提交 b489cf6c 编写于 作者: T Travis CI

Deploy to GitHub Pages: b088e808

上级 5d903218
# Design Doc: Distributed Training
## Objective
In [this slides](https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses), we explained that we'd like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.
This poses technical challenges to PaddlePaddle:
1. Support fault-recovery.
1. Support both offline and online training.
1. [Serverless computing](https://en.wikipedia.org/wiki/Serverless_computing) of distributed training.
## Training Job
A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:
1. the *master process*, which dispatches tasks to
1. one or more *trainer processes*, which run distributed training and synchronize gradients/models via
1. one or more *parameter server processes*, where each holds a shard of the global model.
Their relation is illustrated in the following graph:
<img src="src/paddle-model-sharding.png"/>
### Master Process
The master process will:
- Partition a dataset into [tasks](#task) and dispatch tasks to trainers.
- Keep track of training progress on the dataset with [task queue](#task-queue). A training job will iterate on the dataset for a full pass until it goes into next pass.
#### Task
A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.
#### Task Queue
The master process has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master process. Each master process has three task queues.
<img src="src/paddle-task-queues.png"/>
- The todo queue holds tasks to be dispatched. When a job starts, the master process fills in the todo queue with all tasks.
- The pending queue holds tasks that are currently training by trainers.
- the done queue holds tasks that are already trained.
The life cycle of a single task is illustrated below:
<img src="src/paddle-task-states.png"/>
1. When a new pass of training starts, all tasks will be placed in the todo queue.
1. The master process will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion.
1. The trainer will work on its tasks and tell the master process once a task is completed. The master process will dispatch a new task to that trainer.
1. If a task timeout. the master process will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded.
1. The master process will move completed task to the done queue. When the todo queue is empty, the master process will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.
### Trainer Process
The trainer process will:
- Receive tasks from the master.
- Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.
### Parameter Server Process
Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.
The parameter server will:
- Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.
- Periodically save its parameters to distributed file system by overriding the previous save.
### Optimization Algorithms
The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:
- Synchronous Stochastic Gradient Descent (sync-SGD)
Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.
- Asynchronous Stochastic Gradient Descent (async-SGD)
There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:
- Each trainer uploads its accumulated gradient every n mini-batches.
- Every m mini-batches, the trainer downloads new parameters from parameter server.
- n and m do not have to be equal.
## Fault Tolerant
The training job will pause if the master processes is dead, or any of the parameter server process is dead. They will be started by [Kubernetes](https://kubernetes.io/) and recover in few minutes. Please refer to [fault recovery](#fault-recovery).
The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:
- sync-SGD
TODO
- async-SGD
Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.
## Fault Recovery
PaddlePaddle uses [etcd](https://github.com/coreos/etcd) to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.
Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:
<img src="src/paddle-etcd.png"/>
### Master Process
When the master is started by the Kubernetes, it executes the following steps at startup:
1. Grabs a unique *master* lock in etcd, which prevents concurrent master instantiations.
1. Recovers the task queues from etcd if they already exist, otherwise, the master will create them.
1. Watches the trainer prefix keys `/trainer/` on etcd to find the live trainers.
1. Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update.
The master process will kill itself if its etcd lease expires.
When the master process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.
### Trainer Process
When the trainer is started by the Kubernetes, it executes the following steps at startup:
1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count.
1. Generates a unique ID, and sets key `/trainer/<unique ID>` with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline.
1. Waits for tasks from the master to start training.
If trainer's etcd lease expires, it will try set key `/trainer/<unique ID>` again so that the master process can discover the trainer again.
### Parameter Server Process
When the parameter server is started by Kubernetes, it executes the following steps at startup:
1. Read desired total number of parameter servers from etcd `/ps_desired`
1. Search through etcd keys `/ps/<index>` (`/ps/0`, `/ps/1`, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server's index is inferred from the key name.
The desired number of parameter servers is 3:
<img src="src/paddle-ps-0.png"/>
The third parameter server joined:
<img src="src/paddle-ps-1.png"/>
1. The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).
1. Now the parameter server is ready for the trainers' requests.
If the parameter server's etcd lease expires, the parameter server will kill itself.
## Dynamic Scaling
### Trainer Scaling
TODO
### Parameter Server Scaling
Not planned for v1.
## Training Dataset Format
TODO
## User Interface
TODO
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Distributed Training &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../../genindex.html"/>
<link rel="search" title="Search" href="../../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a>Home</a></li>
<li><a>Get Started</a></li>
<li class="active"><a>Documentation</a></li>
<li><a>About Us</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_en.html">TUTORIALS</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/basic_usage/index_en.html">Simple Linear Regression</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_en.html">TUTORIALS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/quick_start/index_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/rec/ml_regression_en.html">MovieLens Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/image_classification/index_en.html">Image Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/sentiment_analysis/index_en.html">Sentiment Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/semantic_role_labeling/index_en.html">Semantic Role Labeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/text_generation/index_en.html">Text Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/gan/index_en.html">Image Auto-Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/imagenet_model/resnet_model_en.html">ImageNet: ResNet</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/embedding_model/index_en.html">Embedding: Chinese Word</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>
</nav>
<nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Design Doc: Distributed Training</a><ul>
<li><a class="reference internal" href="#objective">Objective</a></li>
<li><a class="reference internal" href="#training-job">Training Job</a><ul>
<li><a class="reference internal" href="#master-process">Master Process</a><ul>
<li><a class="reference internal" href="#task">Task</a></li>
<li><a class="reference internal" href="#task-queue">Task Queue</a></li>
</ul>
</li>
<li><a class="reference internal" href="#trainer-process">Trainer Process</a></li>
<li><a class="reference internal" href="#parameter-server-process">Parameter Server Process</a></li>
<li><a class="reference internal" href="#optimization-algorithms">Optimization Algorithms</a></li>
</ul>
</li>
<li><a class="reference internal" href="#fault-tolerant">Fault Tolerant</a></li>
<li><a class="reference internal" href="#fault-recovery">Fault Recovery</a><ul>
<li><a class="reference internal" href="#master-process">Master Process</a></li>
<li><a class="reference internal" href="#trainer-process">Trainer Process</a></li>
<li><a class="reference internal" href="#parameter-server-process">Parameter Server Process</a></li>
</ul>
</li>
<li><a class="reference internal" href="#dynamic-scaling">Dynamic Scaling</a><ul>
<li><a class="reference internal" href="#trainer-scaling">Trainer Scaling</a></li>
<li><a class="reference internal" href="#parameter-server-scaling">Parameter Server Scaling</a></li>
</ul>
</li>
<li><a class="reference internal" href="#training-dataset-format">Training Dataset Format</a></li>
<li><a class="reference internal" href="#user-interface">User Interface</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Distributed Training</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-distributed-training">
<span id="design-doc-distributed-training"></span><h1>Design Doc: Distributed Training<a class="headerlink" href="#design-doc-distributed-training" title="Permalink to this headline"></a></h1>
<div class="section" id="objective">
<span id="objective"></span><h2>Objective<a class="headerlink" href="#objective" title="Permalink to this headline"></a></h2>
<p>In <a class="reference external" href="https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses">this slides</a>, we explained that we&#8217;d like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.</p>
<p>This poses technical challenges to PaddlePaddle:</p>
<ol class="simple">
<li>Support fault-recovery.</li>
<li>Support both offline and online training.</li>
<li><a class="reference external" href="https://en.wikipedia.org/wiki/Serverless_computing">Serverless computing</a> of distributed training.</li>
</ol>
</div>
<div class="section" id="training-job">
<span id="training-job"></span><h2>Training Job<a class="headerlink" href="#training-job" title="Permalink to this headline"></a></h2>
<p>A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:</p>
<ol class="simple">
<li>the <em>master process</em>, which dispatches tasks to</li>
<li>one or more <em>trainer processes</em>, which run distributed training and synchronize gradients/models via</li>
<li>one or more <em>parameter server processes</em>, where each holds a shard of the global model.</li>
</ol>
<p>Their relation is illustrated in the following graph:</p>
<p><img src="src/paddle-model-sharding.png"/></p>
<div class="section" id="master-process">
<span id="master-process"></span><h3>Master Process<a class="headerlink" href="#master-process" title="Permalink to this headline"></a></h3>
<p>The master process will:</p>
<ul class="simple">
<li>Partition a dataset into <a class="reference external" href="#task">tasks</a> and dispatch tasks to trainers.</li>
<li>Keep track of training progress on the dataset with <a class="reference external" href="#task-queue">task queue</a>. A training job will iterate on the dataset for a full pass until it goes into next pass.</li>
</ul>
<div class="section" id="task">
<span id="task"></span><h4>Task<a class="headerlink" href="#task" title="Permalink to this headline"></a></h4>
<p>A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.</p>
</div>
<div class="section" id="task-queue">
<span id="task-queue"></span><h4>Task Queue<a class="headerlink" href="#task-queue" title="Permalink to this headline"></a></h4>
<p>The master process has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master process. Each master process has three task queues.</p>
<p><img src="src/paddle-task-queues.png"/></p>
<ul class="simple">
<li>The todo queue holds tasks to be dispatched. When a job starts, the master process fills in the todo queue with all tasks.</li>
<li>The pending queue holds tasks that are currently training by trainers.</li>
<li>the done queue holds tasks that are already trained.</li>
</ul>
<p>The life cycle of a single task is illustrated below:</p>
<p><img src="src/paddle-task-states.png"/></p>
<ol class="simple">
<li>When a new pass of training starts, all tasks will be placed in the todo queue.</li>
<li>The master process will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion.</li>
<li>The trainer will work on its tasks and tell the master process once a task is completed. The master process will dispatch a new task to that trainer.</li>
<li>If a task timeout. the master process will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded.</li>
<li>The master process will move completed task to the done queue. When the todo queue is empty, the master process will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.</li>
</ol>
</div>
</div>
<div class="section" id="trainer-process">
<span id="trainer-process"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="Permalink to this headline"></a></h3>
<p>The trainer process will:</p>
<ul class="simple">
<li>Receive tasks from the master.</li>
<li>Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.</li>
</ul>
</div>
<div class="section" id="parameter-server-process">
<span id="parameter-server-process"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="Permalink to this headline"></a></h3>
<p>Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.</p>
<p>The parameter server will:</p>
<ul class="simple">
<li>Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.</li>
<li>Periodically save its parameters to distributed file system by overriding the previous save.</li>
</ul>
</div>
<div class="section" id="optimization-algorithms">
<span id="optimization-algorithms"></span><h3>Optimization Algorithms<a class="headerlink" href="#optimization-algorithms" title="Permalink to this headline"></a></h3>
<p>The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:</p>
<ul>
<li><p class="first">Synchronous Stochastic Gradient Descent (sync-SGD)</p>
<p>Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.</p>
</li>
<li><p class="first">Asynchronous Stochastic Gradient Descent (async-SGD)</p>
<p>There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:</p>
<ul class="simple">
<li>Each trainer uploads its accumulated gradient every n mini-batches.</li>
<li>Every m mini-batches, the trainer downloads new parameters from parameter server.</li>
<li>n and m do not have to be equal.</li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="fault-tolerant">
<span id="fault-tolerant"></span><h2>Fault Tolerant<a class="headerlink" href="#fault-tolerant" title="Permalink to this headline"></a></h2>
<p>The training job will pause if the master processes is dead, or any of the parameter server process is dead. They will be started by <a class="reference external" href="https://kubernetes.io/">Kubernetes</a> and recover in few minutes. Please refer to <a class="reference external" href="#fault-recovery">fault recovery</a>.</p>
<p>The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:</p>
<ul>
<li><p class="first">sync-SGD</p>
<p>TODO</p>
</li>
<li><p class="first">async-SGD</p>
<p>Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.</p>
</li>
</ul>
</div>
<div class="section" id="fault-recovery">
<span id="fault-recovery"></span><h2>Fault Recovery<a class="headerlink" href="#fault-recovery" title="Permalink to this headline"></a></h2>
<p>PaddlePaddle uses <a class="reference external" href="https://github.com/coreos/etcd">etcd</a> to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.</p>
<p>Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:</p>
<p><img src="src/paddle-etcd.png"/></p>
<div class="section" id="master-process">
<span id="id1"></span><h3>Master Process<a class="headerlink" href="#master-process" title="Permalink to this headline"></a></h3>
<p>When the master is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Grabs a unique <em>master</em> lock in etcd, which prevents concurrent master instantiations.</li>
<li>Recovers the task queues from etcd if they already exist, otherwise, the master will create them.</li>
<li>Watches the trainer prefix keys <code class="docutils literal"><span class="pre">/trainer/</span></code> on etcd to find the live trainers.</li>
<li>Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update.</li>
</ol>
<p>The master process will kill itself if its etcd lease expires.</p>
<p>When the master process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.</p>
</div>
<div class="section" id="trainer-process">
<span id="id2"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="Permalink to this headline"></a></h3>
<p>When the trainer is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Watches the available parameter server prefix keys <code class="docutils literal"><span class="pre">/ps/</span></code> on etcd and waits until the count of parameter servers reaches the desired count.</li>
<li>Generates a unique ID, and sets key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline.</li>
<li>Waits for tasks from the master to start training.</li>
</ol>
<p>If trainer&#8217;s etcd lease expires, it will try set key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> again so that the master process can discover the trainer again.</p>
</div>
<div class="section" id="parameter-server-process">
<span id="id3"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="Permalink to this headline"></a></h3>
<p>When the parameter server is started by Kubernetes, it executes the following steps at startup:</p>
<ol>
<li><p class="first">Read desired total number of parameter servers from etcd <code class="docutils literal"><span class="pre">/ps_desired</span></code></p>
</li>
<li><p class="first">Search through etcd keys <code class="docutils literal"><span class="pre">/ps/&lt;index&gt;</span></code> (<code class="docutils literal"><span class="pre">/ps/0</span></code>, <code class="docutils literal"><span class="pre">/ps/1</span></code>, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server&#8217;s index is inferred from the key name.</p>
<p>The desired number of parameter servers is 3:</p>
<p><img src="src/paddle-ps-0.png"/></p>
<p>The third parameter server joined:</p>
<p><img src="src/paddle-ps-1.png"/></p>
</li>
<li><p class="first">The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).</p>
</li>
<li><p class="first">Now the parameter server is ready for the trainers&#8217; requests.</p>
</li>
</ol>
<p>If the parameter server&#8217;s etcd lease expires, the parameter server will kill itself.</p>
</div>
</div>
<div class="section" id="dynamic-scaling">
<span id="dynamic-scaling"></span><h2>Dynamic Scaling<a class="headerlink" href="#dynamic-scaling" title="Permalink to this headline"></a></h2>
<div class="section" id="trainer-scaling">
<span id="trainer-scaling"></span><h3>Trainer Scaling<a class="headerlink" href="#trainer-scaling" title="Permalink to this headline"></a></h3>
<p>TODO</p>
</div>
<div class="section" id="parameter-server-scaling">
<span id="parameter-server-scaling"></span><h3>Parameter Server Scaling<a class="headerlink" href="#parameter-server-scaling" title="Permalink to this headline"></a></h3>
<p>Not planned for v1.</p>
</div>
</div>
<div class="section" id="training-dataset-format">
<span id="training-dataset-format"></span><h2>Training Dataset Format<a class="headerlink" href="#training-dataset-format" title="Permalink to this headline"></a></h2>
<p>TODO</p>
</div>
<div class="section" id="user-interface">
<span id="user-interface"></span><h2>User Interface<a class="headerlink" href="#user-interface" title="Permalink to this headline"></a></h2>
