluid/operators/sgd_op.cu
+6
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+15
-5
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+5
-3
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+7
-0
paddle/fluid/platform/gpu_info.cc
paddle/fluid/platform/gpu_info.cc
+18
-0
paddle/fluid/platform/gpu_info.h
paddle/fluid/platform/gpu_info.h
+6
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+10
-5
paddle/fluid/train/demo/README.md
paddle/fluid/train/demo/README.md
+1
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+12
-12
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+50
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+12
-0
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
+139
-92
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
b4a32eaf
...
@@ -18,7 +18,7 @@ function(copy TARGET)
...
@@ -18,7 +18,7 @@ function(copy TARGET)
set
(
oneValueArgs
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS DSTS DEPS
)
set
(
multiValueArgs SRCS DSTS DEPS
)
cmake_parse_arguments
(
copy_lib
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cmake_parse_arguments
(
copy_lib
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
inference_lib_dist_dep
${
TARGET
}
${
inference
_lib_dist_dep
}
PARENT_SCOPE
)
set
(
fluid_lib_dist_dep
${
TARGET
}
${
fluid
_lib_dist_dep
}
PARENT_SCOPE
)
list
(
LENGTH copy_lib_SRCS copy_lib_SRCS_len
)
list
(
LENGTH copy_lib_SRCS copy_lib_SRCS_len
)
list
(
LENGTH copy_lib_DSTS copy_lib_DSTS_len
)
list
(
LENGTH copy_lib_DSTS copy_lib_DSTS_len
)
...
@@ -185,7 +185,8 @@ copy(cmake_cache
...
@@ -185,7 +185,8 @@ copy(cmake_cache
SRCS
${
CMAKE_CURRENT_BINARY_DIR
}
/CMakeCache.txt
SRCS
${
CMAKE_CURRENT_BINARY_DIR
}
/CMakeCache.txt
DSTS
${
FLUID_INSTALL_DIR
}
)
DSTS
${
FLUID_INSTALL_DIR
}
)
add_custom_target
(
inference_lib_dist DEPENDS
${
inference_lib_dist_dep
}
)
# This command generates a complete fluid library for both train and inference
add_custom_target
(
fluid_lib_dist DEPENDS
${
fluid_lib_dist_dep
}
)
# paddle fluid version
# paddle fluid version
execute_process
(
execute_process
(
...
...
paddle/fluid/API.spec
浏览文件 @
b4a32eaf
...
@@ -127,6 +127,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
...
@@ -127,6 +127,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.margin_rank_loss ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
...
...
paddle/fluid/CMakeLists.txt
浏览文件 @
b4a32eaf
...
@@ -12,6 +12,5 @@ endif(NOT WIN32)
...
@@ -12,6 +12,5 @@ endif(NOT WIN32)
if
(
WITH_INFERENCE
)
if
(
WITH_INFERENCE
)
# NOTE: please add subdirectory inference at last.
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
add_subdirectory
(
inference
)
add_subdirectory
(
train
)
endif
()
endif
()
add_subdirectory
(
train
)
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
b4a32eaf
...
@@ -64,7 +64,8 @@ class OpHandleBase {
...
@@ -64,7 +64,8 @@ class OpHandleBase {
virtual
bool
IsMultiDeviceTransfer
()
{
return
false
;
}
virtual
bool
IsMultiDeviceTransfer
()
{
return
false
;
}
const
platform
::
DeviceContext
*
DeviceContext
(
platform
::
Place
place
)
{
const
platform
::
DeviceContext
*
DeviceContext
(
platform
::
Place
place
)
{
return
dev_ctxes_
[
place
];
auto
it
=
dev_ctxes_
.
find
(
place
);
return
it
!=
dev_ctxes_
.
end
()
?
it
->
second
:
nullptr
;
}
}
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
b4a32eaf
...
@@ -46,6 +46,41 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
...
@@ -46,6 +46,41 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
}
}
template
<
typename
RefCntMap
>
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
<
Tensor
>*
gc
,
RefCntMap
*
ref_cnts
)
{
std
::
unordered_set
<
Tensor
*>
erase_tensors
;
auto
handler
=
[
&
](
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
it
=
ref_cnts
->
find
(
name
);
if
(
it
==
ref_cnts
->
end
())
continue
;
if
((
it
->
second
)
--
==
1
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
VLOG
(
10
)
<<
"Erase tensor
\'
"
<<
name
<<
"
\'
"
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
}
}
};
handler
(
op
->
Inputs
());
handler
(
op
->
Outputs
());
if
(
!
erase_tensors
.
empty
())
{
gc
->
Add
(
erase_tensors
);
}
}
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
void
Executor
::
Close
()
{
void
Executor
::
Close
()
{
...
@@ -331,9 +366,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -331,9 +366,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
if
(
max_memory_size
>=
0
)
{
// WhileOp would set keep_kids to false
// WhileGradOp would need the scopes created in WhileOp
// Perhaps, we should not perform eager deletion in WhileOp
// The scopes and variables created by WhileOp would be deleted
// in WhileGradOp.
if
(
max_memory_size
>=
0
&&
!
keep_kids
)
{
ctx
->
ResetReferenceCount
();
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
if
(
platform
::
is_gpu_place
(
place_
))
{
...
@@ -352,45 +391,8 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -352,45 +391,8 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
op
->
Run
(
*
local_scope
,
place_
);
op
->
Run
(
*
local_scope
,
place_
);
if
(
gc
!=
nullptr
)
{
if
(
gc
!=
nullptr
)
{
std
::
vector
<
std
::
string
>
erase_vars
;
DeleteUnusedTensors
(
*
local_scope
,
op
.
get
(),
gc
.
get
(),
for
(
auto
&
input
:
op
->
Inputs
())
{
&
(
ctx
->
cur_ref_cnts_
));
for
(
auto
&
input_name
:
input
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
input_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
// should delete it
erase_vars
.
emplace_back
(
input_name
);
ctx
->
cur_ref_cnts_
.
erase
(
input_name
);
}
else
{
--
(
it
->
second
);
}
}
}
for
(
auto
&
output
:
op
->
Outputs
())
{
for
(
auto
&
output_name
:
output
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
output_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
erase_vars
.
emplace_back
(
output_name
);
ctx
->
cur_ref_cnts_
.
erase
(
output_name
);
}
else
{
--
(
it
->
second
);
}
}
}
if
(
!
erase_vars
.
empty
())
{
std
::
vector
<
framework
::
LoDTensor
*>
erase_tensors
;
for
(
auto
&
name
:
erase_vars
)
{
auto
*
var
=
local_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
erase_tensors
.
push_back
(
tensor
);
}
}
if
(
!
erase_tensors
.
empty
())
gc
->
Add
(
erase_tensors
);
}
}
}
if
(
FLAGS_benchmark
)
{
if
(
FLAGS_benchmark
)
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
b4a32eaf
...
@@ -32,38 +32,32 @@ template <typename T>
...
@@ -32,38 +32,32 @@ template <typename T>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_set
<
std
::
string
>
ignored_vars
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
for
(
auto
var_desc
:
block
.
AllVars
())
{
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
*
var_desc
=
block
.
FindVar
(
name
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
||
var_desc
->
Persistable
())
{
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
ignored_vars
.
insert
(
var_desc
->
Name
());
// ignore persistable vars
type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
}
continue
;
}
}
for
(
auto
op_desc
:
block
.
AllOps
())
{
auto
it
=
ref_cnts
.
find
(
name
);
for
(
auto
&
input
:
op_desc
->
Inputs
())
{
if
(
it
!=
ref_cnts
.
end
())
{
for
(
auto
&
input_name
:
input
.
second
)
{
++
it
->
second
;
if
(
!
ignored_vars
.
count
(
input_name
))
{
}
else
{
if
(
ref_cnts
.
count
(
input_name
))
ref_cnts
[
name
]
=
1
;
++
ref_cnts
[
input_name
];
else
ref_cnts
[
input_name
]
=
1
;
}
}
}
}
}
}
};
for
(
auto
&
output
:
op_desc
->
Outputs
())
{
for
(
auto
op_desc
:
block
.
AllOps
())
{
for
(
auto
output_name
:
output
.
second
)
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
if
(
!
ignored_vars
.
count
(
output_name
))
{
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
if
(
ref_cnts
.
count
(
output_name
))
++
ref_cnts
[
output_name
];
else
ref_cnts
[
output_name
]
=
1
;
}
}
}
}
}
return
ref_cnts
;
return
ref_cnts
;
}
}
...
...
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
b4a32eaf
...
@@ -44,89 +44,6 @@ namespace ir {
...
@@ -44,89 +44,6 @@ namespace ir {
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template
<
typename
UnaryOperation
>
LoDTensor
tensor_apply
(
const
LoDTensor
&
vec
,
UnaryOperation
f
)
{
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec
.
dims
());
const
float
*
x
=
vec
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
x
[
i
]);
}
return
vec_y
;
}
void
tensor_apply_inplace
(
LoDTensor
*
vec
,
float
(
*
f
)(
float
))
{
float
*
data
=
vec
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
->
numel
();
i
++
)
{
data
[
i
]
=
f
(
data
[
i
]);
}
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
(),
vec_b
.
dims
());
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec_a
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
a
[
i
],
b
[
i
]);
}
return
vec_y
;
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise_broadcast
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
()[
0
],
vec_b
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
()[
1
],
1
);
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
a_height
=
vec_a
.
dims
()[
0
];
size_t
a_width
=
vec_a
.
dims
()[
1
];
for
(
size_t
h
=
0
;
h
<
a_height
;
h
++
)
{
for
(
size_t
w
=
0
;
w
<
a_width
;
++
w
)
{
*
(
y
++
)
=
f
(
*
(
a
++
),
b
[
h
]);
}
}
return
vec_y
;
}
// reshape to two dimensions {A, B * C * ...}
void
make_tensor_2d
(
LoDTensor
*
tensor_to_reshape
)
{
auto
dims_count
=
tensor_to_reshape
->
dims
().
size
();
PADDLE_ENFORCE_GT
(
dims_count
,
0
);
int
size2
=
1
;
for
(
int
i
=
1
;
i
<
dims_count
;
i
++
)
{
size2
*=
tensor_to_reshape
->
dims
()[
i
];
}
tensor_to_reshape
->
Resize
(
make_ddim
({
tensor_to_reshape
->
dims
()[
0
],
size2
}));
}
void
recompute_conv_weights
(
LoDTensor
*
weights
,
LoDTensor
*
tmp
)
{
// remember the weights tensor shape {A, B, C, ...}
auto
weights_shape
=
weights
->
dims
();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d
(
weights
);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d
(
tmp
);
*
weights
=
tensor_apply_eltwise_broadcast
(
*
weights
,
*
tmp
,
std
::
multiplies
<
float
>
());
// reshape weights to the original dims {A, B, C, ...}
weights
->
Resize
(
weights_shape
);
}
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
//
ir
::
Node
*
conv_weight
,
//
const
ir
::
Node
&
bn_scale
,
//
const
ir
::
Node
&
bn_scale
,
//
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
const
ir
::
Node
&
bn_variance
,
//
const
ir
::
Node
&
bn_variance
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
float
epsilon
)
{
float
epsilon
)
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
EigenMatrixArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
// Re-compute bias of conv2d from BN
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
std_tensor
=
LoDTensor
();
ConstEigenVectorArrayMap
scale_array
(
scale_tensor
->
data
<
float
>
(),
std_tensor
.
Resize
(
bn_bias_tensor
.
dims
());
scale_tensor
->
numel
(),
1
);
std_tensor
=
EigenVectorArrayMap
variance_array
(
tensor_apply
(
*
variance_tensor
,
[
&
](
float
x
)
{
return
x
+
epsilon
;
});
variance_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
variance_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
mean_array
(
mean_tensor
->
data
<
float
>
(),
mean_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
bn_bias_array
(
bn_bias_tensor
.
data
<
float
>
(),
bn_bias_tensor
.
numel
(),
1
);
using
EigenVectorArrayMap
=
// variance will not be used anymore, so make it std_array and then tmp_array
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
variance_array
+=
epsilon
;
variance_array
=
variance_array
.
sqrt
();
variance_array
=
scale_array
/
variance_array
;
EigenVectorArrayMap
eltwise_y_in_array
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
1
);
EigenVectorArrayMap
std_vec
(
eltwise_y_in_array
=
std_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
std_tensor
.
numel
(),
((
eltwise_y_in_array
-
mean_array
)
*
variance_array
)
+
bn_bias_array
;
1
);
std_vec
=
std_vec
.
sqrt
();
auto
tmp_tensor
=
tensor_apply_eltwise
(
*
scale_tensor
,
std_tensor
,
std
::
divides
<
float
>
());
auto
tensor_minus
=
tensor_apply_eltwise
(
*
eltwise_y_in_tensor
,
*
mean_tensor
,
std
::
minus
<
float
>
());
auto
tensor_mul
=
tensor_apply_eltwise
(
tensor_minus
,
tmp_tensor
,
std
::
multiplies
<
float
>
());
*
eltwise_y_in_tensor
=
tensor_apply_eltwise
(
tensor_mul
,
bn_bias_tensor
,
std
::
plus
<
float
>
());
// Re-compute weight of conv2d from BN
// Re-compute weight of conv2d from BN
auto
*
current_param
=
auto
*
weights
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
weights_shape
=
weights
->
dims
();
recompute_conv_weights
(
current_param
,
&
tmp_tensor
);
auto
weights_shape_2d
=
flatten_to_2d
(
weights_shape
,
1
);
EigenMatrixArrayMap
weights_array_2d
(
weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
weights_shape_2d
[
0
],
weights_shape_2d
[
1
]);
weights_array_2d
.
colwise
()
*=
variance_array
;
}
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
b4a32eaf
...
@@ -307,6 +307,10 @@ ParallelExecutor::~ParallelExecutor() {
...
@@ -307,6 +307,10 @@ ParallelExecutor::~ParallelExecutor() {
}
}
}
}
}
}
// member_ must be destructed before gcs_ since the destructor of
// ReferenceCountOpHandle use raw pointers of gcs_ inside.
member_
.
reset
();
}
}
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
b4a32eaf
...
@@ -75,7 +75,7 @@ class ParallelExecutor {
...
@@ -75,7 +75,7 @@ class ParallelExecutor {
private:
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
ParallelExecutorPrivate
*
member_
;
std
::
unique_ptr
<
ParallelExecutorPrivate
>
member_
;
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
b4a32eaf
...
@@ -49,18 +49,18 @@ int64_t GetEagerDeletionThreshold() {
...
@@ -49,18 +49,18 @@ int64_t GetEagerDeletionThreshold() {
Scope
::~
Scope
()
{
DropKids
();
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
Scope
&
Scope
::
NewScope
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
kids_
.
push_back
(
new
Scope
(
this
));
kids_
.
push_back
(
new
Scope
(
this
));
return
*
kids_
.
back
();
return
*
kids_
.
back
();
}
}
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
VarInternal
(
name
);
return
VarInternal
(
name
);
}
}
Variable
*
Scope
::
Var
(
std
::
string
*
name
)
{
Variable
*
Scope
::
Var
(
std
::
string
*
name
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
if
(
name
!=
nullptr
)
{
if
(
name
!=
nullptr
)
{
*
name
=
new_name
;
*
name
=
new_name
;
...
@@ -69,29 +69,34 @@ Variable* Scope::Var(std::string* name) {
...
@@ -69,29 +69,34 @@ Variable* Scope::Var(std::string* name) {
}
}
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarInternal
(
name
);
return
FindVarInternal
(
name
);
}
}
Variable
*
Scope
::
FindLocalVar
(
const
std
::
string
&
name
)
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarLocally
(
name
);
}
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindScopeInternal
(
var
);
return
FindScopeInternal
(
var
);
}
}
void
Scope
::
DropKids
()
{
void
Scope
::
DropKids
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
for
(
Scope
*
s
:
kids_
)
delete
s
;
for
(
Scope
*
s
:
kids_
)
delete
s
;
kids_
.
clear
();
kids_
.
clear
();
}
}
bool
Scope
::
HasKid
(
const
Scope
*
scope
)
const
{
bool
Scope
::
HasKid
(
const
Scope
*
scope
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
return
it
!=
this
->
kids_
.
end
();
return
it
!=
this
->
kids_
.
end
();
}
}
std
::
vector
<
std
::
string
>
Scope
::
LocalVarNames
()
const
{
std
::
vector
<
std
::
string
>
Scope
::
LocalVarNames
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
std
::
vector
<
std
::
string
>
known_vars
;
std
::
vector
<
std
::
string
>
known_vars
;
known_vars
.
reserve
(
this
->
vars_
.
size
());
known_vars
.
reserve
(
this
->
vars_
.
size
());
for
(
auto
&
p
:
vars_
)
{
for
(
auto
&
p
:
vars_
)
{
...
@@ -101,7 +106,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
...
@@ -101,7 +106,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
}
}
void
Scope
::
DeleteScope
(
Scope
*
scope
)
const
{
void
Scope
::
DeleteScope
(
Scope
*
scope
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
PADDLE_ENFORCE
(
it
!=
this
->
kids_
.
end
(),
"Cannot find %p as kid scope"
,
scope
);
PADDLE_ENFORCE
(
it
!=
this
->
kids_
.
end
(),
"Cannot find %p as kid scope"
,
scope
);
this
->
kids_
.
erase
(
it
);
this
->
kids_
.
erase
(
it
);
...
@@ -114,7 +119,7 @@ void Scope::DeleteScope(Scope* scope) const {
...
@@ -114,7 +119,7 @@ void Scope::DeleteScope(Scope* scope) const {
}
}
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
...
@@ -127,12 +132,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
...