<p>TODO</p>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/config/activation","api/v2/config/attr","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/multi_language_interface/why_plain_c","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/multi_language_interface/why_plain_c.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":53,"00186201e":5,"00m":37,"02595v1":[10,16],"03m":37,"0424m":37,"0473v3":[11,17],"055ee37d":43,"05d":50,"0630u":37,"06u":37,"0810u":37,"08823112e":5,"0957m":37,"0ab":[10,16],"0rc2":28,"0th":58,"10007_10":57,"10014_7":57,"100gb":37,"100gi":43,"10m":37,"1150u":37,"11e6":44,"12194102e":5,"124n":37,"13m":44,"1490u":37,"15501715e":5,"1550u":37,"15mb":53,"1636k":58,"16mb":53,"16u":37,"173m":51,"173n":37,"1770u":37,"18ad":43,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":44,"197u":37,"1gb":37,"1st":[48,51,57,58],"202mb":58,"210u":37,"211839e770f7b538e2d8":[11,17],"215n":37,"228u":37,"234m":51,"2520u":37,"252kb":53,"25639710e":5,"25k":53,"2680u":37,"27787406e":5,"279n":37,"27m":37,"285m":37,"2863m":37,"28m":37,"28x28":3,"2977m":37,"2cbf7385":43,"2nd":[10,16,57,58],"302n":37,"30u":37,"32777140e":5,"328n":37,"32u":37,"32x32":50,"331n":37,"3320u":37,"36540484e":5,"365e":43,"36u":37,"3710m":37,"3768m":37,"387u":37,"38u":37,"3920u":37,"39u":37,"3rd":[55,57,58],"4035m":37,"4090u":37,"4096mb":40,"4279m":37,"43630644e":5,"43u":37,"448a5b355b84":44,"4560u":37,"4563m":37,"45u":37,"4650u":37,"4726m":37,"473m":44,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":40,"50bd":43,"50gi":43,"51111044e":5,"514u":37,"525n":37,"526u":37,"53018653e":5,"536u":37,"5460u":37,"5470u":37,"54u":37,"55g":58,"5690m":37,"573u":37,"578n":37,"5798m":37,"586u":37,"58s":44,"5969m":37,"6080u":37,"6082v4":[10,16],"6140u":37,"6305m":37,"639u":37,"655u":37,"6780u":37,"6810u":37,"682u":37,"6970u":37,"6ce9":43,"6node":38,"6th":58,"704u":37,"70634608e":5,"7090u":37,"72296313e":5,"72u":37,"73u":37,"75u":37,"760u":37,"767u":37,"783n":37,"784u":37,"78m":37,"7eamaa":20,"7kb":44,"8250u":37,"8300u":37,"830n":37,"849m":37,"85625684e":5,"861u":37,"864k":58,"8661m":37,"892m":37,"901n":37,"90u":37,"918u":37,"9247m":37,"924n":37,"9261m":37,"93137714e":5,"9330m":37,"94u":37,"9530m":37,"96644767e":5,"983m":37,"988u":37,"997u":37,"99982715e":5,"99m":51,"99u":37,"9f18":44,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":24,"\u4e0d\u4f7f\u7528c":24,"\u4e0d\u4f7f\u7528swig":24,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":24,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":24,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":24,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":24,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":24,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":24,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":24,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":24,"\u4e2d":24,"\u4e2d\u5b8c\u5168\u4e00\u81f4":24,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":24,"\u4e66\u5199":24,"\u4ec5\u4ec5\u4f7f\u7528":24,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":24,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":24,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":24,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":24,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":24,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":24,"\u4f7f\u7528\u52a8\u6001\u5e93":24,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":24,"\u4f7f\u7528c99\u505a\u63a5\u53e3":24,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":24,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":24,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":24,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":24,"\u4f7f\u7528void":24,"\u4f8b\u5982":24,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":24,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":24,"\u4f8b\u5982\u5bf9\u4e8epython":24,"\u4f8b\u5982c":24,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":24,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":24,"\u4f8b\u5982python\u7684":24,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":24,"\u505a\u63a5\u53e3":24,"\u5176\u4e2d":24,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":24,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":24,"\u5199\u4ee3\u7801":24,"\u51fd\u6570\u547d\u540d":24,"\u52a8\u6001\u5e93":24,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":24,"\u53c2\u6570":24,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":24,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":24,"\u540d\u5b57\u4fee\u9970":24,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":24,"\u548c":24,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":24,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":24,"\u5728c":24,"\u5728c\u7684\u5934\u6587\u4ef6":24,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":24,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":24,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":24,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":24,"\u5b66\u4e60\u6210\u672c\u9ad8":24,"\u5b9e\u73b0\u7b80\u5355":24,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":24,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":24,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":24,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":24,"\u5bf9\u6bd4":24,"\u5c06\u5927\u91cf\u7684":24,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":24,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":24,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":24,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":24,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":24,"\u5f97\u4f7f\u7528":24,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":24,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":24,"\u6216\u8005":24,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":24,"\u63a5\u53e3":24,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":24,"\u6587\u4ef6":24,"\u6587\u4ef6\u5185\u5bb9\u4e3a":24,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":24,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":24,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":24,"\u662f\u56e0\u4e3ac99\u652f\u6301":24,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":24,"\u6709\u6807\u51c6\u7684":24,"\u6709\u7684\u65f6\u5019":24,"\u6765\u786e\u4fdd\u628a":24,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":24,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":24,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":24,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":24,"\u751f\u6210\u6587\u6863":24,"\u751f\u6210api\u6587\u6863":24,"\u7531\u4e8ec":24,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":24,"\u7684\u5934\u6587\u4ef6":24,"\u7684\u63a5\u53e3\u6837\u5f0f":24,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":24,"\u7684\u89c4\u8303":24,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":24,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":24,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":24,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":24,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":24,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":24,"\u7c7b\u540d\u548cc":24,"\u7c7b\u578b":24,"\u7ea2\u697c\u68a6":48,"\u7ed3\u8bba":24,"\u7f16\u8bd1\u5668\u6ca1\u6709":24,"\u7f16\u8bd1\u578b\u8bed\u8a00":24,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":24,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":24,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":24,"\u800c\u5bf9\u4e8egolang":24,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":24,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":24,"\u826f\u597d\u7684\u6587\u6863":24,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":24,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":24,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":24,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":24,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":24,"\u8fd9\u662f\u56e0\u4e3a":24,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":24,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":24,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":24,"\u91cd\u547d\u540d\u6210":24,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":24,"\u9519\u8bef\u5904\u7406":24,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":24,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":24,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":24,"\ufb01xed":58,"abstract":[35,40],"api\u4e2d\u4f7f\u7528":24,"boolean":[10,16,24],"break":53,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":24,"c\u6709\u6807\u51c6\u7684abi":24,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":24,"case":[10,16,25,26,33,34,35,37,41,43,49,53],"char":55,"class":[5,7,10,12,14,15,16,17,19,20,23,24,39,50,57],"const":35,"default":[3,7,9,10,11,12,15,16,17,19,20,22,23,28,38,40,42,43,44,53,55,57,58],"export":[27,50],"final":[11,17,26,27,35,55,57],"float":[3,7,9,10,12,15,16,20,26,35,37,42,48,51,55],"function":[3,5,8,10,11,12,16,17,20,23,25,26,33,35,37,38,40,49,50,53,56,57,58],"golang\u53ef\u4ee5\u4f7f\u7528":24,"golang\u7684":24,"h\u5e76\u4e0d\u56f0\u96be":24,"import":[3,5,9,10,16,23,26,33,37,43,48,49,50,51,53,55,57,58],"int":[3,7,9,10,11,12,15,16,17,20,24,25,35,42,53,55,56],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":24,"long":[2,10,11,16,17,20,28,37,56,57],"new":[3,10,16,20,25,34,36,43,44,49,53,56,57],"null":[10,35,40,55],"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":24,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":24,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":24,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":24,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":24,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":24,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":24,"public":[35,38,43,44,57],"return":[3,8,9,10,11,16,17,19,20,22,23,26,33,35,43,49,51,53,54,55,58],"short":[10,11,16,17,26,55,56,57],"static":[10,43],"super":35,"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":24,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":24,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":24,"swig\u76f4\u63a5\u8bfb\u53d6c":24,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":24,"switch":[43,57],"throw":43,"true":[3,7,9,10,11,12,15,16,17,19,20,23,25,26,33,35,40,42,43,51,55,56,57,58],"try":[12,25,37,49,55],"void":[24,35],"while":[2,3,7,9,15,20,25,28,33,40,49,53,57,58],AGE:[43,44],AND:55,ARE:55,AWS:[36,45,46],Abs:6,Age:54,And:[3,9,10,12,16,25,28,30,34,42,43,44,48,51,55,57,58],But:[3,10,11,16,17],EOS:[10,16],For:[2,3,8,9,10,12,16,20,23,25,26,27,28,33,35,37,38,39,40,42,48,50,51,53,57,58],Going:57,Has:3,IDs:53,Ids:53,Into:43,Its:[3,33,43,55],Not:[23,38],ONE:3,One:[9,10,11,17,33,35,40,49,53,57,58],QoS:44,THE:3,TLS:[23,43],That:[10,16,20,25,28,40,42],The:[2,3,5,7,8,9,10,11,12,14,15,16,17,20,22,23,25,26,27,28,29,30,33,34,35,37,38,40,42,43,44,48,49,50,51,53,54,55,56,57,58],Their:[3,10,16],Then:[5,10,27,28,33,34,35,37,43,44,48,50,55,56,57],There:[9,10,16,22,23,26,28,30,37,43,49,50,51,52,53,55,58],These:[38,42,50,56],USE:55,USING:55,Use:[3,23,25,35,37,40,41,43,55],Used:[11,17],Useful:3,Using:[44,57],VPS:43,WITH:34,Will:20,With:[3,10,11,16,17,26,49,56],Yes:28,___fc_layer_0__:43,__init__:35,__list_to_map__:55,__main__:51,__meta__:55,__name__:51,__rnn_step__:33,_error:49,_link:[11,17],_proj:[10,16],_res2_1_branch1_bn:51,_source_language_embed:[33,48],_target_language_embed:[33,48],aaaaaaaaaaaaa:43,abc:[10,16],abl:[10,16,23,49,57],about:[5,10,11,16,17,26,28,37,39,40,43,47,56,57,58],abov:[3,5,10,16,23,26,28,37,43,44,49,51,53,56],abs:[11,17,49],absolut:[2,38],academ:54,acceler:42,accept:[3,5,20,23,25,53,56],acceptor:56,access:[2,10,11,17,23,28,33,58],accessmod:43,accident:54,accomplish:28,accord:[2,3,9,10,16,33,34,38,39,40,42],accordingli:[5,35],accordingto:56,accrod:[11,17],accuraci:[9,35,53,54,57],achiev:[37,50],ack:40,acl:57,aclimdb:57,aclimdb_v1:20,across:[10,16],act:[10,11,16,17,26,33,53],act_typ:53,action:[43,54],activ:[0,4,5,10,11,16,17,21,26,27,35,40,53,57],activi:[11,17],actual:[3,10,16,26],adadelta:[12,53],adagrad:[12,53],adam:[12,23,53,57,58],adamax:[12,53],adamoptim:[48,53,57,58],adapt:[9,12,26,57,58],add:[3,10,11,16,17,20,26,27,34,35,37,42,53,55],add_input:35,add_test:35,add_to:[10,16],add_unittest_without_exec:35,addbia:35,added:[3,9,35],adding:51,addit:[10,11,16,17,28,53],address:[28,37,40],addrow:35,addtion:38,addto:10,addtolay:[10,16],adject:57,adjust:26,admin:54,adopt:56,advanc:[33,37,40],advantag:[28,57],adventur:54,adverb:57,adversari:25,advic:37,affect:[10,16],afi:3,aforement:38,after:[10,16,27,30,33,35,38,40,42,43,44,49,50,51,53,55,56,57,58],again:[23,37],against:43,age:55,agg_level:[10,16],aggreg:43,aggregatelevel:[10,16],aid:37,aim:[57,58],aircraft:58,airplan:50,aistat:[10,16],alex:[10,16,57],alexnet_pass1:42,alexnet_pass2:42,algorithm:[10,12,16,26,33,48,50,57,58],alia:[6,7,13,14,15],align:[10,11,16,17,20,58],all:[0,3,7,9,10,12,15,16,22,23,26,28,33,34,35,37,38,39,40,42,43,44,48,49,51,53,54,55,56,57,58],alloc:[7,15,35,42],allow:[23,28,34,35,37,40,43,53],allow_only_one_model_on_one_gpu:[39,40,42],almost:[11,17,26,38,48],along:57,alreadi:[28,37,38,40,43,44,57],alreali:[39,58],also:[2,3,9,10,11,16,17,23,25,27,28,33,35,37,38,44,49,50,51,53,56,57],although:26,alwai:[5,10,11,16,17,25,26,40,43,58],amaz:50,amazon:[43,44,53,57],amazonaw:43,amazonec2fullaccess:43,amazonelasticfilesystemfullaccess:43,amazonroute53domainsfullaccess:43,amazonroute53fullaccess:43,amazons3fullaccess:43,amazonvpcfullaccess:43,ambigu:[25,56],amd64:43,amend:34,american:50,among:[43,57],amount:[37,57],analysi:[26,37,52,56],analyz:[53,57],andd:43,ani:[2,3,10,11,16,17,20,23,25,33,34,37,43,53,55,58],anim:54,annot:56,annual:56,anoth:[3,10,16,23,28,40,43,56,57],ans:43,answer:[26,43,56],anyth:[20,25,34,43,56],api:[16,20,23,27,35,37,43,47,49,53,55,57],apiserv:43,apivers:[43,44],apo:58,appar:58,appear:56,append:[3,25,33,35,38,55],appleclang:27,appleyard:37,appli:[0,10,11,16,17,33,35,50,53],applic:[28,37,43,44,57],appreci:[34,57],approach:[10,16],apt:[27,30,50],arbitrari:10,architectur:[48,56,57,58],architecur:57,archiv:24,arg:[3,8,9,10,11,12,16,17,20,26,39,49,50,51,53,55,56,57],arg_nam:[10,16],argu:56,argument:[3,5,8,10,16,20,33,35,40,41,48,49,50,51,55,56,57,58],argv:51,arn:43,around:[3,10,16,43],arrai:[5,10,16,20,22,25,26,51],art:[26,56],articl:[38,44],artifact:43,artifici:49,artist:54,arxiv:[10,11,16,17,49,57],aspect:57,assign:[10,40,43],associ:[56,57,58],assum:[10,16,33,42,48],assur:2,astyp:[25,49],async:[12,39],async_count:40,async_lagged_grad_discard_ratio:40,async_lagged_ratio_default:[39,40],async_lagged_ratio_min:[39,40],asynchron:40,atla:27,atlas_root:27,attenion:[11,17],attent:[10,11,17,28,58],attitud:57,attr:[7,11,15,16,17],attribut:[3,4,10,11,16,17,21,35,48,56],auc:[9,39],aucvalidationlay:40,authent:43,author:[43,51],authorized_kei:38,autmot:34,auto:[24,35,37,52,55],autom:[43,58],automak:27,automat:[10,16,23,27,33,35,38,39,40,43,55,56,58],automaticli:[10,16],automobil:50,avail:[27,43],availabel:27,averag:[9,10,12,16,19,40,51,53,55,56,57,58],average_test_period:[39,40,56],average_window:57,averagepool:[10,16],avg:[13,37,53],avgcost:[9,53,55,57,58],avgpool:[10,16,53],avoid:37,avx:[27,28,30],await:44,awar:[23,28,43],aws_account_id:43,awsaccountid:43,awskeymanagementservicepowerus:43,b2t:48,b363:44,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:44,ba5f:43,back:[3,28],background:31,backward:[10,11,14,16,17,33,35,40,42],backward_first:33,backwardactiv:35,bag:[53,57],baidu:[0,10,16,26,30,34,44,48],baik:48,balanc:[40,43,49],balasubramanyan:57,bank:56,bardward:[11,17],bare:44,barrier:40,barrierstatset:37,base:[6,12,16,17,19,20,23,26,30,33,34,35,37,38,40,43,48,49,53,55,57,58],baseactiv:[10,11],basematrix:35,basenam:9,basepool:13,basepoolingtyp:[10,11,16,17],baseregular:12,basestr:[7,8,9,10,11,15,16,17,19,55],bash:[28,43,44],bashrc:27,basic:[3,10,28,34,35,53,54,57],batch:[3,9,10,11,12,16,17,20,22,23,35,38,40,43,44,49,50,51,53,55,56,57,58],batch_0:51,batch_norm:[10,17],batch_norm_lay:11,batch_norm_typ:[10,16],batch_read:25,batch_siz:[3,12,20,22,26,38,48,49,50,53,55,57,58],batchsiz:[10,16,35],bcd:[10,16],beam:[10,33,40,56,58],beam_gen:[10,33],beam_search:[22,33],beam_siz:[10,33,39,40,42],beamsiz:58,becaus:[5,10,16,23,25,33,34,35,42,43,50,53,56],becom:[34,37],been:[3,27,34,50,53,56,57,58],befor:[5,10,11,16,17,25,28,34,38,43,50,55,57,58],begin:[5,9,10,35],beginiter:[22,23],beginn:33,beginpass:[22,23],begintrain:23,behavior:37,being:[25,49],belong:[10,16,58],below:[3,10,16,20,25,33,35,37,38,43,49,50,53,55],benefit:[11,17],bengio:[10,16],bertolami:57,besid:[2,10,16,58],best:[8,10,16,27,28,40,53,55,57,58],best_model_path:56,besteffort:44,beta1:12,beta2:12,beta:51,better:[10,11,16,17,26,38,43,49,55],between:[10,12,16,26,34,43,49,53,54,57,58],bgr:51,bi_lstm:[11,17],bia:[10,11,12,16,17,33,35,51],bias:[10,16,35],bias_attr:[10,11,16,17,26,33],bias_param_attr:[11,17],biases_:35,biasparameter_:35,biassiz:35,bidi:44,bidirect:[11,17,33,56,58],bidirectional_lstm_net:57,big:37,biggest:57,bilinear:[10,16],bilinear_interpol:[10,16],bilinearfwdbwd:37,bin:[27,28,38,43,44,55],binari:[3,9,10,16,20,37,43,48,53,57],bird:50,bison:27,bit:53,bitext:58,bla:27,blank:[10,16,43],block:[10,16,26,35,37,40,51,57],block_expand:10,block_i:[10,16],block_x:[10,16],blog:57,bn_attr:17,bn_bias_attr:[11,17],bn_layer_attr:11,bn_param_attr:[11,17],bollen:57,bool:[3,7,9,10,11,12,15,16,17,19,20,35,40,42,53,55,57],boot:[10,33],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,33],boot_with_const_id:10,bootstrap:27,bos_id:[10,33],both:[0,7,10,11,14,15,16,17,23,28,33,35,37,43,49,51,53],bottleneck:[37,51],bottom:57,bow:[53,57],box:37,branch:[10,16,23,34],breadth:[40,58],brelu:6,brendan:57,brew:27,briefli:37,brows:28,browser:[28,43],bryan:57,bucket_nam:43,buf_siz:20,buffer:[3,20,25,40],buffered_read:25,bug:43,bui:57,build:[0,26,28,31,40,43,45,46,48,50,51,53,55,57,58],built:[0,27,28,49,56],bunch:[37,53],bunk:57,button:[34,43],c11:24,c99e:43,cach:[53,55,56],cache_pass_in_mem:[3,53,55,56],cachetyp:[3,53,55,56],calc_batch_s:[3,56],calcul:[3,9,10,11,12,16,17,33,35,37,40,42,49,55],call:[3,10,11,16,17,23,26,33,35,37,40,43,50,51,53,57,58],callabl:[3,10,20],callback:35,caller:43,caltech:50,can:[2,3,5,7,8,9,10,11,15,16,17,20,23,25,26,27,28,30,33,34,35,37,38,39,40,42,43,44,48,49,50,51,53,55,56,57,58],can_over_batch_s:[3,56],candid:[10,16],cannot:35,caoi:58,capabl:[27,57],capac:43,caption:[26,58],captur:[26,38],card:38,care:[11,17,25,39,40,54],carefulli:[38,40,51],cat:[28,50,51,57],categor:56,categori:[10,16,53,57],categoryfil:44,caution:[43,44],ccb2_pc30:58,cde:[10,16],ceil:[10,16],ceil_mod:[10,16],cell:[10,11,16,17,57],center:3,ceph:44,certain:[2,39,56],certif:[23,43],cffi:24,cfg:44,cgo:24,chain:[20,35],chanc:[23,35,53],chang:[10,25,26,28,33,34,35,37,40,43,53,57],channel:[10,16,37,38,51],channl:[38,51],char_bas:55,charact:[53,55],character:26,characterist:[42,50],check:[3,20,26,27,28,34,40,42,43,54],check_align:20,check_eq:35,check_fail_continu:3,check_l:35,check_sparse_distribution_batch:[39,40],check_sparse_distribution_in_pserv:[39,40],check_sparse_distribution_ratio:[39,40],check_sparse_distribution_unbalance_degre:[39,40],checkgrad:40,checkgrad_ep:40,checkout:34,children:54,chines:52,chmod:[27,43],choic:[28,54],choos:[40,53,55],chosen:[2,54,58],chunk:[9,49,56],chunk_schem:9,chunktyp:9,cifar:[49,50],cifar_vgg_model:50,claim:43,claimnam:43,clang:[24,27,28,34],class1:57,class2:57,class_dim:57,classfic:[51,57],classfiic:50,classic:[10,16,26],classif:[3,5,10,16,42,51,52,53,57,58],classifc:57,classifi:[9,49,50,51,53,57],classification_cost:[50,53],classification_error_evalu:[49,53,57,58],classification_threshold:9,claster:43,clean:[5,55],cleric:54,cli:43,click:[34,37,43],client:34,clip:[7,12,15,40,53,57],clock:[10,16],clone:[27,28],close:[3,25],closer:26,cls:53,cludform:43,cluster:[23,39,40,44,53,58],cluster_train:38,cm469:43,cmake3:27,cmake:[27,35,37],cmakelist:35,cmd:44,cna:[10,16],cname:43,cnn:[44,51,53],code:[0,3,5,16,20,23,25,26,27,28,29,33,35,36,37,38,43,44,49,53,54],coeff:[10,16],coeffici:[10,16],collect:[10,16,20,22,26,54],collectbia:35,colleg:54,color:[50,51],column:[9,10,16,25,35,48,58],colunm:58,com:[10,11,16,17,20,27,28,30,34,43,44,51],combin:[10,11,16,17,20,49,55,57],come:57,comedi:54,comma:[40,48],command:[2,5,26,27,28,30,34,35,36,37,38,43,44,45,46,48,49,50,51,55,56,57],commandlin:[37,57],commenc:53,comment:[11,17,20,34,53,57],commnun:38,common:[33,35,39],common_util:[38,55],commonli:[33,37,42],commun:[0,35,38,43],compani:57,compar:[35,49,53],compat:3,compet:57,competit:49,compil:[27,28,34,35],complet:[0,5,10,11,16,17,20,22,35,43,44,53],complex:[2,3,11,17,25,33,37,53],complic:[10,16],compon:35,compos:[20,23,49,56],composenotalign:20,comput:[10,11,16,17,23,26,27,28,33,35,37,42,43,53,55,56,57],computation:33,conat:16,conat_lay:10,concat:[10,58],concat_lay:33,concaten:[11,17],concept:[3,23,28,33],concern:23,concurrentremoteparameterupdat:40,condit:[10,16,33,38,44,58],conduct:37,conf:[5,10,16,38,48,49,51,58],conf_paddle_gradient_num:43,conf_paddle_n:43,conf_paddle_port:43,conf_paddle_ports_num:43,conf_paddle_ports_num_spars:43,confid:57,config:[3,7,10,11,15,16,17,26,35,38,39,40,43,44,48,49,50,51,53,57,58],config_:40,config_arg:[39,40,42,51,53,56,57],config_bas:[16,17,22],config_fil:56,config_gener:[38,55],config_lay:35,config_pars:[5,35],configur:[1,2,3,5,8,10,16,26,32,34,35,37,40,48,50,51,57,58],conflict:34,confront:58,congest:40,conll05st:56,conll:56,connect:[2,11,17,26,35,43,44,49,50,51,53,55,57],connectionist:[10,16,57],connor:57,consequ:[10,11,16,17],consid:[9,10,12,16,27,28,37,42,50],consider:[3,11,17],consist:[10,16,25,50,51,53,56,58],consol:[37,43],constant:35,construct:[3,5,23,33,55],construct_featur:55,constructor:35,consum:57,contain:[3,8,9,10,11,16,17,19,20,23,29,30,33,34,38,43,50,51,53,54,57,58],containerport:43,contemporan:57,content:[44,56,57],context:[10,11,16,17,33,48,53,55,56,57,58],context_attr:[11,17],context_len:[10,11,16,17,53,55],context_proj_layer_nam:11,context_proj_nam:17,context_proj_param_attr:[11,17],context_project:[11,17,55],context_start:[10,11,16,17,53],contibut:34,contin:43,continu:[3,30,40],contrast:[10,16,58],contribut:[0,29,36,57],contributor:0,control:[7,15,40,43,44,58],conv:[11,17],conv_act:[11,17],conv_attr:17,conv_batchnorm_drop_r:[11,17],conv_bias_attr:[11,17],conv_filter_s:[11,17],conv_layer_attr:11,conv_num_filt:[11,17],conv_op:[10,16],conv_pad:[11,17],conv_param_attr:[11,17],conv_shift:10,conv_strid:[11,17],conv_with_batchnorm:[11,17],conveni:[23,38],converg:[38,49,57],convert:[3,5,20,25,33,48,50,51,53,55],convlay:[10,16],convolut:[10,11,16,17,49,51,55],convoper:[10,16],convtran:[10,16],convtranslay:[10,16],cool:[3,34],copi:[23,43,49,55],copy_shared_paramet:49,copytonumpymat:49,core:[3,7,15,40,58],coreo:43,corespond:56,corpora:58,corpu:56,correct:[3,9,10,16,35,43],correctli:[9,20,35,49],correl:[26,50,57],correspoind:23,correspond:[3,5,23,26,33,35,50,54,56,57,58],corss_entropi:23,cos:[10,16],cos_sim:55,cosin:[10,16,55],cost:[5,12,23,26,40,49,53,55,57,58],cost_id:10,could:[3,5,9,10,16,20,22,23,25,28,37,38,43,53,55],count:[25,37,40,42,44,48,55,56,57,58],coupl:26,coverag:27,coveral:27,coveralls_uploadpackag:27,cpickl:[51,55],cpp:[24,34,35,37,53,55,58],cpu:[2,3,7,10,15,16,27,30,37,40,44,49,56,57,58],cpuinfo:28,craftsman:54,crash:[37,38,40],crazi:38,creat:[5,7,10,15,16,20,23,26,27,28,35,38,40,48,49,50,58],create_bias_paramet:35,create_input_paramet:35,createargu:49,createfromconfigproto:[5,49],createstack:43,creation:43,creationd:43,creator:20,credit:49,cretor:20,crf:[10,56],crf_decod:10,crime:54,critic:57,crop:51,crop_siz:51,cross:[10,16,53,56],cross_entropi:[16,23,49],cross_entropy_with_selfnorm:16,csc:35,cslm:58,csr:35,csv:54,ctc:10,ctc_layer:9,ctest:28,ctrl:[38,55],ctx:56,ctx_0:56,ctx_0_slot:56,ctx_n1:56,ctx_n1_slot:56,ctx_n2:56,ctx_n2_slot:56,ctx_p1:56,ctx_p1_slot:56,ctx_p2:56,ctx_p2_slot:56,cub:50,cuda:[27,28,30,37,38,40],cuda_dir:[39,40],cudaconfigurecal:37,cudadevicegetattribut:37,cudaeventcr:37,cudaeventcreatewithflag:37,cudafre:37,cudagetdevic:37,cudagetdevicecount:37,cudagetdeviceproperti:37,cudagetlasterror:37,cudahostalloc:37,cudalaunch:37,cudamalloc:37,cudamemcpi:37,cudaprofilerstart:37,cudaprofilerstop:37,cudaruntimegetvers:37,cudasetdevic:37,cudasetupargu:37,cudastreamcr:37,cudastreamcreatewithflag:37,cudastreamsynchron:37,cudeviceget:37,cudevicegetattribut:37,cudevicegetcount:37,cudevicegetnam:37,cudevicetotalmem:37,cudnn:[10,16,19,27,30,40],cudnn_batch_norm:[10,16],cudnn_conv:[10,16],cudnn_conv_workspace_limit_in_mb:[39,40],cudnn_convt:[10,16],cudnn_dir:[39,40],cudrivergetvers:37,cuinit:37,cumul:[10,16],curl:[27,43],current:[3,10,12,16,26,28,33,34,35,38,40,43,53,57,58],current_word:33,currentcost:[9,53,55,57,58],currentev:[9,53,55,57,58],curv:[23,50,56],custom:[2,3,23,35,43,54,57],custom_batch_read:25,cyclic:[10,16],cython:24,d3e0:43,daemon:28,dai:58,daili:57,dalla:3,dan:56,danger:3,darwin:43,dat:[20,38,55],data:[2,3,5,8,11,12,17,22,23,27,28,31,35,37,38,39,40,42,45,51,54],data_batch_gen:49,data_dir:[48,50,57,58],data_feed:20,data_fil:26,data_initialz:53,data_lay:[3,9,26,33,49,50,53,55,56],data_nam:20,data_provid:8,data_read:[20,25],data_reader_creator_random_imag:25,data_sourc:[8,49],data_typ:[16,20],databas:57,datadim:[10,16],datalay:[10,16],dataprovid:[2,8,26,33,38,55,56],dataprovider_bow:53,dataprovider_emb:53,dataproviderconvert:5,datasci:[10,16],dataset:[1,3,25,26,40,48,50,51,53,56,57],datasourc:[4,55],date:56,db_lstm:56,dcgan:49,dcmake_install_prefix:27,deal:[34,49],deb:[29,30],debian:[28,29],debug:3,decai:[12,50],decid:[23,25],declar:[10,11,16,55],decod:[10,11,16,17,33,56,58],decoder_boot:33,decoder_group_nam:33,decoder_input:33,decoder_mem:33,decoder_prev:[11,17],decoder_s:33,decoder_st:[11,17,33],deconv:[10,16],deconvolut:[10,16],decor:[3,20,35],decreas:26,decrypt:43,deep:[0,10,16,26,28,37,49,50,51,53,56],deeper:[26,28,51],deer:50,def:[3,10,16,20,23,25,26,33,35,49,51,53,55,56],defalut:[10,16,40,42],default_devic:42,default_valu:42,defferenct:3,defin:[2,3,8,9,10,11,16,17,20,23,25,26,33,35,38,40,48,49,50,55,56],define_py_data_sources2:[3,8,26,50,51,53,55],defini:58,definit:[3,20,26,28,48,53,57],degre:[10,16],del:55,delai:40,delar:53,deletestack:43,delimit:[9,54,55],demo:[10,33,38,44,45,48,49,50,51,52,53,54,55,56,57,58],demograph:54,demolish:44,demonstr:[26,33,49,55],denot:[42,53,54,56],dens:[3,10,16,20,35,43,53,55],dense_vector:[3,5,16,20,26,55],dense_vector_sequ:20,depend:[26,28,30,38,42,50,54],deploi:[38,42],deploy:[38,43],deriv:[14,23],descent:[10,12,16],describ:[23,26,35,43,44,49,53,56],describestack:43,describestackev:43,describestackresourc:43,descript:[5,27,33,41,43,50,55],design:[3,10,16,20,24,57],desir:[43,44,48],destructor:35,detail:[3,5,7,10,11,12,15,16,17,33,34,35,37,38,41,42,43,44,48,49,51,53,55,57,58],detect:9,determin:[3,10,16,20,35,49],dev:[27,28,50,55,58],devel:27,develop:[0,27,34,39,40,58],deverlop:40,deviat:[7,15],devic:[7,15,40,58],deviceid:42,devid:[10,16,40],dez:57,dfs:11,diagnos:38,diagram:51,dict:[3,8,20,53,55,57,58],dict_dim:57,dict_fil:[9,33,53,56],dict_nam:8,dictionai:53,dictionari:[3,8,9,10,20,22,23,33,42,51,53,55,56,57,58],dictsiz:58,did:3,differ:[3,8,9,10,16,26,28,33,34,35,38,40,43,44,48,50,51,53,57,58],difficult:26,dig:[28,37,43],digit:[3,10,16],dim:[20,35,48,51,53,57],dimens:[10,14,16,19,20,35,42,48,53,55,57],dimension:[3,26,33,35,49,53],dimenst:48,dimes:[10,16],din:55,dir:[38,51,53,55,56,57,58],dirctori:28,direct:[10,11,16,17,28,51,56],directli:[2,3,11,17,26,28,38,44,57],directori:[2,27,28,34,37,38,40,44,50,51,53,55,56,57,58],diretcoti:51,dis_conf:49,dis_train:49,dis_training_machin:49,disabl:3,discard:[20,40],discount:[10,16],discov:56,discoveri:43,discrep:37,discrimin:49,discriminator_train:49,discuss:23,disk:44,dispatch:[38,40],disput:58,dist_train:23,distanc:9,distibut:48,distinguish:[38,49,58],distribut:[10,16,27,36,44,45,46,49,53,56],distribute_test:[39,40],distributedli:35,disucss:23,divid:[12,39,50,58],diy_beam_search_prob_so:[39,40],dmkl_root:27,dns:43,do_forward_backward:25,doc:[5,11,17,20,27,28,38],docker:[29,43,45,46],docker_build:23,docker_push:23,dockerhub:28,doctor:54,document:[3,5,11,17,27,34,42,50,53,55,56,57],documentari:[3,54],doe:[3,5,11,17,25,26,30,33,35,37,53,55,56],doesn:[7,10,15,20,23,25,34,37,44,58],dog:[50,51],doing:37,domain:43,don:[11,17,23,25,26,43,57],done:[10,11,16,17,33,37,43,49,57],dopenblas_root:27,dot:[40,51,58],dot_period:[40,42,49,50,55,57,58],dotmuloper:[10,16],dotmulproject:[10,16],doubl:[3,27,40],down:[37,53],download:[20,28,30,49,50,53,56,57],download_cifar:50,downsampl:50,doxygen:[27,34],dpkg:30,drama:54,drop:3,drop_rat:[7,15],dropout:[7,10,15,16,35,53],dropout_lay:10,dropout_r:[11,17],drwxr:44,dtoh:37,dtype:[5,26,51],dubai:58,due:[54,55],duplic:54,durat:37,dure:[2,3,10,16,26,34,35,39,40,43,53,55,56,58],durn:3,dwith_doc:27,dwith_profil:37,dwith_tim:37,dynam:[2,3,25,27,37,40],dynamic_cast:35,each:[2,3,5,9,10,16,19,20,22,25,26,28,33,34,35,38,40,42,43,48,50,51,53,54,55,56,57,58],each_feature_vector:14,each_meta:55,each_pixel_str:3,each_sequ:[10,16],each_time_step_output:14,each_timestep:[10,16],each_word:3,eaqual:[10,16],eas:[20,25,51],easi:[0,25,28,35,38,53],easier:[23,25,35],easili:[23,25,26],echo:[28,55,57],edit:[9,28,43],editor:[28,34],edu:[20,43,44,50],educ:54,eeoi3ezpr86c:43,effect:[3,40,43],effici:[0,2,3,33,35],efg:[10,16],efs:43,efs_dns_nam:43,efsvol:43,eight:56,either:[10,16,20,22,23,37,53,55],elb:43,elbapis:43,elec:53,electron:[44,53],elem_dim:[10,16],element:[3,5,9,10,11,16,17,20,22,25,53,57,58],elif:[23,55],elimin:56,els:[10,23,28,35,51,53,55],emac:[28,34],emb:[44,53],embed:[10,23,33,52,55,57],embedd:56,embedding_lay:[33,53,55],embedding_nam:33,embedding_s:33,emphas:37,empir:[10,16],emplace_back:35,emploi:[33,54],empti:[9,20,26],emul:58,enabl:[3,7,15,37,38,40,43],enable_grad_shar:[39,40],enable_parallel_vector:40,enc_proj:[11,17,33],enc_seq:[11,17],enc_vec:33,encod:[11,17,33,58],encoded_proj:[11,17,33],encoded_sequ:[11,17,33],encoded_vector:33,encoder_last:10,encoder_proj:33,encoder_s:33,encrypt:43,encrypt_decrypt:43,end:[3,9,10,16,25,26,33,40,48,56,57,58],end_pass:23,enditer:[22,23],endpass:[22,23],endpoint:43,endtrain:23,engin:[0,37,54],english:[3,10,16,58],enjoi:28,enough:26,ensembl:[11,17],ensur:[3,35],enter:[28,54],entir:[10,11,16,17,57],entri:[20,35,43,54],entropi:[10,16,53,56],enumer:[10,14,53,55],enumerate_data_types_of_data_lay:20,env:[34,43],environ:[23,27,28,30,37,38,39,40,43,44,49,50,55],eol:34,eos:10,eos_id:[10,16,33],epel:27,epoch:54,epsilon:12,equal:[10,11,12,16,17,40],equat:[10,11,12,16,17,28],equilibrium:49,equip:[27,33],equival:[10,16,23],error:[7,9,10,12,15,16,23,26,30,35,38,40,43,50,51,53,54,55,57,58],error_clipping_threshold:[7,15],errorr:9,especi:[3,11,17,56],essenc:23,essenti:[10,23,27,56,58],estat:26,estim:[10,16,23],eta:44,etc:[12,20,25,28,38,39,42,43,57,58],eth0:[38,43],ethternet:38,eval:[9,53,55,57,58],eval_bleu:58,evalu:[2,4,10,16,31,37,38,53,57,58],evaluate_pass:57,evaluator_bas:9,evalut:[26,58],even:[23,25,37,40,57],evenli:43,event:44,event_handl:23,everi:[2,3,9,10,11,17,20,23,33,34,35,40,53,56,57,58],everyth:[26,28,34],exactli:[3,9,10,11,16,17,28,43,56],exampl:[2,3,8,9,10,11,12,16,17,20,22,25,26,27,28,33,35,37,38,39,40,42,43,44,50,51,52,53,57,58],exceed:10,except:[3,42,48,55,57],excluded_chunk_typ:9,exconv:[10,16],exconvt:[10,16],exdb:20,exec:[28,40],execut:[35,37,43,54,56,57],exist:[23,25,35,40,43,54,57],exit:[40,44],exp:6,expand:[10,35,56,57,58],expand_a:[10,16],expand_level:[10,16],expandconvlay:[10,16],expandlevel:[10,16],expect:[10,16,37,57],expens:58,experi:42,explain:[3,9,38,49,57],explan:[10,16,53,58],explanatori:[26,28],explicit:35,explicitli:[3,23],exploit:50,explor:10,exponenti:14,expos:[28,43],express:[23,43,57],extend:[0,55],extens:[12,54,55,58],extern:[3,24],extra:[10,11,15,16,17,26],extraattr:[7,15,42],extraattribut:[16,17],extraattributenon:16,extract:[10,16,43,50,56,57],extract_fea_c:51,extract_fea_pi:51,extract_para:48,extralayerattribut:[7,10,11,15],extralayeroutput:11,extrapaddl:17,extrem:[10,37],extremli:2,f120da72:44,f7e3:43,fa0wx:44,fabric:38,facotr:[10,16],fact:51,factor:[7,10,12,15,16],factori:24,fail:[3,40,42,44,50],fake:49,fake_imag:25,fals:[3,7,9,10,11,12,15,16,17,20,25,26,33,35,40,42,44,48,53,55,56,57,58],false_label:25,false_read:25,famili:58,familiar:[3,26],fanscin:3,fantasi:54,fantast:53,far:0,farmer:54,fascinatingli:2,fast:[10,16,34,37],faster:[10,11,16,17,33,37,57],favori:28,favorit:34,favourit:28,fbd1f2bb71f4:44,fc1:[35,42],fc2:42,fc3:42,fc4:42,fc8a365:43,fc8a:43,fc_act:[11,17],fc_attr:[11,17],fc_bias_attr:[11,17],fc_layer:[26,35,42,53,55],fc_layer_nam:11,fc_name:17,fc_param_attr:[11,17],fclayer:35,fdata:56,fea:51,fea_output:51,feat:57,featur:[3,10,14,16,20,34,40,50,53,57,58],feature_map:55,feed:[11,17,20,22,23,26,57],feedback:0,feeder:20,feedforward:50,femal:54,fernan:57,festiv:3,fetch:[20,33,35],few:[3,25,28],fewer:10,fg0:[10,16],field:[10,16,22,37,43],figur:[23,33,35,37,48,49,50,51,56,57,58],file1:58,file2:58,file:[2,3,5,9,10,16,20,23,25,26,27,28,33,34,35,38,40,48,50,51,56,57,58],file_list:3,file_nam:[3,26,51,53,56],filenam:[3,55],filer:[10,16],filesystem:[28,43],fill:[10,16,43,53],film:54,filter:[10,16,51],filter_s:[10,11,16,17],filter_size_i:[10,16],finali:38,find:[10,12,28,37,50,57,58],fine:[7,15,55],fingerprint:43,finish:[3,28,38,43,44,50],finit:35,first:[3,10,16,20,23,26,28,30,33,34,35,37,40,42,43,48,49,50,51,53,55,56,57,58],first_seq:33,firstn:20,firstseen:44,fit:[2,20,34],five:[37,53],fix:[3,7,15,24,58],flag:[40,49,50,56],flexiabl:25,flexibl:[0,2,10,11,17,23,33],flight:58,float32:[5,20,25,26,49,51],floor:[10,16],flow:34,fly:[26,53],fnt03:43,focu:[3,37],folder:[27,28,43,50,57,58],follow:[2,3,9,10,11,12,16,17,20,23,25,27,28,30,33,34,35,37,38,42,43,44,45,46,48,49,50,51,53,54,55,56,57,58],fool:49,forbid:23,force_load:24,forecast:57,forget:[12,23,57],form:[2,3,11,12,17,37,56],format:[2,3,9,26,34,35,40,43,48,50,54,55,57],former:[23,58],formula:[10,11,16,17],formular:[10,16],forward:[11,14,17,33,34,35,42,49,56,57],forwardactiv:35,forwardtest:5,found:[3,5,10,16,27,33,49,50,53,57],four:[3,30,48,51,53,55,56,57],frame:9,framework:[23,35,51,53,57],free:58,french:58,frequenc:[20,37,48,53,57],frequent:[25,38,58],frog:50,from:[0,3,5,10,11,16,17,20,22,25,26,28,31,33,34,35,37,38,40,42,43,44,48,49,50,51,53,54,55,56,57,58],from_timestep:[10,16],fromfil:[25,26,51],fulfil:37,full:[10,16,28,33,35],full_matrix_project:[11,17,33],fulli:[26,34,35,37,49,50,51,53,55,57],fullmatrixproject:[10,16],fully_matrix_project:[11,17],fullyconnect:48,fullyconnectedlay:35,func:20,fundament:26,further:10,fusion:55,gain:[10,16],game:49,gamma:51,gan:23,gan_train:49,gap:40,gate:[10,11,16,17,57],gate_act:[10,11,16,17],gate_recurr:[10,16],gather:[10,35,55],gauss:[7,15],gaussian:49,gcc:[24,27,28],gdebi:30,gen:[10,58],gen_conf:[49,58],gen_data:58,gen_result:58,gen_train:49,gen_training_machin:49,gen_trans_fil:33,gender:[54,55],gener:[2,3,5,9,10,11,16,17,20,22,23,25,26,27,28,37,38,40,42,43,48,51,52,53,55,57],generatedinput:33,generator_conf:49,generator_machin:49,generator_train:49,genert:3,genr:[54,55],gereat:9,get:[3,10,11,16,17,26,27,30,33,35,37,38,43,47,50,51,53,55,56,57],get_batch_s:56,get_best_pass:57,get_config_arg:[42,53,55,57],get_data:[44,53,56],get_imdb:57,get_input_lay:35,get_mnist_data:49,get_model:51,get_nois:49,get_output_attr:17,get_output_layer_attr:11,get_training_loss:49,get_word_dict:20,getbatchs:35,getenv:23,getinput:35,getinputgrad:35,getinputvalu:35,getoutputgrad:35,getoutputvalu:35,getparameterptr:35,getsiz:35,getslotvalu:49,gettempl:43,gettranspos:35,getw:35,getweight:35,getwgrad:35,gfortran:27,gildea:56,gist:[11,17],git:[27,28,34],github:[10,11,16,17,27,28,30,51],give:[3,26,28,35,37,43,53],given:[3,20,22,25,35,40,49,53,56,57,58],global:[3,7,12,15,23,37,40,43,55,57],global_learning_r:[7,15],globalstat:37,globalstatinfo:37,globe:3,goal:[37,56],godoc:24,goe:[10,11,16,17,26],going:[53,57],good:[10,16,25,37,57,58],goodfellow13:[10,16],googl:23,googleapi:43,gpg2:43,gpg:43,gpu:[2,3,7,10,12,15,16,19,27,30,36,38,49,50,51,55,56,57,58],gpu_id:[40,42,49],gpugpu_id:39,grab:57,grad:[40,54],grad_share_block_num:[39,40],gradient:[7,9,10,12,15,16,40,53,57],gradient_clipping_threshold:[7,12,15,53,57],gradientmachin:[5,49,55,58],gradual:[26,37],grai:50,gram:[48,57],grant:43,graph:[10,48],graphviz:51,grave:57,grayscal:3,greater:[10,16],grep:[28,57],groudtruth:33,ground:[9,10,16,53,58],group:[11,17,57],group_id:55,group_input:33,grouplen:54,gru:[10,16,33,53,58],gru_attr:17,gru_bias_attr:[11,17],gru_decod:33,gru_decoder_with_attent:33,gru_encoder_decod:[48,58],gru_layer_attr:11,gru_memori:[11,17],gru_siz:53,gru_step:[17,33],gru_step_lay:[11,33],grumemori:[11,17,33],gserver:[10,35],gsizex:37,guarante:35,guess:[26,57],gui:37,guid:[29,33,34,35,37,43,44,48,50,57,58],guidenc:26,gur_group:[11,17],gzip:44,hack:[29,38],hadoop:23,half:43,hand:[54,55,57],handl:[23,25,38,55,57],handwrit:[3,57],hard:[43,53],hardwar:[28,37],has:[3,5,10,11,12,16,17,23,28,33,35,37,43,44,48,50,53,54,55,56,57,58],have:[2,3,5,9,10,11,16,17,20,23,25,26,27,28,33,34,35,37,38,40,42,43,48,50,53,54,55,57,58],hdf:2,head:[34,48,57],header:[26,35,48,51,55],health:54,heavi:38,height:[10,16,20,24,25,35,50],hello:23,help:[3,5,34,38],helper:[8,10,11,16,17,35],here:[3,5,7,10,11,15,16,17,20,23,25,26,27,33,38,39,42,43,44,48,50,51,52,53,54,55,56,57,58],heurist:[10,40,58],hidden:[10,11,16,17,33,43,53,55,57],hidden_s:[11,17,55],hierarch:[10,16,33],high:[7,15,35,49],higher:2,highest:[20,58],highli:[2,3,33,42,55,57],him:23,hint:26,histor:57,hl_get_sync_flag:35,hold:[23,43],home:[38,43,44],homemak:54,hook:[3,55,56],hope:0,horizont:[10,16,51],horror:54,hors:50,horst:57,host:[27,28,38,43,44],hostnam:[38,43],hostpath:44,hostport:43,hot:55,hour:58,hous:[3,20,26,48],how:[2,3,7,10,15,16,23,26,33,38,40,43,44,47,50,51,53,55],howev:[3,11,17,25,26,33,34,39,40,43,57,58],hpp:24,html:[20,28,50],htod:37,http:[10,11,16,17,20,27,28,30,34,43,44,49,50,51,58],huber:[10,16],huge:[10,16,34],huina:57,human:58,hyper:[10,16,35],hyperplan:20,i0601:55,i0706:58,i0719:58,i1117:37,iamfullaccess:43,iamusersshkei:43,ib0:38,icwsm:57,id_input:[9,33],idea:[10,16,25],ident:[26,28,43,54],identifi:[33,35],identityoffsetproject:[10,16],identityproject:[10,16],ids:[9,10,16,35,53,55],idx:35,ieee:57,ignor:[3,9,10,40],ijcnlp:57,illustr:[3,33,35,37,53],ilsvrc:51,imag:[3,19,20,23,25,26,29,42,43,45,46,49,51,52,58],image_a:25,image_b:25,image_classif:50,image_fil:25,image_lay:25,image_list_provid:51,image_nam:23,image_path:25,image_provid:50,image_reader_cr:25,image_s:51,imagenet:52,imagepullpolici:43,imageri:[10,16],images_reader_cr:25,imdb:54,imdber:57,img:[3,10,16,50],img_conv:17,img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool:17,img_pool_lay:11,img_siz:50,imgsiz:37,imgsizei:37,imgsizex:37,immedi:43,immutable_paramet:23,implement:[3,10,11,12,16,17,20,33,53,56],importerror:55,improv:[0,37,43,57,58],inbound:43,includ:[2,3,10,11,16,17,23,24,27,28,33,35,37,40,43,44,48,53,54,56,58],inconsist:54,incorrect:[10,16],increas:[40,58],increment:40,incupd:35,inde:[20,25,28],independ:[10,16,53],index:[3,9,10,16,19,20,33,38,43,55],indexslot:[10,56],indic:[3,9,10,16,26,38,43,56],individu:[26,43],infer:[1,23,27],infiniband:38,info:[9,10,16,35,38],infom:34,inform:[5,9,35,37,40,43,54,55,56,57,58],infrastructur:[43,49],ingor:40,ininst:23,init:[7,15,35,42,43,49,53,55,56],init_hook:[53,55,56],init_hook_wrapp:8,init_model_path:[39,40,42,48,53,56],initi:[3,5,7,10,15,16,33,35,40,48,49,53,56],initial_max:[7,15],initial_mean:[7,10,15,16],initial_min:[7,15],initial_std:[7,10,15,16],initpaddl:[5,49],inlcud:[11,17],inlin:43,inner:35,inner_param_attr:[11,17],input1:[10,11,16,17],input2:[10,16],input:[3,5,9,10,11,14,16,17,19,20,22,25,26,33,35,42,48,49,50,51,53,55,56,57,58],input_data:35,input_data_target:35,input_featur:14,input_fil:[26,56],input_hassub_sequence_data:35,input_id:[10,16],input_imag:[11,17,50],input_index:35,input_label:35,input_lay:[10,35],input_nam:23,input_sequence_data:35,input_sequence