@@ -127,12 +132,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
void
Scope
::
Rename
(
const
std
::
string
&
origin_name
,
void
Scope
::
Rename
(
const
std
::
string
&
origin_name
,
const
std
::
string
&
new_name
)
const
{
const
std
::
string
&
new_name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
RenameInternal
(
origin_name
,
new_name
);
RenameInternal
(
origin_name
,
new_name
);
}
}
std
::
string
Scope
::
Rename
(
const
std
::
string
&
origin_name
)
const
{
std
::
string
Scope
::
Rename
(
const
std
::
string
&
origin_name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
RenameInternal
(
origin_name
,
new_name
);
RenameInternal
(
origin_name
,
new_name
);
return
new_name
;
return
new_name
;
...
...
paddle/fluid/framework/scope.h
浏览文件 @
b4a32eaf
...
@@ -63,6 +63,11 @@ class Scope {
...
@@ -63,6 +63,11 @@ class Scope {
/// Caller doesn't own the returned Variable.
/// Caller doesn't own the returned Variable.
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
/// Find a variable in the current scope.
/// Return nullptr if cannot find.
/// Caller doesn't own the returned Variable.
Variable
*
FindLocalVar
(
const
std
::
string
&
name
)
const
;
const
Scope
*
parent
()
const
{
return
parent_
;
}
const
Scope
*
parent
()
const
{
return
parent_
;
}
/// Find the scope or an ancestor scope that contains the given variable.
/// Find the scope or an ancestor scope that contains the given variable.
...
...
paddle/fluid/operators/adadelta_op.cc
浏览文件 @
b4a32eaf
...
@@ -18,6 +18,7 @@ namespace paddle {
...
@@ -18,6 +18,7 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
class
AdadeltaOp
:
public
framework
::
OperatorWithKernel
{
class
AdadeltaOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -31,6 +32,16 @@ class AdadeltaOp : public framework::OperatorWithKernel {
...
@@ -31,6 +32,16 @@ class AdadeltaOp : public framework::OperatorWithKernel {
"Input(AvgSquaredGrad) of AdadeltaOp should not be null."
);
"Input(AvgSquaredGrad) of AdadeltaOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AvgSquaredUpdate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AvgSquaredUpdate"
),
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null."
);
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdadeltaOp should not be null."
);
"Output(ParamOut) of AdadeltaOp should not be null."
);
...
@@ -56,6 +67,7 @@ class AdadeltaOp : public framework::OperatorWithKernel {
...
@@ -56,6 +67,7 @@ class AdadeltaOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"AvgSquaredGradOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredGradOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredUpdateOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredUpdateOut"
,
param_dim
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
auto
input_data_type
=
...
...
paddle/fluid/operators/adadelta_op.h
浏览文件 @
b4a32eaf
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
AdadeltaOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdadeltaOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
avg_squared_grad_out_tensor
=
auto
avg_squared_grad_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredGradOut"
);
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredGradOut"
);
...
...
paddle/fluid/operators/adagrad_op.h
浏览文件 @
b4a32eaf
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -21,25 +22,31 @@ namespace operators {
...
@@ -21,25 +22,31 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
SparseAdagradFunctor
{
struct
SparseAdagradFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
);
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
AdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
auto
*
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
auto
*
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
...
@@ -47,16 +54,16 @@ class AdagradOpKernel : public framework::OpKernel<T> {
...
@@ -47,16 +54,16 @@ class AdagradOpKernel : public framework::OpKernel<T> {
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
moment_out
.
device
(
*
place
)
=
moment
+
grad
*
grad
;
moment_out
.
device
(
*
place
)
=
moment
+
grad
*
grad
;
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
param_out
.
device
(
*
place
)
=
param_out
.
device
(
*
place
)
=
param
-
lr
[
0
]
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
param
-
lr
[
0
]
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
}
else
{
}
else
{
...
@@ -66,10 +73,10 @@ class AdagradOpKernel : public framework::OpKernel<T> {
...
@@ -66,10 +73,10 @@ class AdagradOpKernel : public framework::OpKernel<T> {
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
}
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
param_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_tensor
,
param_out_tensor
);
PADDLE_ENFORCE_EQ
(
param_tensor
,
param_out_tensor
);
auto
*
moment_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
);
auto
*
moment_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
);
PADDLE_ENFORCE_EQ
(
moment_tensor
,
moment_out_tensor
);
PADDLE_ENFORCE_EQ
(
moment_tensor
,
moment_out_tensor
);
SparseAdagradFunctor
<
DeviceContext
,
T
>
functor
;
SparseAdagradFunctor
<
DeviceContext
,
T
>
functor
;
...
...
paddle/fluid/operators/adam_op.h
浏览文件 @
b4a32eaf
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/platform/for_range.h"
...
@@ -199,23 +200,9 @@ struct SparseAdamFunctor {
...
@@ -199,23 +200,9 @@ struct SparseAdamFunctor {
row_numel_
(
row_numel
),
row_numel_
(
row_numel
),
row_count_
(
row_count
)
{}
row_count_
(
row_count
)
{}
inline
HOSTDEVICE
int64_t
BinarySearchInRows
(
int64_t
row
)
const
{
int64_t
beg
=
0
,
end
=
row_count_
-
1
;
while
(
beg
<=
end
)
{
auto
mid
=
((
beg
+
end
)
>>
1
);
if
(
rows_
[
mid
]
==
row
)
return
mid
;
else
if
(
rows_
[
mid
]
<
row
)
beg
=
mid
+
1
;
else
end
=
mid
-
1
;
}
return
-
1
;
}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
int64_t
row
=
i
/
row_numel_
;
auto
row_idx
=
auto
row_idx
=
BinarySearchInRows
(
row
);
math
::
BinarySearch
<
int64_t
>
(
rows_
,
row_count_
,
i
/
row_numel_
);
T
g
=
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
T
g
=
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
// The following code is the same as dense
// The following code is the same as dense
...
@@ -244,6 +231,12 @@ template <typename DeviceContext, typename T>
...
@@ -244,6 +231,12 @@ template <typename DeviceContext, typename T>
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
operators
::
detail
::
Ref
;
using
paddle
::
operators
::
detail
::
Ref
;
...
...
paddle/fluid/operators/adamax_op.cc
浏览文件 @
b4a32eaf
...
@@ -35,6 +35,16 @@ class AdamaxOp : public framework::OperatorWithKernel {
...
@@ -35,6 +35,16 @@ class AdamaxOp : public framework::OperatorWithKernel {
"Input(LearningRate) of AdamaxOp should not be null."
);
"Input(LearningRate) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
"Input(Beta1Pow) of AdamaxOp should not be null."
);
"Input(Beta1Pow) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdamaxOp should not be null."
);
"Output(ParamOut) of AdamaxOp should not be null."
);
...
...
paddle/fluid/operators/adamax_op.h
浏览文件 @
b4a32eaf
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
AdamaxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdamaxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
...
...
paddle/fluid/operators/decayed_adagrad_op.cc
浏览文件 @
b4a32eaf
...
@@ -32,6 +32,16 @@ class DecayedAdagradOp : public framework::OperatorWithKernel {
...
@@ -32,6 +32,16 @@ class DecayedAdagradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of DecayedAdagradOp should not be null."
);
"Input(LearningRate) of DecayedAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of DecayedAdagradOp should not be null."
);
"Output(ParamOut) of DecayedAdagradOp should not be null."
);
...
...
paddle/fluid/operators/decayed_adagrad_op.h
浏览文件 @
b4a32eaf
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
DecayedAdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
DecayedAdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
...
...
paddle/fluid/operators/ftrl_op.cc
浏览文件 @
b4a32eaf
...
@@ -34,6 +34,16 @@ class FTRLOp : public framework::OperatorWithKernel {
...
@@ -34,6 +34,16 @@ class FTRLOp : public framework::OperatorWithKernel {
"Input(Grad) of FTRL should not be null."
);
"Input(Grad) of FTRL should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of FTRL should not be null."
);
"Input(LearningRate) of FTRL should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of FTRL should not be null."
);
"Output(ParamOut) of FTRL should not be null."
);
...
...
paddle/fluid/operators/ftrl_op.h
浏览文件 @
b4a32eaf
...
@@ -28,6 +28,17 @@ template <typename DeviceContext, typename T>
...
@@ -28,6 +28,17 @@ template <typename DeviceContext, typename T>
class
FTRLOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FTRLOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
*
sq_accum_out
=
ctx
.
Output
<
Tensor
>
(
"SquaredAccumOut"
);
auto
*
sq_accum_out
=
ctx
.
Output
<
Tensor
>
(
"SquaredAccumOut"
);
auto
*
lin_accum_out
=
ctx
.
Output
<
Tensor
>
(
"LinearAccumOut"
);
auto
*
lin_accum_out
=
ctx
.
Output
<
Tensor
>
(
"LinearAccumOut"
);
...