_label:35,input_sparse_float_value_data:35,input_sparse_non_value_data:35,input_t:35,input_typ:[26,33,53,55],inputdef:35,inputlayers_:35,inputtyp:[3,20],insid:[9,10,16,25,28,43],inspir:48,instal:[28,31,34,38,44,50,51,55,56,57],instanc:[10,12,16,33,35,37,40,56],instance_ip:43,instead:[10,16,19,25,28,34,38,53,58],instruct:[28,30,37,53],int32:40,integ:[3,9,10,16,20,24,33,35,53,57],integer_valu:[3,20,53],integer_value_sequ:[3,20,33,53,56],integr:[27,56],intend:0,inter:[10,16,38],interact:[28,43],intercept:[10,16],interest:[37,57],interfac:[5,7,10,11,15,16,17,38,43,50,55,57],interg:53,intergr:[10,16],intermedi:56,intern:[10,11,17,20,43],internet:57,interpol:10,interpret:[3,9,27,37],interv:57,intrins:27,introduc:[3,44,55,57],introduct:[4,49],invalid:25,invari:50,invok:[3,10,37,43,55],involv:49,iob:9,ioe:9,ips:43,ipt:[10,16,33],ipython:23,is_async:12,is_discriminator_train:49,is_gener:[10,48,49,58],is_generator_train:49,is_kei:55,is_layer_typ:10,is_predict:[53,55,57],is_seq:[10,33,55],is_sequ:55,is_stat:[7,15],is_test:[51,56,57],is_train:3,isn:37,isol:28,isspars:35,issu:[27,28,37],item:[10,16,20,25],iter:[10,11,12,17,20,22,23,25,50,56,57],its:[3,9,10,11,16,17,23,35,37,40,43,48,49,50,53,57,58],itself:[11,17],java:24,jeremi:37,jie:[56,57],jmlr:[10,16],job:[5,9,39,40,42,51,53,55,56,57,58],job_dispatch_packag:38,job_mod:48,job_nam:43,job_namespac:43,job_path:43,job_workspac:38,jobpath:43,jobport0:43,jobport1:43,jobport2:43,jobport3:43,johan:57,joint:[48,58],jointli:[11,17,58],journal:[56,57],journei:28,jpeg:50,jpg:51,json:[38,43,44,55],jth:[11,17],judg:58,jupyt:28,just:[3,9,10,11,14,16,17,26,34,38,42,43,50,55,56,57],jx4xr:43,jypyt:23,k8s_data:43,k8s_job:23,k8s_token:23,k8s_train:43,k8s_user:23,kaim:[10,16],kaimingh:51,kebilinearinterpbw:37,kebilinearinterpfw:37,keep:[3,10,16],kei:[3,37,38,55,57],kernel:[10,16,37,53],key1:40,key2:40,key_pair_nam:43,keyid:43,keymetadata:43,keypair:43,keyserv:43,keystat:43,keyusag:43,keyword:3,kill:43,kind:[2,3,23,26,43,44,49,53,55],kingsburi:56,kms:43,know:[3,11,17,23,26,35,37,43,55],knowledg:57,known:[49,57,58],kriz:[20,50],ksimonyan:[11,17],kube_cluster_tl:23,kube_ctrl_start_job:23,kube_list_containers_in_job_and_return_current_containers_rank:23,kubeconfig:43,kubectl:44,kuberent:43,kubernet:[23,36,38,45,46],kubernetes_service_host:23,kwarg:[3,9,10,11,12,16,17,20,53,55,56],l1_rate:[7,15],l2_rate:[7,15],l2regular:[50,53,57],label:[3,5,9,10,12,16,20,22,25,26,33,44,49,50,51,52,53,55,57],label_dict:56,label_dim:[10,16,53],label_fil:[25,56],label_lay:[10,25],label_list:56,label_path:25,label_slot:56,labeledbow:57,labl:57,lag:40,lake:3,lambdacost:[10,16],lambdarank:[10,16],languag:[10,16,42,48,56,57,58],laptop:28,larg:[19,56,57,58],larger:[3,7,9,10,12,15,16,38],last:[9,10,11,16,17,26,33,38,40,53,57,58],last_time_step_output:10,lastseen:44,late:57,latenc:[38,43],later:[27,34,43,53],latest:[10,16,28,34,44,57],latter:58,launch:[40,43,57],launcher:23,lawyer:54,layer1:[10,11,16,17],layer2:[10,16],layer3:[10,16],layer:[4,5,7,9,11,15,17,19,20,21,22,25,26,33,36,39,40,48,49,50,51,53,55,56,57],layer_0:35,layer_attr:[10,16,33,42],layer_num:[42,51],layer_s:[10,16],layer_typ:[10,16],layerbas:35,layerconfig:35,layergradutil:35,layermap:35,layeroutout:[10,16],layeroutput:[9,11,55],lbl:[9,50],ld_library_path:[27,30,38],lead:37,learn:[0,7,9,10,11,12,15,16,17,23,25,26,28,33,35,37,50,51,53,56,57,58],learnabl:[10,16],learning_method:[12,26,48,50,53,55,57,58],learning_r:[7,12,15,26,48,50,53,55,57,58],least:[9,10,16,27,54],leav:[3,43],lecun:20,left:[10,16,26,51],leman:58,len:[3,10,16,33,35,53,55,56],length:[10,11,16,17,20,33,40,44,57,58],less:[10,16,23,38,58],less_than:23,let02:44,let:[5,10,16,23,26,28,43,55],level:[7,10,15,16,38,40,49,55,57,58],lib64:[27,38,40],libcudnn:27,libjpeg:50,libpaddl:24,libpython:27,librari:[10,16,27,28,38,40,55],licens:56,like:[3,9,10,16,25,26,27,33,37,38,39,42,43,48,51,53,55,57,58],limit:[10,20,37,40],line:[2,3,5,9,20,26,34,36,37,38,42,43,48,50,51,55,56,57,58],linear:[6,10,16,31],linear_comb:10,linearactiv:[10,26],linguist:56,link:[10,11,16,17,27,43,53,57],linux:[27,28,30,43,58],lipeng:48,lipton:57,list:[2,3,8,9,10,11,16,20,23,26,28,33,35,38,40,42,43,50,51,53,55,56,57,58],listen:40,literatur:57,littl:[2,3,40,53,57],lium:58,live:28,liwicki:57,load:[2,3,5,10,16,23,26,40,43,51,55,56,57,58],load_featur:51,load_feature_c:51,load_feature_pi:51,load_missing_parameter_strategi:[39,40,42,48,56],load_uniform_data:49,loadparamet:5,loadsave_parameters_in_pserv:[39,40],local:[7,15,27,28,34,38,39,40,44,50,57],localhost:28,locat:[33,35,53,56],log:[3,6,34,35,38,40,43,44,50,55,56,57,58],log_barrier_abstract:40,log_barrier_lowest_nod:[39,40],log_barrier_show_log:[39,40],log_clip:[39,40],log_error_clip:[39,40],log_period:[40,42,44,49,50,53,55,56,57,58],log_period_serv:[39,40],logarithm:14,logger:3,logic:[3,38],login:28,longer:58,look:[3,9,26,38,39,43,44,49,53],lookup:53,loop:25,loss:[10,16,35,49,53,57,58],lot:39,low:[10,16],lower:38,lowest:40,lst:55,lstm:[10,16,33,44,53],lstm_attr:17,lstm_bias_attr:[11,17],lstm_cell_attr:[11,17],lstm_group:[11,17],lstm_layer_attr:11,lstm_size:53,lstm_step:[11,17],lstmemori:[11,17,33],lstmemory_group:10,ltr:[10,16],lucki:26,mac:[27,28],machan:[11,17],machin:[10,11,12,16,17,26,34,35,39,40,42,43,44,53,55,57,58],made:[3,26,33,54],mai:[3,8,9,10,16,25,28,34,37,43,54],main:[3,5,34,43,50,56,57],mainli:40,maintain:[10,43],major:[28,34,49,51,57,58],make:[3,10,16,23,25,27,28,34,35,37,38,43,50,53,55,57],male:54,malloc:35,manag:[34,38],manageri:54,mandarin:[10,16],mani:[0,10,11,16,17,26,28,40,53,54,55,57],mannal:38,manual:34,manufactur:58,mao:57,map:[3,10,16,20,23,40,50,51,55],map_read:20,mapreduc:23,marcu:57,mark:[3,33,56],mark_slot:56,market:[26,54,57],martha:56,mask:[7,10,15,16],master:[23,34,40,57],mat_param_attr:[11,17],match:37,math:[11,17,24,35,37],matirx:[10,16],matplotlib:50,matric:[5,33,35],matrix:[9,10,11,16,17,20,24,33,35,39,42,51,56],matrixptr:35,matter:3,max:[3,7,10,13,15,16,20,37,40,42,50,53,55],max_id:[22,53],max_length:[10,33],max_sort_s:[10,16],maxid:[9,10,53],maxid_lay:[9,53],maxim:[10,58],maximum:[9,33,37,40,53,56,57],maxinum:19,maxout:10,maxpool:[10,16],mayb:[10,11,16,17,50],mean:[3,7,9,10,11,12,15,16,17,19,20,22,25,26,33,37,38,40,42,43,48,49,50,51,53,55,56,57,58],mean_img_s:50,mean_meta:51,mean_meta_224:51,mean_valu:51,measur:[26,37],mechan:[10,11,17,33,43,57],media:57,meet:56,mem:10,member:23,memcpi:37,memor:57,memori:[2,3,11,17,33,35,37,40,42,44,53,56,57,58],memory_nam:10,memory_threshold_on_load_data:40,mere:[11,17],merg:[34,40,48,58],mergedict:[48,58],messag:[26,40,44,55,57,58],meta:[38,50,51,53],meta_config:[38,55],meta_fil:55,meta_gener:[38,55],meta_path:50,meta_to_head:55,metadata:[43,44],metaplotlib:23,method:[3,8,10,11,12,16,22,28,35,37,40,42,53,55,57,58],might:[10,16,28,35,43],mileag:37,million:[42,54],min:[7,15,37,42,43,55],min_pool_s:3,mind:38,mini:[3,10,16,20],mini_batch:25,minibatch:[10,16],minibatch_data:20,minim:[3,12,26,40],minimum:[10,16],minimun:40,minst:3,minut:[43,58],miss:[40,48,56],mit:43,mix:[11,17,33,56],mixed_attr:17,mixed_bias_attr:[11,17],mixed_lay:[11,33,56],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[27,28,43],mkl:27,mkl_path:27,mkl_root:27,ml_data:[38,55],mnist:[3,5,25],mnist_provid:3,mnist_random_image_batch_read:25,mnist_train:[3,25],mnist_train_batch_read:25,mod:56,modal:56,mode:[10,16,40,49,50,51,55,57,58],model:[1,2,5,8,10,11,12,16,17,31,34,35,36,40,43,55,56,57],model_averag:12,model_config:[5,49],model_list:[40,42,56,57],model_output:57,model_path:42,model_zoo:[48,51],modelaverag:12,modifi:[5,33,34,35,38,43],modul:[2,3,5,8,11,17,20,26,27,50,51,53,55,56],modulo:[10,16],momentum:[7,12,15,26,53],momentumoptim:[26,50],mon:44,monitor:[53,57],mono:[10,16],month:[53,58],mood:57,more:[2,3,5,9,10,11,16,17,20,23,25,26,28,33,35,37,38,42,44,50,53,56,57,58],morin:[10,16],mose:[57,58],moses_bleu:58,mosesdecod:57,most:[3,5,10,20,23,25,26,33,35,37,39,55,56,57,58],mostli:[50,54],mount:[28,43,44],mountpath:[43,44],move:[10,16,37,43,55,57],movement:[37,57],movi:[3,57],movie_featur:55,movie_head:55,movie_id:55,movie_meta:55,movie_nam:55,movie_review:20,movieid:54,movielen:52,moving_average_fract:[10,16],mpi:38,mse:10,mse_cost:[26,55],much:[10,16,25,37],mul:35,mulit:38,multi:[10,16,35,39,40,51,58],multi_binary_label_cross_entropi:16,multi_crop:51,multinomi:[10,16],multipl:[9,10,11,16,17,20,23,28,33,35,40,42,43,49,53,55,57],multipli:[9,10,16,35,50],multithread:3,music:54,must:[3,9,10,11,14,16,17,25,27,28,33,34,35,38,40,42,43,58],my_cluster_nam:43,my_cool_stuff_branch:34,my_external_dns_nam:43,mypaddl:44,mysteri:54,name:[3,7,8,9,10,11,15,16,17,19,20,23,26,28,33,35,37,38,40,42,44,45,46,48,49,50,51,53,55,57,58],namespac:[24,28,35,44],nano:34,nativ:[10,16],natur:[42,56,57],nchw:[10,16],ndarrai:22,ndcg:[10,16],ndcg_num:[10,16],nearest:53,necessari:[3,10,16,27,35,38,53,57],necessarili:35,need:[3,10,11,16,17,20,23,26,27,28,30,33,34,35,38,39,40,42,43,44,49,50,51,53,55,56,57,58],neg:[3,9,10,16,53,56,57],neg_distribut:[10,16],negat:56,neighbor:53,nest:[3,20],net:[10,11,16,17],net_conf:57,net_diagram:51,network:[2,3,4,5,7,9,10,12,15,16,20,21,22,23,25,26,28,35,37,38,40,48,57,58],network_config:42,networkadministr:43,neural:[3,5,10,11,12,16,17,20,22,23,26,37,40,48,49,51,57,58],neuralnetwork:[10,16,31],neuron:[5,35,53,57],never:[20,25,43,44],newest:34,newtork:57,next:[10,33,35,37,40,43,44,56,57,58],nfs4:43,nfs:43,nfsver:43,nginx:28,nic:[38,39,40],nine:56,nlp:[3,10],nltk:20,nmt:58,nnz:35,no_cach:3,no_sequ:[3,55],noah:57,noavx:[28,30],node:[10,16,35,38,40,43,44,57,58],node_0:43,node_1:43,node_2:43,nodefil:38,noir:54,nois:[10,16,49],noise_dim:49,non:[10,16,35,40,43],none:[2,3,5,7,8,9,10,11,12,15,16,17,19,20,22,23,26,33,51,53],nonlinear:35,norm:49,norm_by_tim:[10,16],normal:[3,5,10,11,16,17,30,33,35,38,40,44,48,49,51],normzal:51,north:50,notat:[10,16],note:[3,5,7,10,11,12,15,16,17,19,22,23,25,27,37,40,42,43,48,50,55,57],notebook:28,noth:[14,40],notic:[33,35],novel:57,now:[0,3,10,16,26,28,34,40,43,49,55,56],np_arrai:20,nproc:27,ntst1213:58,ntst14:58,nullptr:35,num:[10,16,38,40,53,56,57,58],num_channel:[10,11,16,17,50],num_chunk_typ:9,num_class:[10,11,16,17,50],num_filt:[10,11,16,17],num_gradient_serv:[39,40],num_group:[10,16],num_neg_sampl:[10,16],num_parameter_serv:23,num_pass:[26,39,40,42,44,53,55,56,57,58],num_repeat:[10,16],num_result:9,num_results_per_sampl:10,number:[3,9,10,16,20,25,26,35,38,40,43,48,50,51,53,56,57,58],numchunktyp:9,numdevices_:42,numlogicaldevices_:42,numofallsampl:9,numofwrongpredict:9,numpi:[20,22,25,26,27,49,51],numsampl:37,numtagtyp:9,nvcc:28,nvidia:[27,28,37,40],obj:[3,8,26,50,51,53,55],object:[3,5,7,8,9,10,11,12,15,16,17,20,22,23,24,37,49,50,51,53,56],observ:[12,26,35,37,58],obtain:[53,56,57],occup:[54,55],occur:[20,34],oct:44,odd:[10,16],off:28,offer:[5,56],offici:[28,43,50],offset:[10,16,55],often:[9,38,53,58],ograd:35,old:[28,34,40],omit:53,on_init:3,on_travisexclud:27,onc:[3,10,28,34,35,43,53],one:[3,8,9,10,11,12,14,16,17,19,20,23,25,26,28,34,35,38,40,42,43,44,48,49,50,51,53,55,56,57,58],one_host_dens:55,one_hot_dens:55,onli:[2,3,5,9,10,11,16,17,19,20,22,23,26,27,33,34,35,37,39,40,42,43,44,48,51,53,54,57,58],onlin:[12,25],onto:43,open:[0,3,10,16,23,25,26,28,43,51,53,55,56],openbla:27,openblas_path:27,openblas_root:27,oper:[10,11,12,16,17,28,33,35,37,40,43,48,50,55],opinion:57,opt:[23,27],optim:[3,4,7,15,21,26,35,37,57],option:[3,9,10,16,23,26,34,35,38,42],order:[3,10,11,16,17,20,25,35,40,43,44,49,51,53,57,58],ordinari:57,oregon:43,org:[10,11,16,17,27,49],organ:[10,16,50,57,58],origin:[0,2,3,10,16,20,34,49,56,58],other:[3,9,10,11,12,16,17,20,27,28,30,33,34,42,43,44,48,49,50,51,53,54,55,56,57,58],otherchunktyp:9,otherwis:[2,8,10,16,20,23,25,33,38,42,55,58],our:[23,28,33,35,43,44,48,50,53,56,57,58],out:[10,16,23,26,33,37,40,43,44,50,57],out_dir:43,out_left:[10,16],out_mem:33,out_right:[10,16],out_size_i:[10,16],out_size_x:[10,16],outlin:41,outperform:56,output:[5,7,9,10,14,15,16,17,19,20,22,23,25,26,33,35,37,40,42,44,48,49,50,51,53,55,56,57,58],output_:[10,16,35],output_dir:51,output_fil:56,output_id:[10,16],output_lay:[22,51],output_max_index:19,output_mem:[10,16,33],outputh:[10,16],outputw:[10,16],outsid:[3,10,11,16,17,28],outter_kwarg:3,outv:35,over:[2,10,11,16,17,23,34,35,37,53,56,57],overcom:57,overhead:37,overlap:35,overrid:35,owe:0,own:[28,34,38,43],pacakg:30,pack:28,packag:[3,16,20,28,29,43],pad:[10,33,53],pad_c:[10,16],pad_h:[10,16],pad_w:[10,16],paddepaddl:2,padding_attr:[10,16],padding_i:[10,16],padding_x:[10,16],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,22,23,24,26,27,28,29,30,34,35,36,37,38,40,42,43,49,50,53,55,56,57,58],paddle_error:24,paddle_matrix:24,paddle_matrix_shap:24,paddle_n:38,paddle_output:44,paddle_port:38,paddle_ports_num:38,paddle_ports_num_for_spars:38,paddle_pserver2:38,paddle_root:48,paddle_source_root:48,paddle_train:38,paddledev:[43,44],paddlepaddl:[0,2,3,5,10,11,12,16,17,20,25,26,27,30,31,33,34,35,36,37,38,45,46,51,53,55,56,57],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[34,43,55],pai:28,pair:[9,56],palmer:56,paper:[10,16,48,49,51,56,57,58],paraconvert:48,paragraph:57,parallel:[37,40,42,43,44,58],parallel_nn:[7,15,39,40],param:[7,10,15,16,55],param_attr:[10,11,16,17,26,33],paramattr:[7,10,15,16,26,33],paramet:[2,3,4,5,8,9,10,11,12,16,17,19,20,21,25,26,35,36,42,49,50,53,55,56,57,58],parameter_attribut:[10,16],parameter_block_s:[39,40],parameter_block_size_for_spars:[39,40],parameter_learning_r:[7,15],parameter_nam:23,parameter_serv:23,parameterattribut:[7,10,11,15,16,17],parametermap:35,parameters_:35,parameterset:23,parametris:12,paramt:[43,48],paramutil:55,paraphras:58,paraphrase_data:48,paraphrase_model:48,paraspars:35,parent:[10,35],pars:[5,20,42,43,49,55,56],parse_config:[5,49],parser:55,part:[3,16,26,33,34,35,37,49,53,55,56,57,58],parti:[37,55],partial:[10,16,49],participl:48,particular:37,partit:43,pass:[3,8,10,16,20,22,25,26,34,35,37,38,40,43,44,49,50,53,55,56,57,58],pass_idx:25,pass_test:49,passtyp:35,password:[28,38],past:[23,28,43],path:[2,3,9,20,25,26,27,33,38,40,42,43,44,48,50,51,53,56,57,58],pattern:[24,26,43,55,57],paul:56,pave:58,pdf:[10,11,16,17],pem:[23,43],penn:56,per:[10,25,40,50,53],perfom:[40,42],perform:[2,10,11,16,17,26,33,34,35,36,38,39,49,50,53,57,58],period:[2,40,53,55,56,57,58],perl:[57,58],permiss:43,peroid:[10,16],persist:43,persistentvolum:43,persistentvolumeclaim:43,person:23,perspect:37,perturb:35,pgp:43,phase:26,photo:50,pick:[3,43],pickl:55,picklabl:8,pictur:53,piec:[10,11,16,17,26],pillow:50,pip:[27,34,38,50,55],pipe:54,pipelin:56,pixel:[3,10,16,20],pixels_float:3,pixels_str:3,place:[2,3,35,37,38,51,58],placehold:26,plai:[56,57],plain:[2,9,10,16],plan:35,platform:[0,26,43],pleas:[3,5,7,10,11,12,15,16,17,23,25,27,28,29,33,34,35,43,48,50,53,55,56],plot:[23,50],plotcurv:50,png:[50,51],pnpairvalidationlay:40,pnpairvalidationpredict_fil:39,pod:[43,44],pod_nam:43,point:[26,37],polar:57,polici:43,polit:57,poll:57,poo:50,pool3:35,pool:[3,4,11,17,21,50,53,55],pool_attr:[11,17],pool_bias_attr:[11,17],pool_layer_attr:11,pool_pad:[11,17],pool_siz:[3,10,11,16,17],pool_size_i:[10,16],pool_strid:[11,17],pool_typ:[10,11,16,17],pooling_lay:[11,53,55],pooling_typ:[10,16,53],poolingtyp:19,popular:[26,51],port:[28,38,39,40,43,44],port_num:39,ports_num:40,ports_num_for_spars:[39,40,42],pos:[55,57],posit:[3,9,10,16,20,53,56,57,58],positive_label:9,possibl:[23,34,37,49],post1:27,potenti:37,power:[10,53,58],practic:[8,10,16,26,33,35],pre:[3,10,11,17,23,28,43,44,48,50,56,57,58],pre_dictandmodel:48,precis:[9,27],pred:[53,56],predefin:57,predetermin:[10,40,58],predic:56,predicate_dict:56,predicate_dict_fil:56,predicate_slot:56,predict:[3,4,9,10,12,16,22,26,33,38,40,48,53,58],predict_fil:40,predict_output_dir:[39,40,53],predict_sampl:5,predicted_label_id:53,predictor:55,predin:50,prefer:57,prefetch:35,prefix:43,pregrad:35,preinstal:27,premodel:48,prepar:[5,31,45,53],preprcess:57,preprocess:[20,33,38,44,57],prerequisit:27,present:[23,51,56,58],pretti:26,prev_batch_st:[39,40],prevent:[2,12,23],previou:[10,11,16,17,35,40,43,56,58],previous:[44,51],price:26,primari:16,primarili:57,principl:23,print:[7,15,22,23,26,33,40,48,53,55,56,57,58],printallstatu:37,printer:9,printstatu:37,prite:9,privileg:43,prob:[9,22,49],probabilist:[10,16,48],probability_of_label_0:53,probability_of_label_1:53,probabl:[9,10,16,22,33,34,51,53,56],problem:[5,10,12,16,23,31,53,56,57],proc:28,proc_from_raw_data:53,proce:[20,25,43],procedur:[48,56,58],proceed:[10,16,56],process:[2,3,5,7,8,10,11,12,15,16,17,23,26,28,33,38,40,42,43,44,48,50,51,53,55,56,57,58],process_pr:53,process_test:8,process_train:8,processdata:[50,51],processor:37,produc:[11,17,20,25,28,51,53],product:[0,28,35,43,53,57],productgraph:44,profil:27,proflier:37,program:[2,20,23,25,28,37,38,40],programm:54,progress:40,proivid:3,proj:[10,16],project:[10,11,16,17,27,33,35,55],promis:[10,11,17],prompt:34,prone:23,prop:56,propag:[12,40,42],properli:53,properti:[3,40],propos:58,proposit:56,protect:35,proto:19,protobuf:27,protocol:40,prove:53,proven:58,provid:[0,8,10,16,20,23,26,28,33,37,38,43,48,49,50,51,54,57],providermemory_threshold_on_load_data:39,provis:43,provod:3,prune:10,pserver:[38,39,40,43],pserver_num_thread:[39,40],pserverstart_pserv:39,pseudo:23,psize:35,pull:[28,48,58],punctuat:57,purchas:53,purpos:[0,37],push_back:35,put:[28,35,38,44,53],pvc:43,pwd:28,py_paddl:[5,20,49],pydataprovid:[2,3,53],pydataprovider2:[4,5,26,33,53,55,57],pydataproviderwrapp:8,pyramid:[10,16],pyramid_height:[10,16],python:[2,3,4,8,16,22,23,24,26,27,34,38,48,49,50,56,57,58],pythonpath:50,pzo:57,qualifi:27,qualiti:53,queri:[10,16,43,58],question:[10,16,23,43,56],quick:[40,44,52,58],quick_start:[43,44,45,53],quick_start_data:44,quickli:26,quickstart:44,quit:37,quot:54,rac:10,rais:20,ramnath:57,ran:37,rand:[37,40,42,49,56],random:[3,7,10,15,16,20,25,26,40,49,50,56],randomli:57,randomnumberse:39,rang:[3,10,16,20,25,40,42,50,54,56],rank:[10,16,23,43,51,53],rare:3,rate:[7,9,12,15,35,38,50,53,55,57,58],rather:[5,43,57],ratio:40,raw:[10,16,26,53,57],raw_meta:55,rdma:[27,40],rdma_tcp:[39,40],reach:[37,56],read:[2,3,20,23,25,26,33,38,43,51,53,55],read_from_realistic_imag:23,read_from_rng:23,read_mnist_imag:23,read_ranking_model_data:23,reader:[22,58],reader_creator_bool:25,reader_creator_random_imag:[20,25],reader_creator_random_image_and_label:[20,25],readi:[26,43,44,50],readm:[54,55,57],readonesamplefromfil:3,readwritemani:43,real:[3,25,26,49],realist:23,reason:[10,11,17,23,28,44],rebas:34,recal:9,receiv:8,recent:58,reciev:40,recogn:50,recognit:[3,10,16,51,57],recommand:3,recommend:[2,11,17,23,28,33,35,38,40,55],recommonmark:27,recompil:37,record:[43,55,56],recordio:23,recov:[26,49],rectangular:[10,16],recurr:[56,57],recurrent_group:[11,17,33],recurrent_lay:11,recurrentgroup:9,recurrentlay:40,recv:43,reduc:[12,38,40,42],refer:[2,5,7,8,10,11,12,15,16,17,33,35,38,44,48,50,53,55,58],referenc:10,regard:56,regardless:58,regex:55,region:[37,56],regist:[35,37],register_gpu_profil:37,register_lay:35,register_timer_info:37,registri:44,regress:[9,31,52],regular:[7,12,15,35,43,50,53,57],rel:[2,11,17,38],relat:[3,8,28,30,44,55,57],relationship:[20,26,49],releas:[27,28,30,43,54,56],relev:[56,58],reli:27,relu:[6,10,16,35],reluactiv:10,remain:53,rememb:10,remot:[7,15,28,34,35,38,40,42,43],remoteparameterupdat:40,remov:[20,38,40,57],renam:58,reorgan:[10,16],repeat:10,replac:57,repo:[28,34],report:[37,38],repositori:34,repres:[3,5,10,12,16,20,33,35,43,50,53,54],represent:[53,57],reproduc:58,request:[43,44,48,58],requir:[2,9,10,16,23,35,38,43,44,49,50,53,55],requrest:34,res5_3_branch2c_bn:51,res5_3_branch2c_conv:51,res:56,research:[10,16,50,54,57],resembl:57,reserv:3,reserveoutput:35,reset:[10,16],reshap:25,reshape_s:[10,16],residu:51,resnet:52,resnet_101:51,resnet_152:51,resnet_50:51,resolv:[34,44],resourc:[28,43],respect:[3,26,33,35,40,50,51,56,58],respons:[10,16,43,44],rest:[3,10,16,26],restart:[43,44],restartpolici:[43,44],restrict:40,resu:25,result:[5,9,10,14,16,22,33,37,40,43,50,51,53,55,56,57],result_fil:[9,33],ret_val:55,retir:54,retran:43,retriev:[35,44],return_seq:[11,17],reus:[25,35],reveal:23,revers:[10,11,16,17,33,56,57],review:[34,44,53,57],reviews_electronics_5:44,revis:53,rewrit:58,rgb:[10,16],rgen:57,rho:12,rich:26,right:[3,10,16,51],rmsprop:[12,53],rmspropoptim:55,rnn:[10,11,17,36,39,53,57],rnn_bias_attr:33,rnn_layer_attr:33,rnn_out:33,rnn_step:10,rnn_use_batch:[39,40],rnnlm:20,robot:50,role:[23,33,43,52,57],roman:57,romanc:54,root:[12,19,28,38,43,44],root_dir:38,rot:[10,16],rotat:10,roughli:[3,49],routin:55,routledg:57,row:[5,9,10,16,20,35,51],row_id:[10,16],rsize:43,rtype:[10,55],rule:[35,43],run:[23,28,34,35,36,37,40,43,45,46,48,50,51,53,55,57,58],runinitfunct:37,runtim:[2,3,27,28,38],s_fusion:55,s_id:55,s_param:49,s_recurrent_group:33,sacrif:2,sai:[26,40,42],sake:35,sale:54,same:[3,5,8,9,10,11,16,17,23,33,38,42,43,48,53,55,56,57,58],samping_id:[10,16],sampl:[3,5,9,20,38,40,42,48,49,51,53,55,56,57,58],sample_dim:49,sample_id:9,sample_num:9,santiago:57,satisfi:[38,43,53],save:[3,10,16,20,26,40,42,43,44,50,51,53,55,56,57,58],save_dir:[26,40,42,44,49,50,53,55,56,57,58],save_only_on:[39,40],saving_period:[39,40],saving_period_by_batch:[39,40,42,53],saw:3,sbin:28,scalabl:0,scalar:[3,10,16],scale:[0,10,14,51,54,55],scalingproject:[10,16],scatter:10,scenario:[26,39],scene:39,schdule:43,schedul:[43,49],scheduler_factor:[7,15],schema:48,scheme:[9,12,56],schmidhub:57,schwenk:58,sci:54,scienc:57,scientist:[0,54],score:[9,10,16,55,57,58],screen:55,scrip:53,script:[5,20,28,38,43,50,51,53,56,57,58],seaplane_s_000978:50,search:[10,27,33,40,56,58],seat:58,second:[3,10,16,20,23,25,26,34,38,48,51,53,54,55,57],secret:43,section:[3,33,35,38,43,53],sed:57,see:[3,5,10,11,16,17,23,26,28,34,37,43,48,49,51,53,55,57,58],seed:[37,40],segment:9,segmentor:48,sel_fc:[10,16],select:[10,16,34,43,54,58],selectiv:[10,16],selector:44,self:[26,35,54,57],selfnorm:[10,16],semant:[23,33,52,57],semat:23,sen_len:56,send:[40,43],sens:10,sent:[23,44],sent_id:33,sentenc:[3,10,33,53,56,57,58],sentiment:[3,26,52,53,56],sentiment_data:57,sentiment_net:57,sentimental_provid:3,separ:[3,9,40,48,53,54,55,56,58],seq:[10,16,55],seq_pool:[10,16],seq_text_print:9,seq_to_seq_data:[48,58],seq_typ:[3,20,55],seqtext_printer_evalu:33,seqtoseq:[10,33,48,58],seqtoseq_net:[10,33,48,58],sequel:3,sequenc:[3,9,10,11,14,16,17,19,20,35,48,53,55,56,57,58],sequence_conv_pool:53,sequence_layer_group:10,sequence_nest_layer_group:10,sequencesoftmax:6,sequencestartposit:[10,16],sequencetextprint:9,sequencetyp:3,sequenti:[8,10,16,33,53,56],seri:[11,17,57],serial:3,serv:[28,37,43,49],server:[23,28,35,38,39],servic:[28,54],session:[28,37],set:[2,3,5,7,9,10,11,15,16,17,20,23,26,27,28,30,33,35,36,37,38,39,40,42,43,44,48,50,51,53,54,55,56,57,58],set_active_typ:35,set_default_parameter_nam:[7,15],set_drop_r:35,set_input:10,set_siz:35,set_typ:35,setp:43,settup:35,setup:[3,28,35,53],sever:[3,10,16,38,42,43,52,53,55,56,57,58],sgd:[12,23,38,49,57,58],sgdasync_count:39,shallow:56,shape:[10,16,51],shard:43,share:[10,16,27,28,37,40,44,56],shared_bia:[11,17],shared_bias:[10,16],shell:[43,51],shift:51,ship:50,shold:57,shop:57,shorten:[10,16],shorter:51,should:[3,5,9,10,12,16,20,22,23,25,26,30,33,34,38,43,50,53,55,56,57,58],should_be_fals:23,should_be_tru:23,should_shuffl:[3,56],shouldn:34,show:[5,12,16,20,26,34,40,43,44,48,51,53,55,56,57,58],show_check_sparse_distribution_log:[39,40],show_layer_stat:[39,40],show_parameter_stats_period:[39,40,42,44,53,56,57,58],shown:[3,9,10,16,23,33,35,37,43,49,50,51,53,55,57,58],shrink:35,shuf:55,shuffl:[3,20,55,57],sid:43,side:[10,16,51],sig:43,sigint:38,sigmoid:[6,10,16,17,35],sigmoidactiv:[10,11],sign:43,signal:38,signatur:43,signific:37,similar:[10,16,25,43,53,55],similarli:[10,16,56],simpl:[2,3,9,10,11,14,16,17,20,27,28,31,34,37,40,53,55,56,57],simple_attent:33,simple_gru:53,simple_lstm:[10,16,53],simple_rnn:[10,33],simplest:43,simpli:[2,10,16,23,27,28,33,34,37,48,51,55,57,58],simplifi:[23,35,44],simultan:43,sinc:[10,16,25,26,28,37,43,49,53,54,58],sincer:[34,57],singl:[3,9,11,12,17,20,28,35,38,44,51,53,56,58],site:43,six:[48,56,58],size:[3,9,10,11,12,16,17,20,25,26,33,35,38,40,49,50,51,53,54,55,56,57,58],size_a:[10,16],size_b:[10,16],size_t:35,sizeof:48,skill:58,skip:[25,26,38,43,51],slide:[10,12,16],slightli:50,slope:[10,16],slot:[55,56],slot_dim:55,slot_nam:55,slottyp:55,slow:[3,37],small:[3,35,38,40,50,58],small_messag:[39,40],small_vgg:50,smaller:[10,16],smith:57,snap:44,snapshot:43,snippet:[33,35,37,43,53],social:57,sock_recv_buf_s:[39,40],sock_send_buf_s:[39,40],socket:40,softmax:[6,10,11,16,17,23,33,35,48,53,56,57],softmax_param_attr:[11,17],softmax_selfnorm_alpha:[10,16],softmaxactiv:[33,53],softrelu:6,softwar:[28,37],solv:[23,56],solver:58,some:[3,7,10,12,15,16,20,23,26,27,34,35,37,39,40,42,43,49,53,54,55,56,57,58],some_python_class:24,somecppclass:24,somedata:22,somegotyp:24,someth:[3,10,16],sometim:[12,25,37,57],sophist:[26,35,38],sort:[10,16,20,40,43,55,57,58],sourc:[0,8,10,16,25,26,28,31,33,34,43,44,48,53,55,58],source_dict_dim:33,source_language_word:33,space:[9,28,33,37],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,15,16,20,35,38,40,43,53],sparse_binary_vector:[3,20,53],sparse_binary_vector_sequ:20,sparse_float_vector:3,sparse_non_value_slot:20,sparse_upd:[7,15],sparse_value_slot:20,sparse_vector:20,sparse_vector_sequ:20,sparseparam:35,sparseprefetchrowcpumatrix:35,spatial:[10,16,50],speak:[33,58],spec:[43,44],specfii:40,speci:50,special:[10,27,48,53,58],specif:[2,42,50,53,55],specifi:[2,3,9,10,16,20,23,26,27,33,35,40,43,49,50,51,53,54,55,57,58],speech:[10,16],speed:[11,17],spefici:51,sphinx:[24,27,28],sphinx_rtd_them:27,split:[3,10,16,38,42,43,48,51,53,56],split_count:43,spp:10,sql:2,squar:[6,10,12,16,19,26],squarerootn:13,squarerootnpool:[10,16],squash:58,srand:40,src:58,src_backward:33,src_dict:33,src_embed:33,src_forward:33,src_id:33,src_root:5,src_word_id:33,srl:56,ssd:16,ssh:[28,38,43,44],sshd:28,ssl:27,sstabl:23,stabl:43,stack:[26,43,53,56],stacked_lstm_net:57,stacked_num:57,stackexchang:[10,16],stage:38,stake:58,stale:34,stamp:37,standard:[7,15,48,50,56,57,58],stanford:[20,44],stanh:6,star:54,start:[10,16,26,28,33,34,37,38,40,47,48,52,55,58],start_pass:[39,40],start_pserv:40,startup:43,stat:[27,37,40,56,57,58],state:[10,11,16,17,26,33,40,44,49,56,58],state_act:[10,11,16,17],statement:[35,43],staticinput:[10,33],statist:[10,16,40,53,56,57,58],statset:37,statu:[9,34,37,43,44],status:44,std:[35,40],stderr:38,stdout:38,step:[5,10,11,12,16,17,19,33,35,37,38,43,44,53,55,56,57,58],still:51,stmt1482205552000:43,stmt1482205746000:43,stochast:12,stock:57,stop:[10,28,38,40,44,55],storag:[43,44,50],store:[9,10,16,35,38,40,43,44,48,50,51,53,55,56,57,58],str:[22,42],straight:34,strategi:[3,19,40,56],street:[10,16,56],strength:49,strict:25,stride:[10,16],stride_i:[10,16],stride_x:[10,16],string:[2,3,8,9,10,16,35,40,43,57],strip:[53,55,56],structur:[20,38,43,48,50,53,55,56,57,58],sts:43,stub:[10,16],student:54,stuff:34,stun:3,style:[3,10,16,27,34],sub:[9,10,16,20,23,33,35,50,53,58],sub_sequ:3,subgradi:12,submit:[34,39,40,43],subnet0:43,subnet:[23,43],subobjectpath:44,subsequenceinput:10,subset:[35,58],substanti:51,substitut:58,succe:57,succeed:44,success:[43,44,51,56],successfulcr:44,successfuli:57,successfulli:[51,55,57],successor:[40,58],sucessfulli:58,sudo:[27,30,43,50],suffic:[25,26],suffici:40,suffix:58,suggest:[10,16,37],suitabl:[34,40,50],sum:[9,10,12,13,16,33,35],sum_:10,sum_to_one_norm:10,summar:[53,57],sumpool:[10,16],support:[7,9,10,12,15,16,19,20,25,27,28,30,33,35,37,40,43,56],suppos:[26,35,53],sure:[34,35,43,50,57],survei:57,swap_channel:51,swig:[5,24,27],swig_paddl:[5,20,49],symbol:10,sync:[34,40,49],syncflag:35,synchron:[12,38,40,43],syntact:56,syntax:[25,55],synthect:26,synthes:49,synthet:26,sys:51,system:[27,28,38,44,53,56,57,58],t2b:48,tab:[28,53],tabl:[3,10,16,51,53,58],tableproject:[10,16],tag:[9,28,33],tagtyp:9,take:[3,5,9,10,11,16,17,23,33,35,37,43,44,49,56,58],taken:[3,56],tanh:[6,10,11,16,17,35],tanhactiv:[10,11,33],taobao:57,tar:[20,27,43],tarbal:43,target:[10,16,33,48,53,58],target_dict_dim:33,target_language_word:33,targetinlink:10,task:[3,9,10,16,26,33,42,48,51,56,57,58],tbd:24,tconf:57,tcp:[40,43],teach:53,tear:37,technician:54,techniqu:[33,35],tee:[44,50,55,56,57,58],tell:[28,37,55],tellig:57,templat:[44,56],tempor:[10,16,53,56],tensor:10,term:[10,11,16,17,56,57],termin:44,terminolog:26,tese:2,tesh:56,test:[2,3,8,9,10,16,20,23,25,27,28,30,34,37,38,39,48,50,51,53,54,58],test_all_data_in_one_period:[44,50,55,56,57],test_data:58,test_fcgrad:35,test_gpuprofil:37,test_layergrad:35,test_list:[3,8,26,50,53],test_part_000:57,test_pass:[39,40,42,58],test_period:[39,40,42],test_ratio:55,test_wait:[39,40],testa:23,testb:23,testbilinearfwdbwd:37,testconfig:35,tester:[55,58],testfcgrad:35,testfclay:35,testlayergrad:35,testmodel_list:39,testq:23,testsave_dir:39,testutil:35,text:[2,3,9,11,17,20,23,28,33,43,48,52,53,55,57],text_conv:53,text_conv_pool:55,text_fil:[20,57],tflop:37,tgz:27,than:[3,5,7,9,10,11,12,15,16,17,27,28,33,35,38,43,51,56,57,58],thank:[0,48,58],thei:[3,23,26,28,33,35,37,38,39,43,51,57],them:[2,3,11,17,23,25,26,28,33,37,39,40,43,50,51,53,55,57,58],theori:37,therefor:27,therein:[10,16],therun:51,thi:[2,3,7,8,9,10,11,12,15,16,17,20,23,25,26,27,28,30,33,34,35,37,38,40,42,43,44,48,49,50,51,53,54,55,56,57,58],thing:[3,26,33,34,37,55,56],think:23,third:[10,16,37,51,57],those:[51,56],thought:37,thread:[35,37,40,42,55,56,57,58],thread_local_rand_use_global_se:[39,40],threadid:42,threadloc:37,three:[3,9,10,12,16,25,26,33,40,49,51,57,58],threshold:[7,9,12,15,40,57],thriller:54,through:[5,10,16,33,35,37,38,48,49,50,57,58],throughout:53,throughput:37,thu:[3,10,16,26,35,43,58],tier:44,tight:27,time:[3,10,11,16,17,19,20,23,25,26,33,37,40,42,44,53,54,56,57,58],timelin:[10,16,37],timeo:43,timer:27,timestamp:[10,16,54],timestep:[3,10,16],titil:55,titl:[34,54,55],tmall:57,todo:[9,11,17,20,22],toend:[10,16],togeth:[3,10,11,16,17,20,33],token:[9,10,23,33,48,57,58],too:[28,30],tool:[28,33,34,43,57],toolchain:27,toolkit:[27,30],top:[9,51,56],top_k:9,topolog:[16,20,23],toronto:[20,50],total:[9,25,37,38,44,48,58],total_pass:25,touch:57,tourism:57,tourist:58,toward:26,tra:58,track:10,tractabl:10,tradesman:54,tradit:[10,16],trail:20,train:[1,2,3,5,7,8,9,10,12,15,16,20,31,33,35,36,37,39,45,46,51],train_conf:[48,58],train_config_dir:43,train_data:58,train_id:43,train_list:[3,8,26,50,51,53],train_part_000:57,trainabl:[10,16],traindot_period:39,trainer:[3,5,23,26,35,38,40,42,49,53,56,57,58],trainer_config:[2,3,26,38,43,44,53,55,57],trainer_config_help:[3,6,7,8,9,10,11,12,13,26,35,50,53,55],trainer_count:[39,40,42,43,44,55,56,57,58],trainer_id:[40,43],trainerintern:[53,55,58],training_machin:49,trainingtest_period:39,trainonedatabatch:49,tran:[10,35,40],trane:3,transact:57,transfer:[2,3],transform:[10,16,33,35,49,50,53,56],transform_param_attr:[11,17],translat:[10,11,17,26,48,55,57,58],transpar:38,transport:40,transpos:[10,16,35,49],transposedfullmatrixproject:[10,16],travel:[3,11],travi:[27,34],treat:[10,16,33],tree:[10,16,34,40,58],trg:58,trg_dict:33,trg_dict_path:33,trg_embed:33,trg_id:33,trg_ids_next:33,triain:2,tricki:24,trivial:3,trn:53,truck:50,true_imag:25,true_label:25,true_read:25,truth:[9,10,16,53,58],tst:53,tune:[7,15,36,53,55,58],tuninglog_barrier_abstract:39,tupl:[3,8,10,11,16,20,25],ture:[10,16],turn:[10,25,49],tutori:[28,33,34,35,37,38,43,44,45,46,47,51,53],tweet:57,twelv:58,twitter:57,two:[2,3,10,11,16,17,23,25,26,28,33,37,38,42,43,48,49,50,51,53,55,56,57,58],txt:[3,35,38,43,53,55,57],type:[3,8,9,10,11,12,16,17,19,20,22,23,24,25,26,28,33,35,40,42,43,44,50,51,53,55,56],type_nam:[10,55],typedef:24,typic:[5,9,28,37,57],ubuntu:30,ubyt:25,uci:20,ufldl:[10,16],uid:44,uint64:24,uint64_t:24,unbalanc:40,unbound:33,unconstrain:57,under:[26,27,28,43,54,57],underli:26,understand:[28,37,48,50,57],understudi:58,undeterminist:37,unemploi:54,unexist:56,uniform:[7,10,15,16,20,25,40,49],uniqu:[23,34,40,43],unique_ptr:35,unit:[10,11,16,17,26,27,28,33,34,56],unittestcheckgrad_ep:39,univ:58,unix:38,unk:[48,58],unk_idx:[53,56],unknown:[10,16],unlabel:57,unlik:[56,57,58],unseg:[10,16],unsup:57,unsupbow:57,until:[38,43,56],unus:55,unzip:55,updat:[7,10,12,15,16,27,35,38,40,42,57],updatecallback:35,updatestack:43,upon:[0,56],upstream:34,uri:43,url:[30,57],urls_neg:57,urls_po:57,urls_unsup:57,usag:[2,3,9,10,11,16,17,20,22,26,37,48,49,55],use:[0,2,3,5,7,8,9,10,11,12,15,16,17,19,20,23,26,27,28,29,30,33,34,35,37,38,40,42,43,44,48,49,50,51,53,54,55,56,57,58],use_global_stat:[10,16],use_gpu:[39,40,42,44,49,50,51,53,55,56,57,58],use_jpeg:50,use_old_updat:[39,40],use_seq:[26,55],use_seq_or_not:55,used:[2,3,5,9,10,11,12,16,17,19,20,22,23,25,26,29,30,33,35,37,38,39,40,42,43,48,50,51,53,55,56,57,58],useful:[2,3,10,11,17,33,35,42,53,56,57],usegpu:[35,49],useless:38,user:[2,3,7,9,10,11,15,16,17,20,22,23,25,26,28,34,38,39,40,43,51,53,56],user_featur:55,user_head:55,user_id:55,user_meta:55,user_nam:55,userid:54,usernam:34,uses:[3,33,34,35,40,43,50,51,53,55,58],using:[2,3,5,7,8,10,15,16,20,23,25,26,28,33,34,35,37,40,42,43,44,48,49,50,51,53,56,57],usr:[27,28,38,40,43],usrdict:48,usrmodel:48,usual:[10,16,20,26,27,37,40,42,43,57],utf:48,util:[5,27,33,35,37,50,55,57],v28:[10,16],valid:[25,43,51,57],valu:[3,5,7,9,10,12,15,16,19,20,22,26,33,35,40,42,43,49,50,51,56,57],value1:40,value2:40,value_rang:20,vanilla:33,vanish:57,vari:[37,43],variabl:[3,10,16,20,23,26,27,30,35,38,43,44,57],varianc:[10,16,51],variant:28,vast:34,vector:[3,10,11,16,17,20,23,33,35,48,53,55,57,58],vectorenable_parallel_vector:39,verb:56,veri:[3,10,16,19,33,37,50,53,57],verifi:[34,35],versa:27,version:[10,11,16,17,27,28,30,35,37,38,39,40,43,44,48,50,54,56,57,58],versu:23,vertic:[10,16,51],vgg:[11,17,50],vgg_16_cifar:50,via:[25,27,37,38,43,53],vice:27,view:[10,16],vim:34,virtual:28,virtualenv:55,visibl:28,vision:50,visipedia:50,visual:[10,16,28,37],viterbi:56,voc_dim:53,vocab:57,volum:[28,44],volumemount:[43,44],volumn:43,voluntarili:54,vutbr:20,wai:[3,10,11,16,17,23,26,28,33,35,38,42,55,56,58],wait:[12,40],walk:[5,49],wall:56,want:[3,10,11,16,17,23,25,26,27,28,35,40,42,48,51,53,55,56,57],war:54,warn:[10,16],warp:[10,16,37],wbia:[43,51],web:28,websit:[50,53,56,57],wei:[56,57],weight:[9,10,11,12,16,17,33,35,40,42,50,51],weight_act:[11,17],weightlist:35,weights_:35,weights_t:35,welcom:[55,57],well:[35,40,43,50,53],west:43,western:54,wether:[10,16],what:[7,10,11,12,15,16,17,26,38,53,55],wheel:27,when:[2,3,7,9,10,12,15,16,20,22,28,30,33,34,35,37,40,42,43,44,48,49,50,56,57,58],whenev:55,where:[3,10,11,12,16,17,23,26,33,35,37,38,40,42,48,51,56,58],whether:[9,10,11,16,17,25,35,40,49,50,55,57,58],which:[0,2,3,5,9,10,11,12,16,17,20,23,25,26,30,33,35,37,38,40,42,43,49,50,51,53,54,55,56,57,58],whichev:49,whl:27,who:[48,51,54],whole:[3,9,20,24,43,44,53,54,55,58],whole_cont:55,whose:[3,10,16,20,33,55,56],why:[11,17],wide:56,width:[9,10,16,20,24,25,35,50,58],wiki:[10,16],wikipedia:[10,16],wilder:3,window:[10,16,19,28,57],wise:[10,16],with_avx:28,with_avxcompil:27,with_coveragecompil:27,with_doccompil:27,with_doubl:35,with_doublecompil:27,with_dsocompil:27,with_gpu:28,with_gpucompil:27,with_profil:37,with_profilercompil:27,with_pythoncompil:27,with_rdmacompil:27,with_style_checkcompil:27,with_swig_pycompil:27,with_test:28,with_testingcompil:27,with_tim:37,with_timercompil:27,within:[10,26],without:[9,10,16,25,38,57],wmt14:58,wmt14_data:58,wmt14_model:58,wmt:58,woboq:28,won:[37,51],wonder:3,word:[3,9,10,20,33,42,52,55,56,57,58],word_dict:[53,56],word_dim:53,word_id:3,word_slot:56,word_vector:53,word_vector_dim:[33,48],words_freq_sort:20,work:[3,5,20,23,25,27,33,34,35,37,38,40,43,44,53,55],worker:43,workercount:43,workflow:[28,34,43],workspac:[28,40,55],worri:26,wors:49,would:[22,25,28,38,43,49,53,56],wrap:56,wrapper:[11,17,37],writ:55,write:[3,20,23,25,28,33,34,36,38,43,50,55,56,58],writelin:26,writer:[23,54],written:[55,57],wrong:[3,25],wsize:43,wsj:56,www:[10,16,20,50,58],x64:27,xarg:35,xgbe0:40,xgbe1:40,xiaojun:57,xrang:[25,26,35],xxbow:57,xxx:[23,51,58],xxxxxxxxx:43,xxxxxxxxxx:43,xxxxxxxxxxxxx:43,xxxxxxxxxxxxxxxxxxx:43,xzf:27,y_i:10,y_predict:26,yaml:[43,55],yann:20,year:54,yeild:50,yield:[3,20,23,25,26,33,53,55,56,57],you:[2,3,5,7,10,11,12,15,16,17,26,27,28,30,33,34,35,37,38,40,42,43,48,49,50,51,53,55,56,57,58],your:[3,10,16,23,27,28,35,37,38,42,43,53,57],your_access_key_id:43,your_secrete_access_kei:43,yum:27,yuyang18:[11,17,20,22],zachari:57,zeng:57,zero:[3,7,10,12,15,16,20,35,40,43,53],zhidao:48,zhou:[56,57],zip:54,zone:43,zxvf:43},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Activation","Parameter Attribute","Layers","Networks","Optimizer","Pooling","Datasets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","&lt;no title&gt;","&lt;no title&gt;","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"\u4e0d\u4f7f\u7528":24,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":24,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":24,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":24,"\u4ec5\u4ec5\u4f7f\u7528void":24,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":24,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":24,"\u539f\u56e0":24,"\u539f\u56e0\u5217\u8868":24,"\u57fa\u672c\u8981\u6c42":24,"\u5bfc\u51fac":24,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":24,"\u7b26\u53f7":24,"\u7b80\u5355\u5b9e\u73b0":24,"\u7c7b":24,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":24,"\u80cc\u666f":24,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":24,"case":42,"class":35,"function":48,"new":35,"paddle\u52a8\u6001\u5e93\u4e2d":24,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":24,"return":25,AWS:43,Abs:14,DNS:43,EFS:43,For:44,KMS:43,Use:[42,44],Using:[28,34],With:28,about:0,absactiv:6,access:43,account:43,activ:[6,14],adadelta:18,adadeltaoptim:12,adagrad:18,adagradoptim:12,adam:18,adamax:18,adamaxoptim:12,adamoptim:12,add:43,address:43,addto:16,addto_lay:10,adversari:49,aggreg:[10,16],algorithm:53,analysi:57,api:[1,4,28],appendix:53,applic:4,approach:37,architectur:[33,53],argument:[25,39,42,53],asset:43,associ:43,async:40,attent:33,attribut:[7,15],auc_evalu:9,avg:19,avgpool:13,aws:43,background:26,base:[9,10],baseactiv:6,basepool:19,basepoolingtyp:13,basesgdoptim:12,batch:25,batch_norm:16,batch_norm_lay:10,batch_siz:25,beam_search:[10,16],between:23,bidirect:57,bidirectional_lstm:[11,17],bilinear_interp:16,bilinear_interp_lay:10,bleu:58,block_expand:16,block_expand_lay:10,book:28,brelu:14,breluactiv:6,bucket:43,build:[27,29,44],built:37,cach:3,cento:27,check:[10,16,35,38],chines:48,choos:43,chunk_evalu:9,cifar:20,classif:[9,50],classification_error_evalu:9,classification_error_printer_evalu:9,clone:34,cloudform:43,cluster:[38,42,43],code:34,column_sum_evalu:9,command:[41,42,53,58],commit:[34,44],common:40,commun:40,compos:25,concat:16,concat_lay:10,concept:43,config:[4,42,55,56],configur:[21,33,36,38,43,53,55],conll05:20,connect:[10,16],contain:[28,44],content:[37,43],context_project:[10,16],contribut:34,conv:[10,16],conv_oper:[10,16],conv_project:[10,16],conv_shift:16,conv_shift_lay:10,convolut:[50,53],core:43,cos_sim:[10,16],cost:[10,16],cpu:[28,42],creat:[25,34,43,44],creator:25,credenti:43,credit:0,crf:16,crf_decod:16,crf_decoding_lay:10,crf_layer:10,cross_channel_norm:16,cross_entropi:10,cross_entropy_cost:16,cross_entropy_with_selfnorm:10,cross_entropy_with_selfnorm_cost:16,ctc:16,ctc_error_evalu:9,ctc_layer:10,cudnnavg:19,cudnnmax:19,custom:25,dat:54,data:[10,16,20,25,26,33,43,44,48,49,50,53,55,56,57,58],data_lay:10,datafeed:20,dataprovid:[3,4,40],dataset:[20,54,55,58],datasourc:8,datatyp:20,date:34,debian:30,decayedadagrad:18,decayedadagradoptim:12,decor:25,defin:[43,53,57,58],delet:43,delv:50,demo:43,depend:27,deriv:35,descript:[40,49,54,56],design:[23,25],destroi:43,detail:[40,50],develop:[28,36],devic:42,dictionari:[25,48],differ:42,directori:43,distribut:[23,38,40,43],doc:[23,25],docker:[28,44],document:[28,47],dotmul_oper:[10,16],dotmul_project:[10,16],down:43,download:[27,43,44,48,51,55,58],dropout_lay:[11,17],ec2:43,elast:43,embed:[16,48,53],embedding_