...
paddle/fluid/operators/math/algorithm.h
0 → 100644
浏览文件 @
b4a32eaf
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cstdint> // for int64_t
#include <numeric>
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
HOSTDEVICE
inline
int64_t
BinarySearch
(
const
T
*
x
,
int64_t
num
,
const
T
&
val
)
{
int64_t
beg
=
0
,
end
=
num
-
1
;
while
(
beg
<=
end
)
{
auto
mid
=
((
beg
+
end
)
>>
1
);
if
(
x
[
mid
]
==
val
)
return
mid
;
else
if
(
x
[
mid
]
<
val
)
beg
=
mid
+
1
;
else
end
=
mid
-
1
;
}
return
-
1
;
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/selected_rows_functor.cc
浏览文件 @
b4a32eaf
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <set>
#include <set>
#include <unordered_map>
#include <unordered_map>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
namespace
paddle
{
namespace
paddle
{
...
...
paddle/fluid/operators/math/selected_rows_functor.h
浏览文件 @
b4a32eaf
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <map>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
...
...
paddle/fluid/operators/math/sequence_pooling.cc
浏览文件 @
b4a32eaf
...
@@ -12,9 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,9 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <string>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -180,6 +182,7 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
...
@@ -180,6 +182,7 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
}
}
auto
lod
=
input
.
lod
()[
0
];
auto
lod
=
input
.
lod
()[
0
];
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
Tensor
in_t
=
input
.
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
input
.
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
@@ -191,7 +194,14 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
...
@@ -191,7 +194,14 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
if
(
pooltype
==
"AVERAGE"
)
{
if
(
pooltype
==
"AVERAGE"
)
{
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SUM"
)
{
}
else
if
(
pooltype
==
"SUM"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
if
(
h
>
0
)
{
const
T
*
in_data
=
in_t
.
data
<
T
>
();
T
*
out_data
=
out_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
blas
.
VCOPY
(
w
,
in_data
,
out_data
);
for
(
int64_t
r
=
1
;
r
!=
h
;
++
r
)
{
blas
.
AXPY
(
w
,
1.
,
in_data
+
r
*
w
,
out_data
);
}
}
}
else
if
(
pooltype
==
"SQRT"
)
{
}
else
if
(
pooltype
==
"SQRT"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
std
::
sqrt
(
static_cast
<
T
>
(
h
));
...
@@ -223,6 +233,7 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -223,6 +233,7 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
}
}
auto
lod
=
in_grad
->
lod
()[
0
];
auto
lod
=
in_grad
->
lod
()[
0
];
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
@@ -237,7 +248,11 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -237,7 +248,11 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
if
(
pooltype
==
"AVERAGE"
)
{
if
(
pooltype
==
"AVERAGE"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SUM"
)
{
}
else
if
(
pooltype
==
"SUM"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
const
T
*
out_g_data
=
out_g_t
.
data
<
T
>
();
T
*
in_g_data
=
in_g_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
w
,
out_g_data
,
in_g_data
+
r
*
w
);
}
}
else
if
(
pooltype
==
"SQRT"
)
{
}
else
if
(
pooltype
==
"SQRT"
)
{
in_g_e
.
device
(
place
)
=
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
...
...
paddle/fluid/operators/momentum_op.cc
浏览文件 @
b4a32eaf
...
@@ -33,6 +33,11 @@ class MomentumOp : public framework::OperatorWithKernel {
...
@@ -33,6 +33,11 @@ class MomentumOp : public framework::OperatorWithKernel {
"Input(velocity) of Momentum should not be null."
);
"Input(velocity) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of Momentum should not be null."
);
"Input(LearningRate) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of Momentum should not be null."
);
"Output(ParamOut) of Momentum should not be null."
);
...
...
paddle/fluid/operators/momentum_op.cu
浏览文件 @
b4a32eaf
...
@@ -46,6 +46,17 @@ template <typename T>
...
@@ -46,6 +46,17 @@ template <typename T>
class
MomentumOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
MomentumOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
...
...
paddle/fluid/operators/momentum_op.h
浏览文件 @
b4a32eaf
...
@@ -23,6 +23,12 @@ template <typename T>
...
@@ -23,6 +23,12 @@ template <typename T>
class
MomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
MomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
...
...
paddle/fluid/operators/reader/blocking_queue.h
浏览文件 @
b4a32eaf
...
@@ -31,8 +31,8 @@ class BlockingQueue {
...
@@ -31,8 +31,8 @@ class BlockingQueue {
// is a workaround and a simplified version of framework::Channel as it
// is a workaround and a simplified version of framework::Channel as it
// doesn't support GPU and it implements on buffered blocking queue.
// doesn't support GPU and it implements on buffered blocking queue.
public:
public:
explicit
BlockingQueue
(
size_t
capacity
)
explicit
BlockingQueue
(
size_t
capacity
,
bool
speed_test_mode
=
false
)
:
capacity_
(
capacity
),
closed_
(
false
)
{
:
capacity_
(
capacity
),
speed_test_mode_
(
speed_test_mode
),
closed_
(
false
)
{
PADDLE_ENFORCE_GT
(
PADDLE_ENFORCE_GT
(
capacity_
,
0
,
capacity_
,
0
,
"The capacity of a reader::BlockingQueue must be greater than 0."
);
"The capacity of a reader::BlockingQueue must be greater than 0."
);
...
@@ -72,7 +72,9 @@ class BlockingQueue {
...
@@ -72,7 +72,9 @@ class BlockingQueue {
if
(
!
queue_
.
empty
())
{
if
(
!
queue_
.
empty
())
{
PADDLE_ENFORCE_NOT_NULL
(
elem
);
PADDLE_ENFORCE_NOT_NULL
(
elem
);
*
elem
=
queue_
.
front
();
*
elem
=
queue_
.
front
();
if
(
LIKELY
(
!
speed_test_mode_
))
{
queue_
.
pop_front
();
queue_
.
pop_front
();
}
send_cv_
.
notify_one
();
send_cv_
.
notify_one
();
return
true
;
return
true
;
}
else
{
}
else
{
...
@@ -114,6 +116,7 @@ class BlockingQueue {
...
@@ -114,6 +116,7 @@ class BlockingQueue {
private:
private:
size_t
capacity_
;
size_t
capacity_
;
bool
speed_test_mode_
;
bool
closed_
;
bool
closed_
;
std
::
deque
<
T
>
queue_
;
std
::
deque
<
T
>
queue_
;
...
...
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
浏览文件 @
b4a32eaf
...
@@ -33,8 +33,9 @@ class LoDTensorBlockingQueue {
...
@@ -33,8 +33,9 @@ class LoDTensorBlockingQueue {
private:
private:
LoDTensorBlockingQueue
(
size_t
capacity
,
LoDTensorBlockingQueue
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
const
std
::
vector
<
framework
::
DDim
>&
dims
,
:
queue_
(
capacity
),
dims_
(
dims
)
{}
bool
speed_test_mode
=
false
)
:
queue_
(
capacity
,
speed_test_mode
),
dims_
(
dims
)
{}
public:
public:
bool
Push
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
bool
Push
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
...
@@ -69,11 +70,12 @@ class LoDTensorBlockingQueue {
...
@@ -69,11 +70,12 @@ class LoDTensorBlockingQueue {
class
LoDTensorBlockingQueueHolder
{
class
LoDTensorBlockingQueueHolder
{
public:
public:
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
{
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
bool
speed_test_mode
=
false
)
{
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
queue_
==
nullptr
,
queue_
==
nullptr
,
"LoDTensorBlockingQueueHolder::InitOnce() can only be called once"
);
"LoDTensorBlockingQueueHolder::InitOnce() can only be called once"
);
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
dims
));
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
dims
,
speed_test_mode
));
}
}
inline
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
GetQueue
()
const
{
inline
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
GetQueue
()
const
{
...
...
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
浏览文件 @
b4a32eaf
...
@@ -217,3 +217,27 @@ TEST(BlockingQueue, MyClassTest) {
...
@@ -217,3 +217,27 @@ TEST(BlockingQueue, MyClassTest) {
q
.
Receive
(
&
b
);
q
.
Receive
(
&
b
);
EXPECT_EQ
(
a
.
val_
,
b
.
val_
);
EXPECT_EQ
(
a
.
val_
,
b
.
val_
);
}
}
TEST
(
BlockingQueue
,
speed_test_mode
)
{
size_t
queue_size
=
10
;
BlockingQueue
<
size_t
>
q1
(
queue_size
,
false
);
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q1
.
Send
(
i
);
}
size_t
b
;
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q1
.
Receive
(
&
b
);
EXPECT_EQ
(
b
,
i
);
}
EXPECT_EQ
(
q1
.
Size
(),
0
);
BlockingQueue
<
size_t
>
q2
(
queue_size
,
true
);
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q2
.
Send
(
i
);
}
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q2
.
Receive
(
&
b
);
EXPECT_EQ
(
b
,
0
);
}
EXPECT_EQ
(
q2
.
Size
(),
queue_size
);
}
paddle/fluid/operators/rmsprop_op.cc
浏览文件 @
b4a32eaf
...