lay:10,entri:25,eos:16,eos_lay:10,equat:35,evalu:[9,26,55],evalutaion:58,event:[22,23],exampl:[23,48,49],exercis:50,exp:14,expactiv:6,expand:16,expand_lay:10,extern:43,extract:[48,51,55,58],fc_layer:10,featur:[51,54,55,56],field:55,file:[43,44,53,54,55],find:43,first_seq:[10,16],fork:34,format:53,from:[23,27,29],full_matrix_project:[10,16],fulli:[10,16],gan:49,gate:33,gener:[33,49,58],get:[31,44],get_output:16,get_output_lay:10,github:34,gpu:[28,37,40,42],gradient:35,gradient_printer_evalu:9,group:[10,16,43],gru:[11,17,40],gru_group:[11,17],gru_step:16,gru_step_lay:10,gru_unit:[11,17],grumemori:[10,16],guid:30,hand:37,handler:[23,24],hook:34,how:[25,36,37],hsigmoid:[10,16],huber_cost:[10,16],iam:43,ident:14,identity_project:[10,16],identityactiv:6,imag:[10,11,16,17,28,44,50],imagenet:51,imdb:[20,57],img_cmrnorm:16,img_cmrnorm_lay:10,img_conv:16,img_conv_bn_pool:[11,17],img_conv_group:[11,17],img_conv_lay:10,img_pool:16,img_pool_lay:10,imikolov:20,implement:[25,35,49],infer:[22,53],info:51,ingredi:23,init_hook:3,initi:[42,43],input_typ:3,inspect:43,instal:[27,29,30,43,53],instanc:43,integr:43,interfac:[20,25,51],interpol:16,interpolation_lay:10,introduct:[2,48,51,57,58],isn:25,job:[38,43,44],join:[10,16],keep:34,kei:43,kill:38,kube:43,kubectl:43,kubernet:[43,44],label:56,lambda_cost:[10,16],last_seq:[10,16],lastest:34,launch:38,layer:[10,16,23,35,42],layeroutput:10,layertyp:10,line:[41,53],linear:[14,26],linear_comb:16,linear_comb_lay:10,linearactiv:6,list:25,local:[42,43],log:[14,53],logactiv:6,logist:53,lstm:[11,17,40,56,57],lstm_step:16,lstm_step_lay:10,lstmemori:[10,16],lstmemory_group:[11,17],lstmemory_unit:[11,17],map:25,math:[10,16],matrix:40,max:19,maxframe_printer_evalu:9,maxid:16,maxid_lay:10,maxid_printer_evalu:9,maxout:16,maxout_lay:10,maxpool:13,memori:[10,16],meta:55,mini:25,minibatch:20,misc:[11,17],mix:[10,16,42],mixed_lay:10,mnist:[20,49],model:[3,4,21,23,26,28,32,33,38,42,48,49,50,51,52,53,58],modifi:44,momentum:18,momentumoptim:12,movi:[54,55],movielen:[20,54,55],mse_cost:10,multi_binary_label_cross_entropi:10,multi_binary_label_cross_entropy_cost:16,multipl:25,name:43,nce:16,nce_lay:10,need:[25,37],network:[11,17,33,42,49,50,51,53,55,56],neural:[33,50,53,55,56],neuralnetwork:26,nlp:[11,17,40],non:3,norm:[10,16],nvprof:37,nvvp:37,object:55,observ:[48,51],onli:[25,28],optim:[12,18,36,53],option:[27,48],outlin:39,output:[11,38,43],overview:53,packag:30,pad:16,pad_lay:10,paddl:[25,44],paddlepaddl:[23,28,29,43,47,48,58],pair:43,parallel_nn:42,paramet:[7,15,22,23,40,41,43,48,51],paraphras:48,pass:42,perform:[37,40],pnpair_evalu:9,point:43,pool:[10,13,16,19],pooling_lay:10,power:16,power_lay:10,pre:34,precision_recall_evalu:9,predict:[5,50,51,55,56,57],prefetch:25,prepar:[26,33,38,43,48,49,50,55,57,58],preprocess:[48,50,53,55,58],prerequisit:38,pretrain:[48,58],print:9,privat:43,problem:26,profil:37,provid:[3,25,53,55,56],pull:34,push:34,pydataprovider2:3,python:[5,25,28,35,51,53,55],quick:53,randomnumb:40,rank:9,rank_cost:[10,16],rat:55,rate:54,reader:[20,23,25],recurr:[10,11,16,17,33,53],recurrent_group:[10,16],recurrent_lay:10,refer:[3,37,56,57],region:43,regress:[26,53,55],relu:14,reluactiv:6,render:43,repeat:16,repeat_lay:10,request:34,requir:[27,34],reshap:[10,16],resnet:51,result:[38,44,58],revis:[34,48],rmsprop:18,rmspropoptim:12,rnn:[32,33,40],role:56,rotat:16,rotate_lay:10,route53:43,run:[38,44,56],sampl:[10,16],sampling_id:16,sampling_id_lay:10,scale:16,scaling_lay:10,scaling_project:[10,16],script:44,secur:43,selective_fc:16,selective_fc_lay:10,semant:56,sentiment:[20,57],seq_concat:16,seq_concat_lay:10,seq_reshap:16,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:33,sequence_conv_pool:[11,17],sequencesoftmax:14,sequencesoftmaxactiv:6,sequenti:3,server:[40,43],servic:43,set:[12,41],setup:[27,43],sgd:40,share:23,shuffl:25,sigmoid:14,sigmoidactiv:6,simpl:[26,33],simple_attent:[11,17],simple_gru:[11,17],simple_img_conv_pool:[11,17],simple_lstm:[11,17],singl:25,slice:[10,16],slope_intercept:16,slope_intercept_lay:10,softmax:14,softmaxactiv:6,softrelu:14,softreluactiv:6,sourc:[27,29],span:27,spars:42,specifi:[42,48],split:55,spp:16,spp_layer:10,squar:14,squareactiv:6,squarerootn:19,squarerootnpool:13,stack:57,standard:53,stanh:14,stanhactiv:6,start:[23,31,43,44,53],startup:44,structur:49,suffici:25,sum:19,sum_cost:[10,16],sum_evalu:9,sum_to_one_norm:16,sum_to_one_norm_lay:10,summar:23,summari:53,sumpool:13,system:43,table_project:[10,16],take:25,tanh:14,tanhactiv:6,tear:43,templat:43,tensor:16,tensor_lay:10,test:[35,40,42,55,56,57],text:58,text_conv_pool:[11,17],timer:37,tip:37,toi:49,tool:37,train:[22,23,25,26,28,38,40,42,43,44,48,49,50,53,55,56,57,58],trainer:[22,43,55],tran:16,trans_full_matrix_project:[10,16],trans_lay:10,transfer:53,tune:[37,40],tutori:[48,50,52,56,57,58],ubuntu:27,uci_h:20,unit:[35,40],updat:[23,34,43],usag:[25,28,36],use:25,user:[48,54,55,57,58],util:9,value_printer_evalu:9,vector:40,verifi:43,version:34,vgg_16_network:[11,17],visual:51,volum:43,vpc:43,warp_ctc:16,warp_ctc_lay:10,what:37,why:[25,37],wmt14:20,word:[48,53],work:28,workflow:58,workspac:38,wrapper:35,write:[35,53],yaml:44,your:34,zoo:[51,52]}}) Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/config/activation","api/v2/config/attr","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/model_configs","api/v2/run_logic","design/api","design/dist/README","design/multi_language_interface/why_plain_c","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/dist/README.md","design/multi_language_interface/why_plain_c.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":54,"00186201e":5,"00m":38,"02595v1":[10,16],"03m":38,"0424m":38,"0473v3":[11,17],"055ee37d":44,"05d":51,"0630u":38,"06u":38,"0810u":38,"08823112e":5,"0957m":38,"0ab":[10,16],"0rc2":29,"0th":59,"10007_10":58,"10014_7":58,"100gb":38,"100gi":44,"10m":38,"1150u":38,"11e6":45,"12194102e":5,"124n":38,"13m":45,"1490u":38,"15501715e":5,"1550u":38,"15mb":54,"1636k":59,"16mb":54,"16u":38,"173m":52,"173n":38,"1770u":38,"18ad":44,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":45,"197u":38,"1gb":38,"1st":[49,52,58,59],"202mb":59,"210u":38,"211839e770f7b538e2d8":[11,17],"215n":38,"228u":38,"234m":52,"2520u":38,"252kb":54,"25639710e":5,"25k":54,"2680u":38,"27787406e":5,"279n":38,"27m":38,"285m":38,"2863m":38,"28m":38,"28x28":3,"2977m":38,"2cbf7385":44,"2nd":[10,16,58,59],"302n":38,"30u":38,"32777140e":5,"328n":38,"32u":38,"32x32":51,"331n":38,"3320u":38,"36540484e":5,"365e":44,"36u":38,"3710m":38,"3768m":38,"387u":38,"38u":38,"3920u":38,"39u":38,"3rd":[56,58,59],"4035m":38,"4090u":38,"4096mb":41,"4279m":38,"43630644e":5,"43u":38,"448a5b355b84":45,"4560u":38,"4563m":38,"45u":38,"4650u":38,"4726m":38,"473m":45,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":41,"50bd":44,"50gi":44,"51111044e":5,"514u":38,"525n":38,"526u":38,"53018653e":5,"536u":38,"5460u":38,"5470u":38,"54u":38,"55g":59,"5690m":38,"573u":38,"578n":38,"5798m":38,"586u":38,"58s":45,"5969m":38,"6080u":38,"6082v4":[10,16],"6140u":38,"6305m":38,"639u":38,"655u":38,"6780u":38,"6810u":38,"682u":38,"6970u":38,"6ce9":44,"6node":39,"6th":59,"704u":38,"70634608e":5,"7090u":38,"72296313e":5,"72u":38,"73u":38,"75u":38,"760u":38,"767u":38,"783n":38,"784u":38,"78m":38,"7eamaa":20,"7kb":45,"8250u":38,"8300u":38,"830n":38,"849m":38,"85625684e":5,"861u":38,"864k":59,"8661m":38,"892m":38,"901n":38,"90u":38,"918u":38,"9247m":38,"924n":38,"9261m":38,"93137714e":5,"9330m":38,"94u":38,"9530m":38,"96644767e":5,"983m":38,"988u":38,"997u":38,"99982715e":5,"99m":52,"99u":38,"9f18":45,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":25,"\u4e0d\u4f7f\u7528c":25,"\u4e0d\u4f7f\u7528swig":25,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":25,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":25,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":25,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":25,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":25,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":25,"\u4e2d":25,"\u4e2d\u5b8c\u5168\u4e00\u81f4":25,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4e66\u5199":25,"\u4ec5\u4ec5\u4f7f\u7528":25,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":25,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":25,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":25,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":25,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":25,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":25,"\u4f7f\u7528\u52a8\u6001\u5e93":25,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":25,"\u4f7f\u7528c99\u505a\u63a5\u53e3":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":25,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":25,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":25,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":25,"\u4f7f\u7528void":25,"\u4f8b\u5982":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":25,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":25,"\u4f8b\u5982\u5bf9\u4e8epython":25,"\u4f8b\u5982c":25,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":25,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":25,"\u4f8b\u5982python\u7684":25,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":25,"\u505a\u63a5\u53e3":25,"\u5176\u4e2d":25,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":25,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":25,"\u5199\u4ee3\u7801":25,"\u51fd\u6570\u547d\u540d":25,"\u52a8\u6001\u5e93":25,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":25,"\u53c2\u6570":25,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":25,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":25,"\u540d\u5b57\u4fee\u9970":25,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":25,"\u548c":25,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":25,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u5728c":25,"\u5728c\u7684\u5934\u6587\u4ef6":25,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":25,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":25,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":25,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":25,"\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u5b9e\u73b0\u7b80\u5355":25,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":25,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":25,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":25,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":25,"\u5bf9\u6bd4":25,"\u5c06\u5927\u91cf\u7684":25,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":25,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":25,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":25,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":25,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"\u5f97\u4f7f\u7528":25,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u6216\u8005":25,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u63a5\u53e3":25,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":25,"\u6587\u4ef6":25,"\u6587\u4ef6\u5185\u5bb9\u4e3a":25,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":25,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":25,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":25,"\u662f\u56e0\u4e3ac99\u652f\u6301":25,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":25,"\u6709\u6807\u51c6\u7684":25,"\u6709\u7684\u65f6\u5019":25,"\u6765\u786e\u4fdd\u628a":25,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":25,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":25,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":25,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":25,"\u751f\u6210\u6587\u6863":25,"\u751f\u6210api\u6587\u6863":25,"\u7531\u4e8ec":25,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":25,"\u7684\u5934\u6587\u4ef6":25,"\u7684\u63a5\u53e3\u6837\u5f0f":25,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":25,"\u7684\u89c4\u8303":25,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":25,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":25,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":25,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":25,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":25,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":25,"\u7c7b\u540d\u548cc":25,"\u7c7b\u578b":25,"\u7ea2\u697c\u68a6":49,"\u7ed3\u8bba":25,"\u7f16\u8bd1\u5668\u6ca1\u6709":25,"\u7f16\u8bd1\u578b\u8bed\u8a00":25,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":25,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":25,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":25,"\u800c\u5bf9\u4e8egolang":25,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":25,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":25,"\u826f\u597d\u7684\u6587\u6863":25,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":25,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":25,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":25,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":25,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":25,"\u8fd9\u662f\u56e0\u4e3a":25,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":25,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":25,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":25,"\u91cd\u547d\u540d\u6210":25,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":25,"\u9519\u8bef\u5904\u7406":25,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":25,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":25,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":25,"\ufb01xed":59,"abstract":[36,41],"api\u4e2d\u4f7f\u7528":25,"boolean":[10,16,25],"break":54,"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":25,"c\u6709\u6807\u51c6\u7684abi":25,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":25,"case":[10,16,26,27,34,35,36,38,42,44,50,54],"char":56,"class":[5,7,10,12,14,15,16,17,19,20,23,25,40,51,58],"const":36,"default":[3,7,9,10,11,12,15,16,17,19,20,22,23,29,39,41,43,44,45,54,56,58,59],"export":[28,51],"final":[11,17,27,28,36,56,58],"float":[3,7,9,10,12,15,16,20,27,36,38,43,49,52,56],"function":[3,5,8,10,11,12,16,17,20,23,26,27,34,36,38,39,41,50,51,54,57,58,59],"golang\u53ef\u4ee5\u4f7f\u7528":25,"golang\u7684":25,"h\u5e76\u4e0d\u56f0\u96be":25,"import":[3,5,9,10,16,23,27,34,38,44,49,50,51,52,54,56,58,59],"int":[3,7,9,10,11,12,15,16,17,20,25,26,36,43,54,56,57],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":25,"long":[2,10,11,16,17,20,29,38,57,58],"new":[3,10,16,20,24,26,35,37,44,45,50,54,57,58],"null":[10,36,41,56],"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":25,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":25,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":25,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":25,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":25,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":25,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":25,"public":[36,39,44,45,58],"return":[3,8,9,10,11,16,17,19,20,22,23,27,34,36,44,50,52,54,55,56,59],"short":[10,11,16,17,27,56,57,58],"static":[10,44],"super":36,"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":25,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":25,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":25,"swig\u76f4\u63a5\u8bfb\u53d6c":25,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":25,"switch":[44,58],"throw":44,"true":[3,7,9,10,11,12,15,16,17,19,20,23,26,27,34,36,41,43,44,52,56,57,58,59],"try":[12,24,26,38,50,56],"void":[25,36],"while":[2,3,7,9,15,20,26,29,34,41,50,54,58,59],AGE:[44,45],AND:56,ARE:56,AWS:[37,46,47],Abs:6,Age:55,And:[3,9,10,12,16,26,29,31,35,43,44,45,49,52,56,58,59],But:[3,10,11,16,17],EOS:[10,16],For:[2,3,8,9,10,12,16,20,23,26,27,28,29,34,36,38,39,40,41,43,49,51,52,54,58,59],Going:58,Has:3,IDs:54,Ids:54,Into:44,Its:[3,34,44,56],Not:[23,24,39],ONE:3,One:[9,10,11,17,34,36,41,50,54,58,59],QoS:45,THE:3,TLS:[23,44],That:[10,16,20,26,29,41,43],The:[2,3,5,7,8,9,10,11,12,14,15,16,17,20,22,23,24,26,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],Their:[3,10,16,24],Then:[5,10,28,29,34,35,36,38,44,45,49,51,56,57,58],There:[9,10,16,22,23,24,27,29,31,38,44,50,51,52,53,54,56,59],These:[39,43,51,57],USE:56,USING:56,Use:[3,23,26,36,38,41,42,44,56],Used:[11,17],Useful:3,Using:[45,58],VPS:44,WITH:35,Will:20,With:[3,10,11,16,17,27,50,57],Yes:29,___fc_layer_0__:44,__init__:36,__list_to_map__:56,__main__:52,__meta__:56,__name__:52,__rnn_step__:34,_error:50,_link:[11,17],_proj:[10,16],_res2_1_branch1_bn:52,_source_language_embed:[34,49],_target_language_embed:[34,49],aaaaaaaaaaaaa:44,abc:[10,16],abl:[10,16,23,50,58],about:[5,10,11,16,17,27,29,38,40,41,44,48,57,58,59],abov:[3,5,10,16,23,24,27,29,38,44,45,50,52,54,57],abs:[11,17,50],absolut:[2,39],academ:55,acceler:43,accept:[3,5,20,23,26,54,57],acceptor:57,access:[2,10,11,17,23,29,34,59],accessmod:44,accident:55,accomplish:29,accord:[2,3,9,10,16,34,35,39,40,41,43],accordingli:[5,36],accordingto:57,accrod:[11,17],accumul:24,accuraci:[9,36,54,55,58],achiev:[38,51],ack:41,acl:58,aclimdb:58,aclimdb_v1:20,across:[10,16],act:[10,11,16,17,27,34,54],act_typ:54,action:[44,55],activ:[0,4,5,10,11,16,17,21,27,28,36,41,54,58],activi:[11,17],actual:[3,10,16,27],adadelta:[12,54],adagrad:[12,54],adam:[12,23,54,58,59],adamax:[12,54],adamoptim:[49,54,58,59],adapt:[9,12,27,58,59],add:[3,10,11,16,17,20,27,28,35,36,38,43,54,56],add_input:36,add_test:36,add_to:[10,16],add_unittest_without_exec:36,addbia:36,added:[3,9,36],adding:52,addit:[10,11,16,17,29,54],address:[24,29,38,41],addrow:36,addtion:39,addto:10,addtolay:[10,16],adject:58,adjust:27,admin:55,adopt:57,advanc:[34,38,41],advantag:[29,58],adventur:55,adverb:58,adversari:26,advic:38,affect:[10,16],afi:3,aforement:39,after:[10,16,28,31,34,36,39,41,43,44,45,50,51,52,54,56,57,58,59],again:[23,24,38],against:44,age:56,agg_level:[10,16],aggreg:44,aggregatelevel:[10,16],aid:38,aim:[58,59],aircraft:59,airplan:51,aistat:[10,16],alex:[10,16,58],alexnet_pass1:43,alexnet_pass2:43,algorithm:[10,12,16,27,34,49,51,58,59],alia:[6,7,13,14,15],align:[10,11,16,17,20,59],all:[0,3,7,9,10,12,15,16,22,23,24,27,29,34,35,36,38,39,40,41,43,44,45,49,50,52,54,55,56,57,58,59],alloc:[7,15,36,43],allow:[23,29,35,36,38,41,44,54],allow_only_one_model_on_one_gpu:[40,41,43],almost:[11,17,27,39,49],along:58,alreadi:[24,29,38,39,41,44,45,58],alreali:[40,59],also:[2,3,9,10,11,16,17,23,26,28,29,34,36,38,39,45,50,51,52,54,57,58],although:27,alwai:[5,10,11,16,17,26,27,41,44,59],amaz:51,amazon:[44,45,54,58],amazonaw:44,amazonec2fullaccess:44,amazonelasticfilesystemfullaccess:44,amazonroute53domainsfullaccess:44,amazonroute53fullaccess:44,amazons3fullaccess:44,amazonvpcfullaccess:44,ambigu:[26,57],amd64:44,amend:35,american:51,among:[44,58],amount:[38,58],analysi:[27,38,53,57],analyz:[54,58],andd:44,ani:[2,3,10,11,16,17,20,23,24,26,34,35,38,44,54,56,59],anim:55,annot:57,annual:57,anoth:[3,10,16,23,29,41,44,57,58],ans:44,answer:[27,44,57],anyth:[20,26,35,44,57],api:[16,20,23,28,36,38,44,48,50,54,56,58],apiserv:44,apivers:[44,45],apo:59,appar:59,appear:57,append:[3,26,34,36,39,56],appleclang:28,appleyard:38,appli:[0,10,11,16,17,34,36,51,54],applic:[29,38,44,45,58],appreci:[35,58],approach:[10,16],apt:[28,31,51],arbitrari:10,architectur:[49,57,58,59],architecur:58,archiv:25,arg:[3,8,9,10,11,12,16,17,20,27,40,50,51,52,54,56,57,58],arg_nam:[10,16],argu:57,argument:[3,5,8,10,16,20,34,36,41,42,49,50,51,52,56,57,58,59],argv:52,arn:44,around:[3,10,16,44],arrai:[5,10,16,20,22,26,27,52],art:[27,57],articl:[39,45],artifact:44,artifici:50,artist:55,arxiv:[10,11,16,17,50,58],ask:24,aspect:58,assign:[10,41,44],associ:[57,58,59],assum:[10,16,34,43,49],assur:2,astyp:[26,50],async:[12,24,40],async_count:41,async_lagged_grad_discard_ratio:41,async_lagged_ratio_default:[40,41],async_lagged_ratio_min:[40,41],asynchron:[24,41],atla:28,atlas_root:28,attenion:[11,17],attent:[10,11,17,29,59],