@@ -32,6 +32,11 @@ class RmspropOp : public framework::OperatorWithKernel {
...
@@ -32,6 +32,11 @@ class RmspropOp : public framework::OperatorWithKernel {
"Input(Grad) of RmspropOp should not be null."
);
"Input(Grad) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
"Input(Moment) of RmspropOp should not be null."
);
"Input(Moment) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(param_out) of RmspropOp should not be null."
);
"Output(param_out) of RmspropOp should not be null."
);
...
...
paddle/fluid/operators/rmsprop_op.h
浏览文件 @
b4a32eaf
...
@@ -13,66 +13,254 @@ See the License for the specific language governing permissions and
...
@@ -13,66 +13,254 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <math.h>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
struct
DenseRmspropGradFunctor
{
inline
explicit
DenseRmspropGradFunctor
(
const
T
*
grad
)
:
grad_
(
grad
)
{}
HOSTDEVICE
inline
T
operator
()(
int64_t
idx
)
const
{
return
grad_
[
idx
];
}
const
T
*
grad_
;
};
template
<
typename
T
>
struct
SparseRmspropGradFunctor
{
inline
SparseRmspropGradFunctor
(
const
T
*
grad
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_count
)
:
grad_
(
grad
),
rows_
(
rows
),
row_numel_
(
row_numel
),
row_count_
(
row_count
)
{}
HOSTDEVICE
inline
T
operator
()(
int64_t
idx
)
const
{
auto
row_idx
=
math
::
BinarySearch
(
rows_
,
row_count_
,
idx
/
row_numel_
);
return
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
idx
%
row_numel_
]
:
0
;
}
const
T
*
grad_
;
const
int64_t
*
rows_
;
int64_t
row_numel_
;
int64_t
row_count_
;
};
template
<
typename
T
,
typename
GradFunctor
>
struct
UncenteredRmspropFunctor
{
UncenteredRmspropFunctor
(
T
*
param
,
T
*
ms
,
T
*
mom
,
const
T
*
lr
,
T
rho
,
T
epsilon
,
T
momentum
,
const
GradFunctor
&
grad_functor
)
:
param_
(
param
),
ms_
(
ms
),
mom_
(
mom
),
lr_
(
lr
),
rho_
(
rho
),
epsilon_
(
epsilon
),
momentum_
(
momentum
),
grad_functor_
(
grad_functor
)
{}
HOSTDEVICE
inline
void
operator
()(
int64_t
idx
)
const
{
T
g
=
grad_functor_
(
idx
);
T
ms_out
=
rho_
*
ms_
[
idx
]
+
(
1
-
rho_
)
*
g
*
g
;
T
mom_out
=
momentum_
*
mom_
[
idx
]
+
lr_
[
0
]
*
g
/
sqrt
(
ms_out
+
epsilon_
);
param_
[
idx
]
-=
mom_out
;
ms_
[
idx
]
=
ms_out
;
mom_
[
idx
]
=
mom_out
;
}
T
*
param_
;
T
*
ms_
;
T
*
mom_
;
const
T
*
lr_
;
T
rho_
;
T
epsilon_
;
T
momentum_
;
GradFunctor
grad_functor_
;
};
template
<
typename
T
,
typename
GradFunctor
>
struct
CenteredRmspropFunctor
{
CenteredRmspropFunctor
(
T
*
param
,
T
*
ms
,
T
*
mom
,
T
*
mean_grad
,
const
T
*
lr
,
T
rho
,
T
epsilon
,
T
momentum
,
const
GradFunctor
&
grad_functor
)
:
param_
(
param
),
ms_
(
ms
),
mom_
(
mom
),
mean_grad_
(
mean_grad
),
lr_
(
lr
),
rho_
(
rho
),
epsilon_
(
epsilon
),
momentum_
(
momentum
),
grad_functor_
(
grad_functor
)
{}
HOSTDEVICE
inline
void
operator
()(
int64_t
idx
)
const
{
T
g
=
grad_functor_
(
idx
);
T
ms_out
=
rho_
*
ms_
[
idx
]
+
(
1
-
rho_
)
*
g
*
g
;
T
mg_out
=
rho_
*
mean_grad_
[
idx
]
+
(
1
-
rho_
)
*
g
;
T
mom_out
=
momentum_
*
mom_
[
idx
]
+
lr_
[
0
]
*
g
/
sqrt
(
ms_out
-
mg_out
*
mg_out
+
epsilon_
);
param_
[
idx
]
-=
mom_out
;
ms_
[
idx
]
=
ms_out
;
mom_
[
idx
]
=
mom_out
;
mean_grad_
[
idx
]
=
mg_out
;
}
T
*
param_
;
T
*
ms_
;
T
*
mom_
;
T
*
mean_grad_
;
const
T
*
lr_
;
T
rho_
;
T
epsilon_
;
T
momentum_
;
GradFunctor
grad_functor_
;
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
RmspropOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
RmspropOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
using
LoDTensor
=
framework
::
LoDTensor
;
auto
*
moment_out
=
ctx
.
Output
<
Tensor
>
(
"MomentOut"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
*
mean_square_out
=
ctx
.
Output
<
Tensor
>
(
"MeanSquareOut"
);
auto
*
param_out
=
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
);
auto
*
moment_out
=
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
);
auto
*
mean_square_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"Grad"
);
auto
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
rho
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
auto
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
p_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
ms_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
);
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
lr_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
auto
&
mom_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"Moment"
);
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
PADDLE_ENFORCE_EQ
(
&
p_tensor
,
param_out
,
float
rho
=
ctx
.
Attr
<
float
>
(
"decay"
);
"Param and ParamOut must be the same Tensor"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
PADDLE_ENFORCE_EQ
(
&
mom_tensor
,
moment_out
,
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
"Moment and MomentOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
ms_tensor
,
mean_square_out
,
"MeanSquare and MeanSquareOut must be the same Tensor"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
size_t
limit
=
static_cast
<
size_t
>
(
ms_tensor
.
numel
());
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
if
(
grad_var
->
IsType
<
LoDTensor
>
())
{
auto
ms
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanSquare"
));
auto
&
grad_tensor
=
grad_var
->
Get
<
LoDTensor
>
();
auto
lr
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"LearningRate"
));
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
grad
);
if
(
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
)
{
auto
mom
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Moment"
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
lr_value
=
lr_tensor
.
data
<
T
>
()[
0
];
auto
p
=
EigenVector
<
T
>::
Flatten
(
p_tensor
);
auto
ms
=
EigenVector
<
T
>::
Flatten
(
ms_tensor
);
auto
g
=
EigenVector
<
T
>::
Flatten
(
grad_tensor
);
auto
mom
=
EigenVector
<
T
>::
Flatten
(
mom_tensor
);
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
mom_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
mom_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
static_cast
<
int
>
(
grad
->
numel
()));
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
if
(
centered
)
{
if
(
centered
)
{
auto
mg
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanGrad"
));
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
Tensor
>
(
"MeanGradOut"
);
auto
mg
=
EigenVector
<
T
>::
Flatten
(
mg_tensor
);
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
-
mg_out
.
square
()
+
epsilon
).
sqrt
();
}
else
{
mom_out
.
device
(
place
)
=
mom_out
.
device
(
place
)
=
momentum
*
mom
+
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
lr_value
*
g
/
(
ms_out
-
mg_out
.
square
()
+
epsilon
).
sqrt
();
}
else
{
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr_value
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
}
}
p_out
.
device
(
place
)
=
p
-
mom_out
;
p_out
.
device
(
place
)
=
p
-
mom_out
;
}
else
{
DenseRmspropGradFunctor
<
T
>
grad_func
(
grad_tensor
.
data
<
T
>
());
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
else
{
for_range
(
UncenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
merged_grad
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
dev_ctx
,
grad
,
merged_grad
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
const
int64_t
*
rows
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
merged_grad
->
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
merged_grad
->
rows
().
data
();
#ifdef PADDLE_WITH_CUDA
}
#endif
auto
&
merged_tensor
=
merged_grad
->
value
();
int64_t
row_count
=
merged_grad
->
rows
().
size
();
int64_t
row_numel
=
merged_tensor
.
numel
()
/
row_count
;
SparseRmspropGradFunctor
<
T
>
grad_func
(
merged_tensor
.
data
<
T
>
(),
rows
,
row_numel
,
row_count
);
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
else
{
for_range
(
UncenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
}
else
{
PADDLE_THROW
(
"RMSProp only supports LoDTensor or SelectedRows gradient"
);
}
}
}
};
};
...
...
paddle/fluid/operators/sgd_op.cc
浏览文件 @
b4a32eaf
...
@@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of SGDOp should not be null."
);
"Input(Param) of SGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
...
@@ -42,7 +42,7 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -42,7 +42,7 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
}
...
@@ -50,17 +50,20 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -50,17 +50,20 @@ class SGDOp : public framework::OperatorWithKernel {
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
auto
input_var_n
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
in_var_type
=
block
->
FindRecursiveOrCreateVar
(
input_var_n
).