attitud:58,attr:[7,11,15,16,17],attribut:[3,4,10,11,16,17,21,36,49,57],auc:[9,40],aucvalidationlay:41,authent:44,author:[44,52],authorized_kei:39,autmot:35,auto:[25,36,38,53,56],autom:[44,59],automak:28,automat:[10,16,23,28,34,36,39,40,41,44,56,57,59],automaticli:[10,16],automobil:51,avail:[24,28,44],availabel:28,averag:[9,10,12,16,19,41,52,54,56,57,58,59],average_test_period:[40,41,57],average_window:58,averagepool:[10,16],avg:[13,38,54],avgcost:[9,54,56,58,59],avgpool:[10,16,54],avoid:[24,38],avx:[28,29,31],await:45,awar:[23,24,29,44],aws_account_id:44,awsaccountid:44,awskeymanagementservicepowerus:44,b2t:49,b363:45,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:45,ba5f:44,back:[3,24,29],background:32,backward:[10,11,14,16,17,34,36,41,43],backward_first:34,backwardactiv:36,bag:[54,58],baidu:[0,10,16,27,31,35,45,49],baik:49,balanc:[41,44,50],balasubramanyan:58,bank:57,bardward:[11,17],bare:45,barrier:41,barrierstatset:38,base:[6,12,16,17,19,20,23,27,31,34,35,36,38,39,41,44,49,50,54,56,58,59],baseactiv:[10,11],basematrix:36,basenam:9,basepool:13,basepoolingtyp:[10,11,16,17],baseregular:12,basestr:[7,8,9,10,11,15,16,17,19,56],bash:[29,44,45],bashrc:28,basic:[3,10,29,35,36,54,55,58],batch:[3,9,10,11,12,16,17,20,22,23,24,36,39,41,44,45,50,51,52,54,56,57,58,59],batch_0:52,batch_norm:[10,17],batch_norm_lay:11,batch_norm_typ:[10,16],batch_read:26,batch_siz:[3,12,20,22,27,39,49,50,51,54,56,58,59],batchsiz:[10,16,36],bcd:[10,16],beam:[10,34,41,57,59],beam_gen:[10,34],beam_search:[22,34],beam_siz:[10,34,40,41,43],beamsiz:59,becaus:[5,10,16,23,24,26,34,35,36,43,44,51,54,57],becom:[35,38],been:[3,28,35,51,54,57,58,59],befor:[5,10,11,16,17,24,26,29,35,39,44,51,56,58,59],begin:[5,9,10,36],beginiter:[22,23],beginn:34,beginpass:[22,23],begintrain:23,behavior:38,being:[24,26,50],belong:[10,16,59],below:[3,10,16,20,24,26,34,36,38,39,44,50,51,54,56],benefit:[11,17],bengio:[10,16],bertolami:58,besid:[2,10,16,59],best:[8,10,16,28,29,41,54,56,58,59],best_model_path:57,besteffort:45,beta1:12,beta2:12,beta:52,better:[10,11,16,17,27,39,44,50,56],between:[10,12,16,24,27,35,44,50,54,55,58,59],bgr:52,bi_lstm:[11,17],bia:[10,11,12,16,17,34,36,52],bias:[10,16,36],bias_attr:[10,11,16,17,27,34],bias_param_attr:[11,17],biases_:36,biasparameter_:36,biassiz:36,bidi:45,bidirect:[11,17,34,57,59],bidirectional_lstm_net:58,big:38,bigger:24,biggest:58,bilinear:[10,16],bilinear_interpol:[10,16],bilinearfwdbwd:38,bin:[28,29,39,44,45,56],binari:[3,9,10,16,20,38,44,49,54,58],bird:51,bison:28,bit:54,bitext:59,bla:28,blank:[10,16,44],block:[10,16,27,36,38,41,52,58],block_expand:10,block_i:[10,16],block_x:[10,16],blog:58,bn_attr:17,bn_bias_attr:[11,17],bn_layer_attr:11,bn_param_attr:[11,17],bollen:58,bool:[3,7,9,10,11,12,15,16,17,19,20,36,41,43,54,56,58],boot:[10,34],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,34],boot_with_const_id:10,bootstrap:28,bos_id:[10,34],both:[0,7,10,11,14,15,16,17,23,24,29,34,36,38,44,50,52,54],bottleneck:[38,52],bottom:58,bow:[54,58],box:38,branch:[10,16,23,35],breadth:[41,59],brelu:6,brendan:58,brew:28,briefli:38,broadcast:24,brows:29,browser:[29,44],bryan:58,bucket_nam:44,buf_siz:20,buffer:[3,20,26,41],buffered_read:26,bug:44,bui:58,build:[0,27,29,32,41,44,46,47,49,51,52,54,56,58,59],built:[0,28,29,50,57],bunch:[38,54],bunk:58,button:[35,44],c11:25,c99e:44,cach:[54,56,57],cache_pass_in_mem:[3,54,56,57],cachetyp:[3,54,56,57],calc_batch_s:[3,57],calcul:[3,9,10,11,12,16,17,24,34,36,38,41,43,50,56],call:[3,10,11,16,17,23,27,34,36,38,41,44,51,52,54,58,59],callabl:[3,10,20],callback:36,caller:44,caltech:51,can:[2,3,5,7,8,9,10,11,15,16,17,20,23,24,26,27,28,29,31,34,35,36,38,39,40,41,43,44,45,49,50,51,52,54,56,57,58,59],can_over_batch_s:[3,57],candid:[10,16],cannot:36,caoi:59,capabl:[28,58],capac:44,caption:[27,59],captur:[27,39],card:39,care:[11,17,26,40,41,55],carefulli:[39,41,52],cat:[29,51,52,58],categor:57,categori:[10,16,24,54,58],categoryfil:45,caus:24,caution:[44,45],ccb2_pc30:59,cde:[10,16],ceil:[10,16],ceil_mod:[10,16],cell:[10,11,16,17,58],center:3,ceph:45,certain:[2,40,57],certif:[23,44],cffi:25,cfg:45,cgo:25,chain:[20,36],challeng:24,chanc:[23,36,54],chang:[10,26,27,29,34,35,36,38,41,44,54,58],channel:[10,16,38,39,52],channl:[39,52],char_bas:56,charact:[54,56],character:27,characterist:[43,51],check:[3,20,27,28,29,35,41,43,44,55],check_align:20,check_eq:36,check_fail_continu:3,check_l:36,check_sparse_distribution_batch:[40,41],check_sparse_distribution_in_pserv:[40,41],check_sparse_distribution_ratio:[40,41],check_sparse_distribution_unbalance_degre:[40,41],checkgrad:41,checkgrad_ep:41,checkout:35,children:55,chines:53,chmod:[28,44],choic:[29,55],choos:[41,54,56],chosen:[2,55,59],chunk:[9,50,57],chunk_schem:9,chunktyp:9,cifar:[50,51],cifar_vgg_model:51,claim:44,claimnam:44,clang:[25,28,29,35],class1:58,class2:58,class_dim:58,classfic:[52,58],classfiic:51,classic:[10,16,27],classif:[3,5,10,16,43,52,53,54,58,59],classifc:58,classifi:[9,50,51,52,54,58],classification_cost:[51,54],classification_error_evalu:[50,54,58,59],classification_threshold:9,claster:44,clean:[5,56],cleric:55,cli:44,click:[35,38,44],client:35,clip:[7,12,15,41,54,58],clock:[10,16],clone:[28,29],close:[3,26],closer:27,cloud:24,cls:54,cludform:44,cluster:[23,24,40,41,45,54,59],cluster_train:39,cm469:44,cmake3:28,cmake:[28,36,38],cmakelist:36,cmd:45,cna:[10,16],cname:44,cnn:[45,52,54],code:[0,3,5,16,20,23,26,27,28,29,30,34,36,37,38,39,44,45,50,54,55],coeff:[10,16],coeffici:[10,16],collabor:24,collect:[10,16,20,22,27,55],collectbia:36,colleg:55,color:[51,52],column:[9,10,16,26,36,49,59],colunm:59,com:[10,11,16,17,20,28,29,31,35,44,45,52],combin:[10,11,16,17,20,50,56,58],come:58,comedi:55,comma:[41,49],command:[2,5,27,28,29,31,35,36,37,38,39,44,45,46,47,49,50,51,52,56,57,58],commandlin:[38,58],commenc:54,comment:[11,17,20,35,54,58],commnun:39,common:[34,36,40],common_util:[39,56],commonli:[34,38,43],commun:[0,24,36,39,44],compani:58,compar:[36,50,54],compat:3,compet:58,competit:50,compil:[28,29,35,36],complet:[0,5,10,11,16,17,20,22,24,36,44,45,54],complex:[2,3,11,17,26,34,38,54],complic:[10,16],compon:36,compos:[20,23,50,57],composenotalign:20,comput:[10,11,16,17,23,24,27,28,29,34,36,38,43,44,54,56,57,58],computation:34,conat:16,conat_lay:10,concat:[10,59],concat_lay:34,concaten:[11,17],concept:[3,23,29,34],concern:23,concurr:24,concurrentremoteparameterupdat:41,condit:[10,16,34,39,45,59],conduct:38,conf:[5,10,16,39,49,50,52,59],conf_paddle_gradient_num:44,conf_paddle_n:44,conf_paddle_port:44,conf_paddle_ports_num:44,conf_paddle_ports_num_spars:44,confid:58,config:[3,7,10,11,15,16,17,27,36,39,40,41,44,45,49,50,51,52,54,58,59],config_:41,config_arg:[40,41,43,52,54,57,58],config_bas:[16,17,22],config_fil:57,config_gener:[39,56],config_lay:36,config_pars:[5,36],configur:[1,2,3,5,8,10,16,27,33,35,36,38,41,49,51,52,58,59],conflict:35,confront:59,congest:41,conll05st:57,conll:57,connect:[2,11,17,27,36,44,45,50,51,52,54,56,58],connectionist:[10,16,58],connor:58,consequ:[10,11,16,17],consid:[9,10,12,16,28,29,38,43,51],consider:[3,11,17],consist:[10,16,26,51,52,54,57,59],consol:[38,44],constant:36,construct:[3,5,23,34,56],construct_featur:56,constructor:36,consum:[24,58],contact:24,contain:[3,8,9,10,11,16,17,19,20,23,30,31,34,35,39,44,51,52,54,55,58,59],containerport:44,contemporan:58,content:[45,57,58],context:[10,11,16,17,34,49,54,56,57,58,59],context_attr:[11,17],context_len:[10,11,16,17,54,56],context_proj_layer_nam:11,context_proj_nam:17,context_proj_param_attr:[11,17],context_project:[11,17,56],context_start:[10,11,16,17,54],contibut:35,contin:44,continu:[3,24,31,41],contrast:[10,16,59],contribut:[0,30,37,58],contributor:0,control:[7,15,41,44,45,59],conv:[11,17],conv_act:[11,17],conv_attr:17,conv_batchnorm_drop_r:[11,17],conv_bias_attr:[11,17],conv_filter_s:[11,17],conv_layer_attr:11,conv_num_filt:[11,17],conv_op:[10,16],conv_pad:[11,17],conv_param_attr:[11,17],conv_shift:10,conv_strid:[11,17],conv_with_batchnorm:[11,17],conveni:[23,39],converg:[39,50,58],convert:[3,5,20,26,34,49,51,52,54,56],convlay:[10,16],convolut:[10,11,16,17,50,52,56],convoper:[10,16],convtran:[10,16],convtranslay:[10,16],cool:[3,35],copi:[23,44,50,56],copy_shared_paramet:50,copytonumpymat:50,core:[3,7,15,41,59],coreo:44,corespond:57,corpora:59,corpu:57,correct:[3,9,10,16,36,44],correctli:[9,20,36,50],correl:[27,51,58],correspoind:23,correspond:[3,5,23,27,34,36,51,55,57,58,59],corss_entropi:23,cos:[10,16],cos_sim:56,cosin:[10,16,56],cost:[5,12,23,27,41,50,54,56,58,59],cost_id:10,could:[3,5,9,10,16,20,22,23,26,29,38,39,44,54,56],count:[24,26,38,41,43,45,49,56,57,58,59],counter:24,coupl:27,coverag:28,coveral:28,coveralls_uploadpackag:28,cpickl:[52,56],cpp:[25,35,36,38,54,56,59],cpu:[2,3,7,10,15,16,28,31,38,41,45,50,57,58,59],cpuinfo:29,craftsman:55,crash:[24,38,39,41],crazi:39,creat:[5,7,10,15,16,20,23,24,27,28,29,36,39,41,49,50,51,59],create_bias_paramet:36,create_input_paramet:36,createargu:50,createfromconfigproto:[5,50],createstack:44,creation:44,creationd:44,creator:20,credit:50,cretor:20,crf:[10,57],crf_decod:10,crime:55,critic:58,crop:52,crop_siz:52,cross:[10,16,54,57],cross_entropi:[16,23,50],cross_entropy_with_selfnorm:16,csc:36,cslm:59,csr:36,csv:55,ctc:10,ctc_layer:9,ctest:29,ctrl:[39,56],ctx:57,ctx_0:57,ctx_0_slot:57,ctx_n1:57,ctx_n1_slot:57,ctx_n2:57,ctx_n2_slot:57,ctx_p1:57,ctx_p1_slot:57,ctx_p2:57,ctx_p2_slot:57,cub:51,cuda:[28,29,31,38,39,41],cuda_dir:[40,41],cudaconfigurecal:38,cudadevicegetattribut:38,cudaeventcr:38,cudaeventcreatewithflag:38,cudafre:38,cudagetdevic:38,cudagetdevicecount:38,cudagetdeviceproperti:38,cudagetlasterror:38,cudahostalloc:38,cudalaunch:38,cudamalloc:38,cudamemcpi:38,cudaprofilerstart:38,cudaprofilerstop:38,cudaruntimegetvers:38,cudasetdevic:38,cudasetupargu:38,cudastreamcr:38,cudastreamcreatewithflag:38,cudastreamsynchron:38,cudeviceget:38,cudevicegetattribut:38,cudevicegetcount:38,cudevicegetnam:38,cudevicetotalmem:38,cudnn:[10,16,19,28,31,41],cudnn_batch_norm:[10,16],cudnn_conv:[10,16],cudnn_conv_workspace_limit_in_mb:[40,41],cudnn_convt:[10,16],cudnn_dir:[40,41],cudrivergetvers:38,cuinit:38,cumul:[10,16],curl:[28,44],current:[3,10,12,16,24,27,29,34,35,36,39,41,44,54,58,59],current_word:34,currentcost:[9,54,56,58,59],currentev:[9,54,56,58,59],curv:[23,51,57],custom:[2,3,23,36,44,55,58],custom_batch_read:26,cycl:24,cyclic:[10,16],cython:25,d3e0:44,daemon:29,dai:59,daili:58,dalla:3,dan:57,danger:3,darwin:44,dat:[20,39,56],data:[2,3,5,8,11,12,17,22,23,24,28,29,32,36,38,39,40,41,43,46,52,55],data_batch_gen:50,data_dir:[49,51,58,59],data_feed:20,data_fil:27,data_initialz:54,data_lay:[3,9,27,34,50,51,54,56,57],data_nam:20,data_provid:8,data_read:[20,26],data_reader_creator_random_imag:26,data_sourc:[8,50],data_typ:[16,20],databas:58,datadim:[10,16],datalay:[10,16],dataprovid:[2,8,27,34,39,56,57],dataprovider_bow:54,dataprovider_emb:54,dataproviderconvert:5,datasci:[10,16],dataset:[1,3,26,27,41,49,51,52,54,57,58],datasourc:[4,56],date:57,db_lstm:57,dcgan:50,dcmake_install_prefix:28,dead:24,deal:[35,50],deb:[30,31],debian:[29,30],debug:3,decai:[12,51],decid:[23,26],declar:[10,11,16,56],decod:[10,11,16,17,34,57,59],decoder_boot:34,decoder_group_nam:34,decoder_input:34,decoder_mem:34,decoder_prev:[11,17],decoder_s:34,decoder_st:[11,17,34],deconv:[10,16],deconvolut:[10,16],decor:[3,20,36],decreas:27,decrypt:44,deep:[0,10,16,27,29,38,50,51,52,54,57],deeper:[27,29,52],deer:51,def:[3,10,16,20,23,26,27,34,36,50,52,54,56,57],defalut:[10,16,41,43],default_devic:43,default_valu:43,defferenct:3,defin:[2,3,8,9,10,11,16,17,20,23,26,27,34,36,39,41,49,50,51,56,57],define_py_data_sources2:[3,8,27,51,52,54,56],defini:59,definit:[3,20,24,27,29,49,54,58],degre:[10,16],del:56,delai:41,delar:54,delet:24,deletestack:44,delimit:[9,55,56],demand:24,demo:[10,34,39,45,46,49,50,51,52,53,54,55,56,57,58,59],demograph:55,demolish:45,demonstr:[27,34,50,56],denot:[43,54,55,57],dens:[3,10,16,20,36,44,54,56],dense_vector:[3,5,16,20,27,56],dense_vector_sequ:20,depend:[24,27,29,31,39,43,51,55],deploi:[39,43],deploy:[39,44],deriv:[14,23],descent:[10,12,16,24],describ:[23,27,36,44,45,50,54,57],describestack:44,describestackev:44,describestackresourc:44,descript:[5,28,34,42,44,51,56],design:[3,10,16,20,25,58],desir:[24,44,45,49],destructor:36,detail:[3,5,7,10,11,12,15,16,17,34,35,36,38,39,42,43,44,45,49,50,52,54,56,58,59],detect:9,determin:[3,10,16,20,36,50],dev:[28,29,51,56,59],devel:28,develop:[0,28,35,40,41,59],deverlop:41,deviat:[7,15],devic:[7,15,41,59],deviceid:43,devid:[10,16,41],dez:58,dfs:11,diagnos:39,diagram:52,dict:[3,8,20,54,56,58,59],dict_dim:58,dict_fil:[9,34,54,57],dict_nam:8,dictionai:54,dictionari:[3,8,9,10,20,22,23,34,43,52,54,56,57,58,59],dictsiz:59,did:3,differ:[3,8,9,10,16,24,27,29,34,35,36,39,41,44,45,49,51,52,54,58,59],difficult:27,dig:[29,38,44],digit:[3,10,16],dim:[20,36,49,52,54,58],dimens:[10,14,16,19,20,36,43,49,54,56,58],dimension:[3,27,34,36,50,54],dimenst:49,dimes:[10,16],din:56,dir:[39,52,54,56,57,58,59],dirctori:29,direct:[10,11,16,17,29,52,57],directli:[2,3,11,17,27,29,39,45,58],directori:[2,28,29,35,38,39,41,45,51,52,54,56,57,58,59],diretcoti:52,dis_conf:50,dis_train:50,dis_training_machin:50,disabl:3,discard:[20,24,41],discount:[10,16],discov:[24,57],discoveri:44,discrep:38,discrimin:50,discriminator_train:50,discuss:23,disk:45,dispatch:[24,39,41],disput:59,dist_train:23,distanc:9,distibut:49,distinguish:[39,50,59],distribut:[10,16,28,37,45,46,47,50,54,57],distribute_test:[40,41],distributedli:36,disucss:23,divid:[12,40,51,59],diy_beam_search_prob_so:[40,41],dmkl_root:28,dns:44,do_forward_backward:26,doc:[5,11,17,20,28,29,39],docker:[30,44,46,47],docker_build:23,docker_push:23,dockerhub:29,doctor:55,document:[3,5,11,17,28,35,43,51,54,56,57,58],documentari:[3,55],doe:[3,5,11,17,24,26,27,31,34,36,38,54,56,57],doesn:[7,10,15,20,23,26,35,38,45,59],dog:[51,52],doing:38,domain:44,don:[11,17,23,26,27,44,58],done:[10,11,16,17,24,34,38,44,50,58],dopenblas_root:28,dot:[41,52,59],dot_period:[41,43,50,51,56,58,59],dotmuloper:[10,16],dotmulproject:[10,16],doubl:[3,28,41],down:[38,54],download:[20,24,29,31,50,51,54,57,58],download_cifar:51,downsampl:51,doxygen:[28,35],dpkg:31,drama:55,drop:3,drop_rat:[7,15],dropout:[7,10,15,16,36,54],dropout_lay:10,dropout_r:[11,17],drwxr:45,dtoh:38,dtype:[5,27,52],dubai:59,due:[55,56],duplic:55,durat:38,dure:[2,3,10,16,24,27,35,36,40,41,44,54,56,57,59],durn:3,dwith_doc:28,dwith_profil:38,dwith_tim:38,dynam:[2,3,26,28,38,41],dynamic_cast:36,each:[2,3,5,9,10,16,19,20,22,24,26,27,29,34,35,36,39,41,43,44,49,51,52,54,55,56,57,58,59],each_feature_vector:14,each_meta:56,each_pixel_str:3,each_sequ:[10,16],each_time_step_output:14,each_timestep:[10,16],each_word:3,eaqual:[10,16],eas:[20,26,52],easi:[0,26,29,36,39,54],easier:[23,26,36],easili:[23,26,27],echo:[29,56,58],edit:[9,29,44],editor:[29,35],edu:[20,44,45,51],educ:55,eeoi3ezpr86c:44,effect:[3,41,44],effici:[0,2,3,34,36],efg:[10,16],efs:44,efs_dns_nam:44,efsvol:44,eight:57,either:[10,16,20,22,23,38,54,56],elb:44,elbapis:44,elec:54,electron:[45,54],elem_dim:[10,16],element:[3,5,9,10,11,16,17,20,22,26,54,58,59],elif:[23,56],elimin:57,els:[10,23,29,36,52,54,56],emac:[29,35],emb:[45,54],embed:[10,23,34,53,56,58],embedd:57,embedding_lay:[34,54,56],embedding_nam:34,embedding_s:34,emphas:38,empir:[10,16],emplace_back:36,emploi:[34,55],empti:[9,20,24,27],emul:59,enabl:[3,7,15,38,39,41,44],enable_grad_shar:[40,41],enable_parallel_vector:41,enc_proj:[11,17,34],enc_seq:[11,17],enc_vec:34,encod:[11,17,34,59],encoded_proj:[11,17,34],encoded_sequ:[11,17,34],encoded_vector:34,encoder_last:10,encoder_proj:34,encoder_s:34,encrypt:44,encrypt_decrypt:44,end:[3,9,10,16,26,27,34,41,49,57,58,59],end_pass:23,enditer:[22,23],endpass:[22,23],endpoint:44,endtrain:23,engin:[0,38,55],english:[3,10,16,59],enjoi:29,enough:27,ensembl:[11,17],ensur:[3,24,36],enter:[29,55],entir:[10,11,16,17,58],entri:[20,36,44,55],entropi:[10,16,54,57],enumer:[10,14,54,56],enumerate_data_types_of_data_lay:20,env:[35,44],environ:[23,28,29,31,38,39,40,41,44,45,50,51,56],eol:35,eos:10,eos_id:[10,16,34],epel:28,epoch:55,epsilon:12,equal:[10,11,12,16,17,24,41],equat:[10,11,12,16,17,29],equilibrium:50,equip:[28,34],equival:[10,16,23],error:[7,9,10,12,15,16,23,27,31,36,39,41,44,51,52,54,55,56,58,59],error_clipping_threshold:[7,15],errorr:9,especi:[3,11,17,57],essenc:23,essenti:[10,23,28,57,59],estat:27,estim:[10,16,23],eta:45,etc:[12,20,26,29,39,40,43,44,58,59],etcd:24,eth0:[39,44],ethternet:39,eval:[9,54,56,58,59],eval_bleu:59,evalu:[2,4,10,16,32,38,39,54,58,59],evaluate_pass:58,evaluator_bas:9,evalut:[27,59],even:[23,26,38,41,58],evenli:44,event:45,event_handl:23,everi:[2,3,9,10,11,17,20,23,24,34,35,36,41,54,57,58,59],everyth:[27,29,35],exactli:[3,9,10,11,16,17,29,44,57],exampl:[2,3,8,9,10,11,12,16,17,20,22,26,27,28,29,34,36,38,39,40,41,43,44,45,51,52,53,54,58,59],exceed:10,except:[3,43,49,56,58],excluded_chunk_typ:9,exconv:[10,16],exconvt:[10,16],exdb:20,exec:[29,41],execut:[24,36,38,44,55,57,58],exist:[23,24,26,36,41,44,55,58],exit:[41,45],exp:6,expand:[10,36,57,58,59],expand_a:[10,16],expand_level:[10,16],expandconvlay:[10,16],expandlevel:[10,16],expect:[10,16,38,58],expens:59,experi:43,expir:24,explain:[3,9,24,39,50,58],explan:[10,16,54,59],explanatori:[27,29],explicit:36,explicitli:[3,23],exploit:51,explor:10,exponenti:14,expos:[29,44],express:[23,44,58],extend:[0,56],extens:[12,55,56,59],extern:[3,25],extra:[10,11,15,16,17,27],extraattr:[7,15,43],extraattribut:[16,17],extraattributenon:16,extract:[10,16,44,51,57,58],extract_fea_c:52,extract_fea_pi:52,extract_para:49,extralayerattribut:[7,10,11,15],extralayeroutput:11,extrapaddl:17,extrem:[10,38],extremli:2,f120da72:45,f7e3:44,fa0wx:45,fabric:39,facotr:[10,16],fact:52,factor:[7,10,12,15,16],factori:25,fail:[3,41,43,45,51],failur:24,fake:50,fake_imag:26,fals:[3,7,9,10,11,12,15,16,17,20,26,27,34,36,41,43,45,49,54,56,57,58,59],false_label:26,false_read:26,famili:59,familiar:[3,27],fanscin:3,fantasi:55,fantast:54,far:0,farmer:55,fascinatingli:2,fast:[10,16,35,38],faster:[10,11,16,17,34,38,58],favori:29,favorit:35,favourit:29,fbd1f2bb71f4:45,fc1:[36,43],fc2:43,fc3:43,fc4:43,fc8a365:44,fc8a:44,fc_act:[11,17],fc_attr:[11,17],fc_bias_attr:[11,17],fc_layer:[27,36,43,54,56],fc_layer_nam:11,fc_name:17,fc_param_attr:[11,17],fclayer:36,fdata:57,fea:52,fea_output:52,feat:58,featur:[3,10,14,16,20,35,41,51,54,58,59],feature_map:56,feed:[11,17,20,22,23,27,58],feedback:0,feeder:20,feedforward:51,femal:55,fernan:58,festiv:3,fetch:[20,34,36],few:[3,24,26,29],fewer:10,fg0:[10,16],field:[10,16,22,38,44],figur:[23,34,36,38,49,50,51,52,57,58,59],file1:59,file2:59,file:[2,3,5,9,10,16,20,23,24,26,27,28,29,34,35,36,39,41,49,51,52,57,58,59],file_list:3,file_nam:[3,27,52,54,57],filenam:[3,56],filer:[10,16],filesystem:[29,44],fill:[10,16,24,44,54],film:55,filter:[10,16,52],filter_s:[10,11,16,17],filter_size_i:[10,16],finali:39,find:[10,12,24,29,38,51,58,59],fine:[7,15,56],fingerprint:44,finish:[3,24,29,39,44,45,51],finit:36,first:[3,10,16,20,23,24,27,29,31,34,35,36,38,41,43,44,49,50,51,52,54,56,57,58,59],first_seq:34,firstn:20,firstseen:45,fit:[2,20,35],five:[38,54],fix:[3,7,15,25,59],flag:[41,50,51,57],flexiabl:26,flexibl:[0,2,10,11,17,23,34],flight:59,float32:[5,20,26,27,50,52],floor:[10,16],flow:35,fly:[27,54],fnt03:44,focu:[3,38],folder:[28,29,44,51,58,59],follow:[2,3,9,10,11,12,16,17,20,23,24,26,28,29,31,34,35,36,38,39,43,44,45,46,47,49,50,51,52,54,55,56,57,58,59],fool:50,forbid:23,force_load:25,forecast:58,forget:[12,23,58],form:[2,3,11,12,17,38,57],format:[2,3,9,27,35,36,41,44,49,51,55,56,58],former:[23,59],formula:[10,11,16,17],formular:[10,16],forward:[11,14,17,34,35,36,43,50,57,58],forwardactiv:36,forwardtest:5,found:[3,5,10,16,28,34,50,51,54,58],four:[3,31,49,52,54,56,57,58],frame:9,framework:[23,36,52,54,58],free:59,french:59,frequenc:[20,38,49,54,58],frequent:[26,39,59],frog:51,from:[0,3,5,10,11,16,17,20,22,24,26,27,29,32,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],from_timestep:[10,16],fromfil:[26,27,52],fulfil:38,full:[10,16,24,29,34,36],full_matrix_project