GetType
();
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
PADDLE_ENFORCE
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
"The input Var's type should be LoDtensor or SelectedRows,"
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
" but the received var(%s)'s type is %s"
,
}
else
{
input_var_n
,
in_var_type
);
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
out_var_n
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_n
);
if
(
out_var
.
GetType
()
!=
in_var_type
)
{
out_var
.
SetType
(
in_var_type
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/sgd_op.cu
浏览文件 @
b4a32eaf
...
@@ -56,6 +56,12 @@ template <typename T>
...
@@ -56,6 +56,12 @@ template <typename T>
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
b4a32eaf
...
@@ -198,9 +198,9 @@ class CudnnHolder {
...
@@ -198,9 +198,9 @@ class CudnnHolder {
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
SetDeviceId
(
place_
.
device
);
SetDeviceId
(
place_
.
device
);
compute_capability
=
GetCUDAComputeCapability
(
place_
.
device
);
compute_capability
_
=
GetCUDAComputeCapability
(
place_
.
device
);
multi_process
=
GetCUDAMultiProcessors
(
place_
.
device
);
multi_process
_
=
GetCUDAMultiProcessors
(
place_
.
device
);
max_threads_per_mp
=
GetCUDAMaxThreadsPerMultiProcessor
(
place_
.
device
);
max_threads_per_mp
_
=
GetCUDAMaxThreadsPerMultiProcessor
(
place_
.
device
);
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
...
@@ -211,6 +211,16 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
...
@@ -211,6 +211,16 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
}
}
driver_version_
=
GetCUDADriverVersion
(
place_
.
device
);
runtime_version_
=
GetCUDARuntimeVersion
(
place_
.
device
);
LOG
(
INFO
)
<<
"device: "
<<
place_
.
device
<<
", CUDA Capability: "
<<
compute_capability_
<<
", Driver Version: "
<<
driver_version_
/
1000
<<
"."
<<
(
driver_version_
%
100
)
/
10
<<
", Runtime Version: "
<<
runtime_version_
/
1000
<<
"."
<<
(
runtime_version_
%
100
)
/
10
;
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
}
}
...
@@ -232,11 +242,11 @@ void CUDADeviceContext::Wait() const {
...
@@ -232,11 +242,11 @@ void CUDADeviceContext::Wait() const {
}
}
int
CUDADeviceContext
::
GetComputeCapability
()
const
{
int
CUDADeviceContext
::
GetComputeCapability
()
const
{
return
compute_capability
;
return
compute_capability
_
;
}
}
int
CUDADeviceContext
::
GetMaxPhysicalThreadCount
()
const
{
int
CUDADeviceContext
::
GetMaxPhysicalThreadCount
()
const
{
return
multi_process
*
max_threads_per_mp
;
return
multi_process
_
*
max_threads_per_mp_
;
}
}
Eigen
::
GpuDevice
*
CUDADeviceContext
::
eigen_device
()
const
{
Eigen
::
GpuDevice
*
CUDADeviceContext
::
eigen_device
()
const
{
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
b4a32eaf
...
@@ -135,9 +135,11 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -135,9 +135,11 @@ class CUDADeviceContext : public DeviceContext {
cudaStream_t
stream_
;
cudaStream_t
stream_
;
cublasHandle_t
cublas_handle_
;
cublasHandle_t
cublas_handle_
;
int
compute_capability
;
int
compute_capability_
;
int
multi_process
;
int
runtime_version_
;
int
max_threads_per_mp
;
int
driver_version_
;
int
multi_process_
;
int
max_threads_per_mp_
;
mutable
std
::
mutex
mtx_
;
mutable
std
::
mutex
mtx_
;
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
b4a32eaf
...
@@ -130,6 +130,13 @@ struct EOFException : public std::exception {
...
@@ -130,6 +130,13 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) (condition == 0)
#define UNLIKELY(condition) (condition == 0)
#endif
#endif
#if !defined(_WIN32)
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition) (condition != 0)
#endif
template
<
typename
...
Args
>
template
<
typename
...
Args
>
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
bool
stat
,
const
Args
&
...
args
)
{
bool
stat
,
const
Args
&
...
args
)
{
...
...
paddle/fluid/platform/gpu_info.cc
浏览文件 @
b4a32eaf
...
@@ -46,6 +46,24 @@ int GetCUDAComputeCapability(int id) {
...
@@ -46,6 +46,24 @@ int GetCUDAComputeCapability(int id) {
return
device_prop
.
major
*
10
+
device_prop
.
minor
;
return
device_prop
.
major
*
10
+
device_prop
.
minor
;
}
}
int
GetCUDARuntimeVersion
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
runtime_version
=
0
;
PADDLE_ENFORCE
(
cudaRuntimeGetVersion
(
&
runtime_version
),
"cudaRuntimeGetVersion failed in "
"paddle::platform::cudaRuntimeGetVersion"
);
return
runtime_version
;
}
int
GetCUDADriverVersion
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
driver_version
=
0
;
PADDLE_ENFORCE
(
cudaDriverGetVersion
(
&
driver_version
),
"cudaDriverGetVersion failed in "
"paddle::platform::GetCUDADriverVersion"
);
return
driver_version
;
}
int
GetCUDAMultiProcessors
(
int
id
)
{
int
GetCUDAMultiProcessors
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
count
;
int
count
;
...
...
paddle/fluid/platform/gpu_info.h
浏览文件 @
b4a32eaf
...
@@ -29,6 +29,12 @@ int GetCUDADeviceCount();
...
@@ -29,6 +29,12 @@ int GetCUDADeviceCount();
//! Get the compute capability of the ith GPU (format: major * 10 + minor)
//! Get the compute capability of the ith GPU (format: major * 10 + minor)
int
GetCUDAComputeCapability
(
int
i
);
int
GetCUDAComputeCapability
(
int
i
);
//! Get the runtime version of the ith GPU
int
GetCUDARuntimeVersion
(
int
id
);
//! Get the driver version of the ith GPU
int
GetCUDADriverVersion
(
int
id
);
//! Get the MultiProcessors of the ith GPU.
//! Get the MultiProcessors of the ith GPU.
int
GetCUDAMultiProcessors
(
int
i
);
int
GetCUDAMultiProcessors
(
int
i
);
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
b4a32eaf
...
@@ -57,6 +57,10 @@ limitations under the License. */
...
@@ -57,6 +57,10 @@ limitations under the License. */
#include "pybind11/stl.h"
#include "pybind11/stl.h"
DEFINE_bool
(
reader_queue_speed_test_mode
,
false
,
"If set true, the queue.pop will only get data from queue but not "
"remove the data from queue for speed testing"
);
// disable auto conversion to list in Python
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE
(
paddle
::
framework
::
LoDTensorArray
);
PYBIND11_MAKE_OPAQUE
(
paddle
::
framework
::
LoDTensorArray
);
...
@@ -170,14 +174,14 @@ PYBIND11_PLUGIN(core) {
...
@@ -170,14 +174,14 @@ PYBIND11_PLUGIN(core) {
A LoDTensor X can look like the example below. It contains 2 sequences.
A LoDTensor X can look like the example below. It contains 2 sequences.
The first has length 2 and the second has length 3, as described by x.lod.
The first has length 2 and the second has length 3, as described by x.lod.
The first tensor dimension
6
=2+3 is calculated from LoD if it's available.
The first tensor dimension
5
=2+3 is calculated from LoD if it's available.
It means the total number of sequence element. In X, each element has 2
It means the total number of sequence element. In X, each element has 2
columns, hence [
6
, 2].
columns, hence [
5
, 2].
x.lod = [[2, 3]]
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4],
x.data = [[1, 2], [3, 4],
[5, 6], [7, 8], [9, 10]
, [11, 12]
]
[5, 6], [7, 8], [9, 10]]
x.shape = [
6
, 2]
x.shape = [
5
, 2]
LoD can have multiple levels (for example, a paragraph can have multiple
LoD can have multiple levels (for example, a paragraph can have multiple
sentences and a sentence can have multiple words). In the following
sentences and a sentence can have multiple words). In the following
...
@@ -380,7 +384,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -380,7 +384,8 @@ All parameter, weight, gradient are variables in Paddle.
return
make_ddim
(
shape
);
return
make_ddim
(
shape
);
});
});
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
);
holder
->
InitOnce
(
capacity
,
dims
,
FLAGS_reader_queue_speed_test_mode
);
return
holder
->
GetQueue
();
return
holder
->
GetQueue
();
},
},
py
::
return_value_policy
::
copy
);
py
::
return_value_policy
::
copy
);
...
...
paddle/fluid/train/demo/README.md
浏览文件 @
b4a32eaf
...
@@ -15,7 +15,7 @@ cmake .. -DFLUID_INSTALL_DIR=$PADDLE_LIB \
...
@@ -15,7 +15,7 @@ cmake .. -DFLUID_INSTALL_DIR=$PADDLE_LIB \
-DWITH_MKL=OFF \
-DWITH_MKL=OFF \
-DWITH_MKLDNN=OFF
-DWITH_MKLDNN=OFF
make -j8
make -j8
make -j8
inference
_lib_dist
make -j8
fluid
_lib_dist
```
```
### step 2. generate program desc
### step 2. generate program desc
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
b4a32eaf
...
@@ -648,25 +648,25 @@ function gen_capi_package() {
...
@@ -648,25 +648,25 @@ function gen_capi_package() {
fi
fi
}
}
function
gen_fluid_
inference_
lib
()
{
function
gen_fluid_lib
()
{
mkdir
-p
${
PADDLE_ROOT
}
/build
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Generating fluid
inference library
...
Generating fluid
library for train and inference
...
========================================
========================================
EOF
EOF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
make
-j
`
nproc
`
inference
_lib_dist
make
-j
`
nproc
`
fluid
_lib_dist
fi
fi
}
}
function
tar_fluid_
inference_
lib
()
{
function
tar_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Taring fluid
inference library
...
Taring fluid
library for train and inference
...
========================================
========================================
EOF
EOF
cd
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
...
@@ -675,11 +675,11 @@ EOF
...
@@ -675,11 +675,11 @@ EOF
fi
fi
}
}
function
test_fluid_
inference_
lib
()
{
function
test_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Testing fluid
inference library
...
Testing fluid
library for inference
...
========================================
========================================
EOF
EOF
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
...
@@ -731,9 +731,9 @@ function main() {
...
@@ -731,9 +731,9 @@ function main() {
;;
;;
fluid_inference_lib
)
fluid_inference_lib
)
cmake_gen
${
PYTHON_ABI
:-
""
}
cmake_gen
${
PYTHON_ABI
:-
""
}
gen_fluid_
inference_
lib
gen_fluid_lib
tar_fluid_
inference_
lib
tar_fluid_lib
test_fluid_
inference_
lib
test_fluid_lib
;;
;;
check_style
)
check_style
)
check_style
check_style
...
@@ -744,8 +744,8 @@ function main() {
...
@@ -744,8 +744,8 @@ function main() {
assert_api_not_changed
${
PYTHON_ABI
:-
""
}
assert_api_not_changed
${
PYTHON_ABI
:-
""
}
run_test
run_test
gen_capi_package
gen_capi_package
gen_fluid_
inference_
lib
gen_fluid_lib
test_fluid_
inference_
lib
test_fluid_lib
assert_api_spec_approvals
assert_api_spec_approvals
;;
;;
maccheck
)
maccheck
)
...
...
python/paddle/fluid/__init__.py
浏览文件 @
b4a32eaf
...
@@ -113,7 +113,8 @@ def __bootstrap__():
...
@@ -113,7 +113,8 @@ def __bootstrap__():
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
'dist_threadpool_size'
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
,
'reader_queue_speed_test_mode'
]
]
if
core
.
is_compiled_with_dist
():
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b4a32eaf
...
@@ -107,6 +107,7 @@ __all__ = [
...
@@ -107,6 +107,7 @@ __all__ = [
'log'
,
'log'
,
'crop'
,
'crop'
,
'rank_loss'
,
'rank_loss'
,
'margin_rank_loss'
,
'elu'
,
'elu'
,
'relu6'
,
'relu6'
,
'pow'
,
'pow'
,
...
@@ -5827,6 +5828,54 @@ def rank_loss(label, left, right, name=None):
...
@@ -5827,6 +5828,54 @@ def rank_loss(label, left, right, name=None):
return
out
return
out
def
margin_rank_loss
(
label
,
left
,
right
,
margin
=
0.1
,
name
=
None
):
"""
Margin Ranking Loss Layer for ranking problem,
which compares left score and right score passed in.
The ranking loss can be defined as following equation:
.. math::
rank\_loss &= max(0, -label * (left - right) + margin)
Args:
label (Variable): Indicates whether the left is ranked higher than the right or not.
left (Variable): Ranking score for left.
right (Variable): Ranking score for right.
margin (float): Indicates the given margin.
name (str|None): A name for this layer (optional). If set None, the layer
will be named automatically.
Returns:
Variable: The ranking loss.
Raises:
ValueError: Any of label, left, and right is not a Variable.
Examples:
.. code-block:: python
label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
out = fluid.layers.margin_rank_loss(label, left, right)
"""
helper
=
LayerHelper
(
'margin_rank_loss'
,
**
locals
())
if
not
isinstance
(
label
,
Variable
):
raise
ValueError
(
"The label should be a Variable."
)
if
not
isinstance
(
left
,
Variable
):
raise
ValueError
(
"The left should be a Variable."
)
if
not
isinstance
(
right
,
Variable
):
raise
ValueError
(
"The right should be a Variable."
)
out
=
helper
.
create_tmp_variable
(
left
.
dtype
)
act
=
helper
.
create_tmp_variable
(
left
.
dtype
)
helper
.
append_op
(
type
=
'margin_rank_loss'
,
inputs
=
{
"Label"
:
label
,
"X1"
:
left
,
"X2"
:
right
},
outputs
=
{
'Out'
:
out
,
'Activated'
:
act
},
attrs
=
{
'margin'
:
margin
})
return
out
def
pad2d
(
input
,
def
pad2d
(
input
,
paddings
=
[
0
,
0
,
0
,
0
],
paddings
=
[
0
,
0
,
0
,
0
],
mode
=
'constant'
,
mode
=
'constant'
,
...
@@ -6290,6 +6339,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
...
@@ -6290,6 +6339,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'win_size'
:
win_size
,
attrs
=
{
'win_size'
:
win_size
,
'pad_value'
:
pad_value
})
'pad_value'
:
pad_value
})
return
out
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
b4a32eaf
...
@@ -659,6 +659,9 @@ class AdamaxOptimizer(Optimizer):
...
@@ -659,6 +659,9 @@ class AdamaxOptimizer(Optimizer):
optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
optimizer.minimize(cost)
optimizer.minimize(cost)
Notes:
Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
_inf_norm_acc_str
=
"inf_norm"
_inf_norm_acc_str
=
"inf_norm"
...
@@ -778,6 +781,9 @@ class DecayedAdagradOptimizer(Optimizer):
...
@@ -778,6 +781,9 @@ class DecayedAdagradOptimizer(Optimizer):
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer.minimize(cost)
optimizer.minimize(cost)
Notes:
Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
...
@@ -858,6 +864,9 @@ class AdadeltaOptimizer(Optimizer):
...
@@ -858,6 +864,9 @@ class AdadeltaOptimizer(Optimizer):
optimizer = fluid.optimizer.Adadelta(
optimizer = fluid.optimizer.Adadelta(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
_, params_grads = optimizer.minimize(cost)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
"""
"""
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
...
@@ -1126,6 +1135,9 @@ class FtrlOptimizer(Optimizer):
...
@@ -1126,6 +1135,9 @@ class FtrlOptimizer(Optimizer):
optimizer = fluid.optimizer.Ftrl(0.0001)
optimizer = fluid.optimizer.Ftrl(0.0001)
_, params_grads = optimizer.minimize(cost)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, FtrlOptimizer doesn't support sparse parameter optimization.
"""
"""
_squared_acc_str
=
"squared"
_squared_acc_str
=
"squared"
...
...
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
浏览文件 @
b4a32eaf
...
@@ -19,33 +19,76 @@ import unittest
...
@@ -19,33 +19,76 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
def
create_selected_rows_and_tensor
(
scope
,
place
,
height
,
row_num
,
embedding_size
):
sr
=
scope
.
var
(
"@selected_rows@"
).
get_selected_rows
()
tensor
=
scope
.
var
(
"grad"
).
get_tensor
()
rows
=
np
.
random
.
random_integers
(
low
=
0
,
high
=
height
-
1
,
size
=
[
row_num
,
]).
astype
(
'int64'
)
sr_val
=
np
.
random
.
random
(
size
=
[
row_num
,
embedding_size
]).
astype
(
'float32'
)
sr
.
set_height
(
height
)
sr
.
set_rows
(
rows
)
sr
.
get_tensor
().
set
(
sr_val
,
place
)
tensor_val
=
np
.
zeros
(
shape
=
[
height
,
embedding_size
],
dtype
=
'float32'
)
for
i
in
range
(
row_num
):
row
=
rows
[
i
]
tensor_val
[
row
,
:]
=
tensor_val
[
row
,
:]
+
sr_val
[
i
,
:]
tensor
.
set
(
tensor_val
,
place
)
return
tensor_val
,
sr_val
class
TestBase
(
unittest
.
TestCase
):
class
TestBase
(
unittest
.
TestCase
):
def
setup
(
self
,
centered
,
epsilon
=
1e-6
):
def
setup
(
self
,
place
,
is_sparse
,
centered
,
size
,
row_num
=
None
,
epsilon
=
1e-6
):
np
.
random
.
seed
(
5
)
# fix seed
np
.
random
.
seed
(
5
)
# fix seed
self
.
scope
=
fluid
.
global_scope
()
self
.
place
=
place
self
.
param_name
=
"param"
self
.
param_name
=
"param"
self
.
param
=
np
.
random
.
random
(
(
123
,
321
)
).
astype
(
"float32"
)
self
.
param
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
mean_square_name
=
"mean_square"
self
.
mean_square_name
=
"mean_square"
self
.
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
mean_square
=
np
.
random
.
uniform
(
low
=
1
,
high
=
2
,
size
=
size
).
astype
(
"float32"
)
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad
=
np
.
random
.
random
(
(
123
,
321
)
).
astype
(
"float32"
)
self
.
mean_grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
lr_name
=
"lr"
self
.
lr_name
=
"lr"
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
grad_name
=
"grad"
self
.
grad_name
=
"grad"
self
.
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
is_sparse
=
is_sparse
if
self
.
is_sparse
:
self
.
grad_sr_name
=
"@selected_rows@"
self
.
grad
,
self
.
grad_sr
=
create_selected_rows_and_tensor
(
self
.
scope
,
place
,
size
[
0
],
row_num
,
size
[
1
])
else
:
self
.
grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
grad_tensor
=
self
.
scope
.
var
(
self
.
grad_name
).
get_tensor
()
grad_tensor
.
set
(
self
.
grad
,
place
)
self
.
moment_name
=
"moment"
self
.
moment_name
=
"moment"
self
.
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
self
.
moment
=
np
.
random
.
uniform
(
low
=
0
,
high
=
1
,
size
=
size
).
astype
(
"float32"
)
self
.
epsilon
=
epsilon
self
.
epsilon
=
epsilon
self
.
decay
=
0.9
self
.
decay
=
0.9
self
.
momentum
=
0.
0
self
.
momentum
=
0.
1
self
.
centered
=
centered
self
.
centered
=
centered
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
...
@@ -61,118 +104,122 @@ class TestBase(unittest.TestCase):
...
@@ -61,118 +104,122 @@ class TestBase(unittest.TestCase):
self
.
param_out
=
self
.
param
-
self
.
moment_out
self
.
param_out
=
self
.
param
-
self
.
moment_out
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
,
equal_nan
=
False
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
class
TestRmspropOp
(
TestBase
):
def
check_with_place
(
self
,
place
,
centered
,
epsilon
):
self
.
setup
(
centered
,
epsilon
)
scope
=
core
.
Scope
()
# create and initialize Param Variable
# create and initialize Param Variable
param
=
scope
.
var
(
self
.
param_name
).
get_tensor
()
self
.
param_tensor
=
self
.
scope
.
var
(
self
.
param_name
).
get_tensor
()
param
.
set
(
self
.
param
,
place
)
self
.
param_tensor
.
set
(
self
.
param
,
place
)
mean_square
=
scope
.
var
(
self
.
mean_square_name
).
get_tensor
()
self
.
mean_square_tensor
=
self
.
scope
.
var
(
mean_square
.
set
(
self
.
mean_square
,
place
)
self
.
mean_square_name
).
get_tensor
()
self
.
mean_square_tensor
.
set
(
self
.
mean_square
,
place
)
lr
=
scope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
=
s
elf
.
s
cope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
.
set
(
self
.
learning_rate
,
place
)
lr
.
set
(
self
.
learning_rate
,
place
)
grad
=
scope
.
var
(
self
.
grad
_name
).
get_tensor
()
self
.
moment_tensor
=
self
.
scope
.
var
(
self
.
moment
_name
).
get_tensor
()
grad
.
set
(
self
.
grad
,
place
)
self
.
moment_tensor
.
set
(
self
.
moment
,
place
)
moment
=
scope
.
var
(
self
.
moment_name
).
get_tensor
()
if
self
.
centered
:
moment
.
set
(
self
.
moment
,
place
)
self
.
mean_grad_tensor
=
self
.
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
self
.
mean_grad_tensor
.
set
(
self
.
mean_grad
,
place
)
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
# create and run sgd operator
if
self
.
centered
:
class
TestRmspropOp
(
TestBase
):
mean_grad
=
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
def
check_with_place
(
self
,
mean_grad
.
set
(
self
.
mean_grad
,
place
)
place
,
is_sparse
,
rmsprop_op
=
Operator
(
centered
,
"rmsprop"
,
size
,
Param
=
self
.
param_name
,
row_num
=
None
,
Grad
=
self
.
grad_name
,
epsilon
=
1e-6
):
MeanSquare
=
self
.
mean_square_name
,
self
.
setup
(
place
,
is_sparse
,
centered
,
size
,
row_num
,
epsilon
)
MeanGrad
=
self
.
mean_grad_name
,
self
.
run_and_check
()
Moment
=
self
.
moment_name
,
LearningRate
=
self
.
lr_name
,
def
run_and_check
(
self
):
ParamOut
=
self
.
param_name
,
grad_name
=
self
.
grad_sr_name
if
self
.
is_sparse
else
self
.
grad_name
MeanSquareOut
=
self
.
mean_square_name
,
MomentOut
=
self
.
moment_name
,
kwargs
=
{
MeanGradOut
=
self
.
mean_grad_name
,
'Param'
:
self
.
param_name
,
epsilon
=
self
.
epsilon
,
'Grad'
:
grad_name
,
decay
=
self
.
decay
,
'MeanSquare'
:
self
.
mean_square_name
,
momentum
=
self
.
momentum
,
'Moment'
:
self
.
moment_name
,
centered
=
True
)
'LearningRate'
:
self
.
lr_name
,
else
:
'ParamOut'
:
self
.
param_name
,
rmsprop_op
=
Operator
(
'MeanSquareOut'
:
self
.
mean_square_name
,
"rmsprop"
,
'MomentOut'
:
self
.
moment_name
,
Param
=
self
.
param_name
,
'epsilon'
:
self
.
epsilon
,
Grad
=
self
.
grad_name
,
'decay'
:
self
.
decay
,
MeanSquare
=
self
.
mean_square_name
,
'momentum'
:
self
.
momentum
,
Moment
=
self
.
moment_name
,
'centered'
:
self
.
centered
LearningRate
=
self
.
lr_name
,
}
ParamOut
=
self
.
param_name
,
MeanSquareOut
=
self
.
mean_square_name
,
MomentOut
=
self
.
moment_name
,
epsilon
=
self
.
epsilon
,
decay
=
self
.
decay
,
momentum
=
self
.
momentum
,
centered
=
False
)
rmsprop_op
.
run
(
scope
,
place
)
atol
=
1e-5
equal_nan
=
False
if
self
.
centered
:
if
self
.
centered
:
atol
=
1e-3
kwargs
[
'MeanGrad'
]
=
self
.
mean_grad_name
equal_nan
=
True
kwargs
[
'MeanGradOut'
]
=
self
.
mean_grad_name
rmsprop_op
=
Operator
(
'rmsprop'
,
**
kwargs
)
atol
=
1e-6
rmsprop_op
.
run
(
self
.
scope
,
self
.
place
)
self
.
check
(
self
.
check
(
np
.
array
(
mean_square
),
self
.
ms_out
,
place
,
self
.
mean_square_name
)
np
.
array
(
self
.
mean_square_tensor
),
self
.
ms_out
,
self
.
place
,
self
.
mean_square_name
,
atol
=
atol
)
self
.
check
(
self
.
check
(
np
.
array
(
moment
),
np
.
array
(
self
.
moment_tensor
),
self
.
moment_out
,
self
.
moment_out
,
place
,
self
.
place
,
self
.
moment_name
,
self
.
moment_name
,
atol
=
atol
,
atol
=
atol
)
equal_nan
=
equal_nan
)
self
.
check
(
self
.
check
(
np
.
array
(
param
),
np
.
array
(
self
.
param_tensor
),
self
.
param_out
,
self
.
param_out
,
place
,
self
.
place
,
self
.
param_name
,
self
.
param_name
,
atol
=
atol
,
atol
=
atol
)
equal_nan
=
equal_nan
)
if
self
.
centered
:
if
self
.
centered
:
self
.
check
(
self
.
check
(
np
.
array
(
mean_grad
),
self
.
mg_out
,
place
,
self
.
mean_grad_name
)
np
.
array
(
self
.
mean_grad_tensor
),
self
.
mg_out
,
self
.
place
,
self
.
mean_grad_name
)
def
test_rmsprop
(
self
):
def
test_rmsprop
(
self
):
places
=
[
core
.
CPUPlace
()]
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
places
.
append
(
core
.
CUDAPlace
(
0
))
size
=
(
128
,
320
)
for
place
in
places
:
for
place
in
places
:
self
.
check_with_place
(
place
,
False
,
1e-6
)
for
centered
in
[
False
,
True
]:
self
.
check_with_place
(
place
,
False
,
1e-10
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
True
,
1e-6
)
self
.
check_with_place
(
self
.
check_with_place
(
place
,
True
,
1e-10
)
place
,
is_sparse
=
False
,
centered
=
centered
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
512
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
60
,
size
=
size
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录