:[11,17,34],fulli:[27,35,36,38,50,51,52,54,56,58],fullmatrixproject:[10,16],fully_matrix_project:[11,17],fullyconnect:49,fullyconnectedlay:36,func:20,fundament:27,further:10,fusion:56,gain:[10,16],game:50,gamma:52,gan:23,gan_train:50,gap:41,gate:[10,11,16,17,58],gate_act:[10,11,16,17],gate_recurr:[10,16],gather:[10,36,56],gauss:[7,15],gaussian:50,gcc:[25,28,29],gdebi:31,gen:[10,59],gen_conf:[50,59],gen_data:59,gen_result:59,gen_train:50,gen_training_machin:50,gen_trans_fil:34,gender:[55,56],gener:[2,3,5,9,10,11,16,17,20,22,23,24,26,27,28,29,38,39,41,43,44,49,52,53,54,56,58],generatedinput:34,generator_conf:50,generator_machin:50,generator_train:50,genert:3,genr:[55,56],gereat:9,get:[3,10,11,16,17,27,28,31,34,36,38,39,44,48,51,52,54,56,57,58],get_batch_s:57,get_best_pass:58,get_config_arg:[43,54,56,58],get_data:[45,54,57],get_imdb:58,get_input_lay:36,get_mnist_data:50,get_model:52,get_nois:50,get_output_attr:17,get_output_layer_attr:11,get_training_loss:50,get_word_dict:20,getbatchs:36,getenv:23,getinput:36,getinputgrad:36,getinputvalu:36,getoutputgrad:36,getoutputvalu:36,getparameterptr:36,getsiz:36,getslotvalu:50,gettempl:44,gettranspos:36,getw:36,getweight:36,getwgrad:36,gfortran:28,gildea:57,gist:[11,17],git:[28,29,35],github:[10,11,16,17,28,29,31,52],give:[3,24,27,29,36,38,44,54],given:[3,20,22,26,36,41,50,54,57,58,59],global:[3,7,12,15,23,24,38,41,44,56,58],global_learning_r:[7,15],globalstat:38,globalstatinfo:38,globe:3,goal:[38,57],godoc:25,goe:[10,11,16,17,24,27],going:[54,58],good:[10,16,26,38,58,59],goodfellow13:[10,16],googl:23,googleapi:44,gpg2:44,gpg:44,gpu:[2,3,7,10,12,15,16,19,28,31,37,39,50,51,52,56,57,58,59],gpu_id:[41,43,50],gpugpu_id:40,grab:[24,58],grad:[41,55],grad_share_block_num:[40,41],gradient:[7,9,10,12,15,16,24,41,54,58],gradient_clipping_threshold:[7,12,15,54,58],gradientmachin:[5,50,56,59],gradual:[27,38],grai:51,gram:[49,58],grant:44,graph:[10,24,49],graphviz:52,grave:58,grayscal:3,greater:[10,16],grep:[29,58],groudtruth:34,ground:[9,10,16,54,59],group:[11,17,58],group_id:56,group_input:34,grouplen:55,gru:[10,16,34,54,59],gru_attr:17,gru_bias_attr:[11,17],gru_decod:34,gru_decoder_with_attent:34,gru_encoder_decod:[49,59],gru_layer_attr:11,gru_memori:[11,17],gru_siz:54,gru_step:[17,34],gru_step_lay:[11,34],grumemori:[11,17,34],gserver:[10,36],gsizex:38,guarante:36,guess:[27,58],gui:38,guid:[30,34,35,36,38,44,45,49,51,58,59],guidenc:27,gur_group:[11,17],gzip:45,hack:[30,39],hadoop:23,half:44,hand:[55,56,58],handl:[23,26,39,56,58],handwrit:[3,58],hard:[44,54],hardwar:[29,38],has:[3,5,10,11,12,16,17,23,24,29,34,36,38,44,45,49,51,54,55,56,57,58,59],have:[2,3,5,9,10,11,16,17,20,23,24,26,27,28,29,34,35,36,38,39,41,43,44,49,51,54,55,56,58,59],hdf:2,head:[35,49,58],header:[27,36,49,52,56],health:55,heavi:39,height:[10,16,20,25,26,36,51],held:24,hello:23,help:[3,5,35,39],helper:[8,10,11,16,17,36],here:[3,5,7,10,11,15,16,17,20,23,26,27,28,34,39,40,43,44,45,49,51,52,53,54,55,56,57,58,59],heurist:[10,41,59],hidden:[10,11,16,17,34,44,54,56,58],hidden_s:[11,17,56],hierarch:[10,16,34],high:[7,15,36,50],higher:2,highest:[20,59],highli:[2,3,34,43,56,58],him:23,hint:27,histor:58,hl_get_sync_flag:36,hold:[23,24,44],home:[39,44,45],homemak:55,hook:[3,56,57],hope:0,horizont:[10,16,52],horror:55,hors:51,horst:58,host:[28,29,39,44,45],hostnam:[39,44],hostpath:45,hostport:44,hot:56,hour:59,hous:[3,20,27,49],how:[2,3,7,10,15,16,23,24,27,34,39,41,44,45,48,51,52,54,56],howev:[3,11,17,26,27,34,35,40,41,44,58,59],hpp:25,html:[20,29,51],htod:38,http:[10,11,16,17,20,28,29,31,35,44,45,50,51,52,59],huber:[10,16],huge:[10,16,35],huina:58,human:59,hyper:[10,16,36],hyperplan:20,i0601:56,i0706:59,i0719:59,i1117:38,iamfullaccess:44,iamusersshkei:44,ib0:39,icwsm:58,id_input:[9,34],idea:[10,16,26],ident:[27,29,44,55],identifi:[34,36],identityoffsetproject:[10,16],identityproject:[10,16],ids:[9,10,16,36,54,56],idx:36,ieee:58,ignor:[3,9,10,41],ijcnlp:58,illustr:[3,24,34,36,38,54],ilsvrc:52,imag:[3,19,20,23,26,27,30,43,44,46,47,50,52,53,59],image_a:26,image_b:26,image_classif:51,image_fil:26,image_lay:26,image_list_provid:52,image_nam:23,image_path:26,image_provid:51,image_reader_cr:26,image_s:52,imagenet:53,imagepullpolici:44,imageri:[10,16],images_reader_cr:26,imdb:55,imdber:58,img:[3,10,16,51],img_conv:17,img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool:17,img_pool_lay:11,img_siz:51,imgsiz:38,imgsizei:38,imgsizex:38,immedi:44,immutable_paramet:23,implement:[3,10,11,12,16,17,20,34,54,57],importerror:56,improv:[0,38,44,58,59],inbound:44,includ:[2,3,10,11,16,17,23,25,28,29,34,36,38,41,44,45,49,54,55,57,59],inconsist:55,incorrect:[10,16],increas:[24,41,59],increment:41,incupd:36,inde:[20,26,29],independ:[10,16,54],index:[3,9,10,16,19,20,24,34,39,44,56],indexslot:[10,57],indic:[3,9,10,16,27,39,44,57],individu:[27,44],industri:24,infer:[1,23,24,28],infiniband:39,info:[9,10,16,36,39],infom:35,inform:[5,9,36,38,41,44,55,56,57,58,59],infrastructur:[44,50],ingor:41,ininst:23,init:[7,15,36,43,44,50,54,56,57],init_hook:[54,56,57],init_hook_wrapp:8,init_model_path:[40,41,43,49,54,57],initi:[3,5,7,10,15,16,34,36,41,49,50,54,57],initial_max:[7,15],initial_mean:[7,10,15,16],initial_min:[7,15],initial_std:[7,10,15,16],initpaddl:[5,50],inlcud:[11,17],inlin:44,inner:36,inner_param_attr:[11,17],input1:[10,11,16,17],input2:[10,16],input:[3,5,9,10,11,14,16,17,19,20,22,26,27,34,36,43,49,50,51,52,54,56,57,58,59],input_data:36,input_data_target:36,input_featur:14,input_fil:[27,57],input_hassub_sequence_data:36,input_id:[10,16],input_imag:[11,17,51],input_index:36,input_label:36,input_lay:[10,36],input_nam:23,input_sequence_data:36,input_sequence_label:36,input_sparse_float_value_data:36,input_sparse_non_value_data:36,input_t:36,input_typ:[27,34,54,56],inputdef:36,inputlayers_:36,inputtyp:[3,20],insid:[9,10,16,24,26,29,44],inspir:49,instal:[29,32,35,39,45,51,52,56,57,58],instanc:[10,12,16,24,34,36,38,41,57],instance_ip:44,instanti:24,instead:[10,16,19,26,29,35,39,54,59],instruct:[29,31,38,54],int32:41,integ:[3,9,10,16,20,25,34,36,54,58],integer_valu:[3,20,54],integer_value_sequ:[3,20,34,54,57],integr:[28,57],intend:0,inter:[10,16,39],interact:[29,44],intercept:[10,16],interest:[38,58],interfac:[5,7,10,11,15,16,17,39,44,51,56,58],interg:54,intergr:[10,16],intermedi:57,intern:[10,11,17,20,44],internet:[24,58],interpol:10,interpret:[3,9,28,38],interv:58,intrins:28,introduc:[3,24,45,56,58],introduct:[4,50],invalid:26,invari:51,invok:[3,10,38,44,56],involv:50,iob:9,ioe:9,ips:44,ipt:[10,16,34],ipython:23,is_async:12,is_discriminator_train:50,is_gener:[10,49,50,59],is_generator_train:50,is_kei:56,is_layer_typ:10,is_predict:[54,56,58],is_seq:[10,34,56],is_sequ:56,is_stat:[7,15],is_test:[52,57,58],is_train:3,isn:38,isol:29,isspars:36,issu:[28,29,38],item:[10,16,20,26],iter:[10,11,12,17,20,22,23,24,26,51,57,58],its:[3,9,10,11,16,17,23,24,36,38,41,44,49,50,51,54,58,59],itself:[11,17,24],java:25,jeremi:38,jie:[57,58],jmlr:[10,16],job:[5,9,40,41,43,52,54,56,57,58,59],job_dispatch_packag:39,job_mod:49,job_nam:44,job_namespac:44,job_path:44,job_workspac:39,jobpath:44,jobport0:44,jobport1:44,jobport2:44,jobport3:44,johan:58,join:24,joint:[49,59],jointli:[11,17,59],journal:[57,58],journei:29,jpeg:51,jpg:52,json:[39,44,45,56],jth:[11,17],judg:59,jupyt:29,just:[3,9,10,11,14,16,17,27,35,39,43,44,51,56,57,58],jx4xr:44,jypyt:23,k8s_data:44,k8s_job:23,k8s_token:23,k8s_train:44,k8s_user:23,kaim:[10,16],kaimingh:52,kebilinearinterpbw:38,kebilinearinterpfw:38,keep:[3,10,16,24],kei:[3,24,38,39,56,58],kernel:[10,16,38,54],key1:41,key2:41,key_pair_nam:44,keyid:44,keymetadata:44,keypair:44,keyserv:44,keystat:44,keyusag:44,keyword:3,kill:[24,44],kind:[2,3,23,24,27,44,45,50,54,56],kingsburi:57,kms:44,know:[3,11,17,23,27,36,38,44,56],knowledg:58,known:[50,58,59],kriz:[20,51],ksimonyan:[11,17],kube_cluster_tl:23,kube_ctrl_start_job:23,kube_list_containers_in_job_and_return_current_containers_rank:23,kubeconfig:44,kubectl:45,kuberent:44,kubernet:[23,24,37,39,46,47],kubernetes_service_host:23,kwarg:[3,9,10,11,12,16,17,20,54,56,57],l1_rate:[7,15],l2_rate:[7,15],l2regular:[51,54,58],label:[3,5,9,10,12,16,20,22,26,27,34,45,50,51,52,53,54,56,58],label_dict:57,label_dim:[10,16,54],label_fil:[26,57],label_lay:[10,26],label_list:57,label_path:26,label_slot:57,labeledbow:58,labl:58,lag:41,lake:3,lambdacost:[10,16],lambdarank:[10,16],languag:[10,16,43,49,57,58,59],laptop:29,larg:[19,57,58,59],larger:[3,7,9,10,12,15,16,39],last:[9,10,11,16,17,27,34,39,41,54,58,59],last_time_step_output:10,lastseen:45,late:58,latenc:[39,44],later:[28,35,44,54],latest:[10,16,24,29,35,45,58],latter:59,launch:[41,44,58],launcher:23,lawyer:55,layer1:[10,11,16,17],layer2:[10,16],layer3:[10,16],layer:[4,5,7,9,11,15,17,19,20,21,22,26,27,34,37,40,41,49,50,51,52,54,56,57,58],layer_0:36,layer_attr:[10,16,34,43],layer_num:[43,52],layer_s:[10,16],layer_typ:[10,16],layerbas:36,layerconfig:36,layergradutil:36,layermap:36,layeroutout:[10,16],layeroutput:[9,11,56],lbl:[9,51],ld_library_path:[28,31,39],lead:38,learn:[0,7,9,10,11,12,15,16,17,23,26,27,29,34,36,38,51,52,54,57,58,59],learnabl:[10,16],learning_method:[12,27,49,51,54,56,58,59],learning_r:[7,12,15,27,49,51,54,56,58,59],leas:24,least:[9,10,16,24,28,55],leav:[3,44],lecun:20,left:[10,16,27,52],leman:59,len:[3,10,16,34,36,54,56,57],length:[10,11,16,17,20,34,41,45,58,59],less:[10,16,23,39,59],less_than:23,let02:45,let:[5,10,16,23,27,29,44,56],level:[7,10,15,16,39,41,50,56,58,59],lib64:[28,39,41],libcudnn:28,libjpeg:51,libpaddl:25,libpython:28,librari:[10,16,28,29,39,41,56],licens:57,life:24,like:[3,9,10,16,24,26,27,28,34,38,39,40,43,44,49,52,54,56,58,59],limit:[10,20,38,41],line:[2,3,5,9,20,27,35,37,38,39,43,44,49,51,52,56,57,58,59],linear:[6,10,16,32],linear_comb:10,linearactiv:[10,27],linguist:57,link:[10,11,16,17,28,44,54,58],linux:[28,29,31,44,59],lipeng:49,lipton:58,list:[2,3,8,9,10,11,16,20,23,27,29,34,36,39,41,43,44,51,52,54,56,57,58,59],listen:41,literatur:58,littl:[2,3,41,54,58],lium:59,live:[24,29],liwicki:58,load:[2,3,5,10,16,23,24,27,41,44,52,56,57,58,59],load_featur:52,load_feature_c:52,load_feature_pi:52,load_missing_parameter_strategi:[40,41,43,49,57],load_uniform_data:50,loadparamet:5,loadsave_parameters_in_pserv:[40,41],local:[7,15,24,28,29,35,39,40,41,45,51,58],localhost:29,locat:[34,36,54,57],lock:24,log:[3,6,35,36,39,41,44,45,51,56,57,58,59],log_barrier_abstract:41,log_barrier_lowest_nod:[40,41],log_barrier_show_log:[40,41],log_clip:[40,41],log_error_clip:[40,41],log_period:[41,43,45,50,51,54,56,57,58,59],log_period_serv:[40,41],logarithm:14,logger:3,logic:[3,39],login:29,longer:59,look:[3,9,27,39,40,44,45,50,54],lookup:54,loop:26,loss:[10,16,36,50,54,58,59],lot:40,low:[10,16],lower:39,lowest:41,lst:56,lstm:[10,16,34,45,54],lstm_attr:17,lstm_bias_attr:[11,17],lstm_cell_attr:[11,17],lstm_group:[11,17],lstm_layer_attr:11,lstm_size:54,lstm_step:[11,17],lstmemori:[11,17,34],lstmemory_group:10,ltr:[10,16],lucki:27,mac:[28,29],machan:[11,17],machin:[10,11,12,16,17,27,35,36,40,41,43,44,45,54,56,58,59],made:[3,24,27,34,55],mai:[3,8,9,10,16,26,29,35,38,44,55],main:[3,5,35,44,51,57,58],mainli:41,maintain:[10,44],major:[29,35,50,52,58,59],make:[3,10,16,23,24,26,28,29,35,36,38,39,44,51,54,56,58],male:55,malloc:36,manag:[24,35,39],manageri:55,mandarin:[10,16],mani:[0,10,11,16,17,27,29,41,54,55,56,58],mannal:39,manual:35,manufactur:59,mao:58,map:[3,10,16,20,23,41,51,52,56],map_read:20,mapreduc:23,marcu:58,mark:[3,34,57],mark_slot:57,market:[27,55,58],martha:57,mask:[7,10,15,16],master:[23,35,41,58],mat_param_attr:[11,17],match:38,math:[11,17,25,36,38],matirx:[10,16],matplotlib:51,matric:[5,34,36],matrix:[9,10,11,16,17,20,25,34,36,40,43,52,57],matrixptr:36,matter:3,max:[3,7,10,13,15,16,20,38,41,43,51,54,56],max_id:[22,54],max_length:[10,34],max_sort_s:[10,16],maxid:[9,10,54],maxid_lay:[9,54],maxim:[10,59],maximum:[9,34,38,41,54,57,58],maxinum:19,maxout:10,maxpool:[10,16],mayb:[10,11,16,17,51],mean:[3,7,9,10,11,12,15,16,17,19,20,22,26,27,34,38,39,41,43,44,49,50,51,52,54,56,57,58,59],mean_img_s:51,mean_meta:52,mean_meta_224:52,mean_valu:52,measur:[27,38],mechan:[10,11,17,34,44,58],media:58,meet:57,mem:10,member:23,memcpi:38,memor:58,memori:[2,3,11,17,34,36,38,41,43,45,54,57,58,59],memory_nam:10,memory_threshold_on_load_data:41,mere:[11,17],merg:[35,41,49,59],mergedict:[49,59],messag:[27,41,45,56,58,59],meta:[39,51,52,54],meta_config:[39,56],meta_fil:56,meta_gener:[39,56],meta_path:51,meta_to_head:56,metadata:[44,45],metaplotlib:23,method:[3,8,10,11,12,16,22,29,36,38,41,43,54,56,58,59],might:[10,16,29,36,44],mileag:38,million:[43,55],min:[7,15,38,43,44,56],min_pool_s:3,mind:39,mini:[3,10,16,20,24],mini_batch:26,minibatch:[10,16],minibatch_data:20,minim:[3,12,27,41],minimum:[10,16],minimun:41,minst:3,minut:[24,44,59],miss:[41,49,57],mit:44,mix:[11,17,34,57],mixed_attr:17,mixed_bias_attr:[11,17],mixed_lay:[11,34,57],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[28,29,44],mkl:28,mkl_path:28,mkl_root:28,ml_data:[39,56],mnist:[3,5,26],mnist_provid:3,mnist_random_image_batch_read:26,mnist_train:[3,26],mnist_train_batch_read:26,mod:57,modal:57,mode:[10,16,41,50,51,52,56,58,59],model:[1,2,5,8,10,11,12,16,17,24,32,35,36,37,41,44,56,57,58],model_averag:12,model_config:[5,50],model_list:[41,43,57,58],model_output:58,model_path:43,model_zoo:[49,52],modelaverag:12,modifi:[5,34,35,36,39,44],modul:[2,3,5,8,11,17,20,27,28,51,52,54,56,57],modulo:[10,16],momentum:[7,12,15,27,54],momentumoptim:[27,51],mon:45,monitor:[54,58],mono:[10,16],month:[54,59],mood:58,more:[2,3,5,9,10,11,16,17,20,23,24,26,27,29,34,36,38,39,43,45,51,54,57,58,59],morin:[10,16],mose:[58,59],moses_bleu:59,mosesdecod:58,most:[3,5,10,20,23,26,27,34,36,38,40,56,57,58,59],mostli:[51,55],mount:[29,44,45],mountpath:[44,45],move:[10,16,24,38,44,56,58],movement:[38,58],movi:[3,58],movie_featur:56,movie_head:56,movie_id:56,movie_meta:56,movie_nam:56,movie_review:20,movieid:55,movielen:53,moving_average_fract:[10,16],mpi:39,mse:10,mse_cost:[27,56],much:[10,16,24,26,38],mul:36,mulit:39,multi:[10,16,36,40,41,52,59],multi_binary_label_cross_entropi:16,multi_crop:52,multinomi:[10,16],multipl:[9,10,11,16,17,20,23,29,34,36,41,43,44,50,54,56,58],multipli:[9,10,16,36,51],multithread:3,music:55,must:[3,9,10,11,14,16,17,26,28,29,34,35,36,39,41,43,44,59],my_cluster_nam:44,my_cool_stuff_branch:35,my_external_dns_nam:44,mypaddl:45,mysteri:55,name:[3,7,8,9,10,11,15,16,17,19,20,23,24,27,29,34,36,38,39,41,43,45,46,47,49,50,51,52,54,56,58,59],namespac:[25,29,36,45],nano:35,nativ:[10,16],natur:[43,57,58],nchw:[10,16],ndarrai:22,ndcg:[10,16],ndcg_num:[10,16],nearest:54,necessari:[3,10,16,28,36,39,54,58],necessarili:36,need:[3,10,11,16,17,20,23,27,28,29,31,34,35,36,39,40,41,43,44,45,50,51,52,54,56,57,58,59],neg:[3,9,10,16,54,57,58],neg_distribut:[10,16],negat:57,neighbor:54,nest:[3,20],net:[10,11,16,17],net_conf:58,net_diagram:52,network:[2,3,4,5,7,9,10,12,15,16,20,21,22,23,26,27,29,36,38,39,41,49,58,59],network_config:43,networkadministr:44,neural:[3,5,10,11,12,16,17,20,22,23,27,38,41,49,50,52,58,59],neuralnetwork:[10,16,32],neuron:[5,36,54,58],never:[20,26,44,45],newest:35,newtork:58,next:[10,24,34,36,38,41,44,45,57,58,59],nfs4:44,nfs:44,nfsver:44,nginx:29,nic:[39,40,41],nine:57,nlp:[3,10],nltk:20,nmt:59,nnz:36,no_cach:3,no_sequ:[3,56],noah:58,noavx:[29,31],node:[10,16,36,39,41,44,45,58,59],node_0:44,node_1:44,node_2:44,nodefil:39,noir:55,nois:[10,16,50],noise_dim:50,non:[10,16,24,36,41,44],none:[2,3,5,7,8,9,10,11,12,15,16,17,19,20,22,23,27,34,52,54],nonlinear:36,norm:50,norm_by_tim:[10,16],normal:[3,5,10,11,16,17,31,34,36,39,41,45,49,50,52],normzal:52,north:51,notat:[10,16],note:[3,5,7,10,11,12,15,16,17,19,22,23,26,28,38,41,43,44,49,51,56,58],notebook:29,noth:[14,41],notic:[34,36],novel:58,now:[0,3,10,16,24,27,29,35,41,44,50,56,57],np_arrai:20,nproc:28,ntst1213:59,ntst14:59,nullptr:36,num:[10,16,39,41,54,57,58,59],num_channel:[10,11,16,17,51],num_chunk_typ:9,num_class:[10,11,16,17,51],num_filt:[10,11,16,17],num_gradient_serv:[40,41],num_group:[10,16],num_neg_sampl:[10,16],num_parameter_serv:23,num_pass:[27,40,41,43,45,54,56,57,58,59],num_repeat:[10,16],num_result:9,num_results_per_sampl:10,number:[3,9,10,16,20,24,26,27,36,39,41,44,49,51,52,54,57,58,59],numchunktyp:9,numdevices_:43,numlogicaldevices_:43,numofallsampl:9,numofwrongpredict:9,numpi:[20,22,26,27,28,50,52],numsampl:38,numtagtyp:9,nvcc:29,nvidia:[28,29,38,41],obj:[3,8,27,51,52,54,56],object:[3,5,7,8,9,10,11,12,15,16,17,20,22,23,25,38,50,51,52,54,57],observ:[12,27,36,38,59],obtain:[54,57,58],occup:[55,56],occur:[20,35],oct:45,odd:[10,16],off:29,offer:[5,57],offici:[29,44,51],offlin:24,offset:[10,16,56],often:[9,39,54,59],ograd:36,old:[29,35,41],omit:54,on_init:3,on_travisexclud:28,onc:[3,10,24,29,35,36,44,54],one:[3,8,9,10,11,12,14,16,17,19,20,23,24,26,27,29,35,36,39,41,43,44,45,49,50,51,52,54,56,57,58,59],one_host_dens:56,one_hot_dens:56,onli:[2,3,5,9,10,11,16,17,19,20,22,23,27,28,34,35,36,38,40,41,43,44,45,49,52,54,55,58,59],onlin:[12,24,26],onto:44,open:[0,3,10,16,23,26,27,29,44,52,54,56,57],openbla:28,openblas_path:28,openblas_root:28,oper:[10,11,12,16,17,29,34,36,38,41,44,49,51,56],opinion:58,opt:[23,28],optim:[3,4,7,15,21,27,36,38,58],option:[3,9,10,16,23,27,35,36,39,43],order:[3,10,11,16,17,20,26,36,41,44,45,50,52,54,58,59],ordinari:58,oregon:44,org:[10,11,16,17,28,50],organ:[10,16,51,58,59],origin:[0,2,3,10,16,20,35,50,57,59],other:[3,9,10,11,12,16,17,20,28,29,31,34,35,43,44,45,49,50,51,52,54,55,56,57,58,59],otherchunktyp:9,otherwis:[2,8,10,16,20,23,24,26,34,39,43,56,59],our:[23,29,34,36,44,45,49,51,54,57,58,59],out:[10,16,23,27,34,38,41,44,45,51,58],out_dir:44,out_left:[10,16],out_mem:34,out_right:[10,16],out_size_i:[10,16],out_size_x:[10,16],outlin:42,outperform:57,output:[5,7,9,10,14,15,16,17,19,20,22,23,26,27,34,36,38,41,43,45,49,50,51,52,54,56,57,58,59],output_:[10,16,36],output_dir:52,output_fil:57,output_id:[10,16],output_lay:[22,52],output_max_index:19,output_mem:[10,16,34],outputh:[10,16],outputw:[10,16],outsid:[3,10,11,16,17,29],outter_kwarg:3,outv:36,over:[2,10,11,16,17,23,35,36,38,54,57,58],overcom:58,overhead:38,overlap:36,overrid:[24,36],owe:0,own:[29,35,39,44],pacakg:31,pack:29,packag:[3,16,20,29,30,44],pad:[10,34,54],pad_c:[10,16],pad_h:[10,16],pad_w:[10,16],paddepaddl:2,padding_attr:[10,16],padding_i:[10,16],padding_x:[10,16],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,22,23,24,25,27,28,29,30,31,35,36,37,38,39,41,43,44,50,51,54,56,57,58,59],paddle_error:25,paddle_matrix:25,paddle_matrix_shap:25,paddle_n:39,paddle_output:45,paddle_port:39,paddle_ports_num:39,paddle_ports_num_for_spars:39,paddle_pserver2:39,paddle_root:49,paddle_source_root:49,paddle_train:39,paddledev:[44,45],paddlepaddl:[0,2,3,5,10,11,12,16,17,20,24,26,27,28,31,32,34,35,36,37,38,39,46,47,52,54,56,57,58],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[35,44,56],pai:29,pair:[9,57],palmer:57,paper:[10,16,49,50,52,57,58,59],paraconvert:49,paragraph:58,parallel:[38,41,43,44,45,59],parallel_nn:[7,15,40,41],param:[7,10,15,16,56],param_attr:[10,11,16,17,27,34],paramattr:[7,10,15,16,27,34],paramet:[2,3,4,5,8,9,10,11,12,16,17,19,20,21,26,27,36,37,43,50,51,54,56,57,58,59],parameter_attribut:[10,16],parameter_block_s:[40,41],parameter_block_size_for_spars:[40,41],parameter_learning_r:[7,15],parameter_nam:23,parameter_serv:23,parameterattribut:[7,10,11,15,16,17],parametermap:36,parameters_:36,parameterset:23,parametris:12,paramt:[44,49],paramutil:56,paraphras:59,paraphrase_data:49,paraphrase_model:49,paraspars:36,parent:[10,36],pars:[5,20,43,44,50,56,57],parse_config:[5,50],parser:56,part:[3,16,27,34,35,36,38,50,54,56,57,58,59],parti:[38,56],partial:[10,16,50],participl:49,particular:38,partit:[24,44],pass:[3,8,10,16,20,22,24,26,27,35,36,38,39,41,44,45,50,51,54,56,57,58,59],pass_idx:26,pass_test:50,passtyp:36,password:[29,39],past:[23,29,44],path:[2,3,9,20,24,26,27,28,34,39,41,43,44,45,49,51,52,54,57,58,59],pattern:[24,25,27,44,56,58],paul:57,paus:24,pave:59,pdf:[10,11,16,17],pem:[23,44],pend:24,penn:57,per:[10,26,41,51,54],perfom:[41,43],perform:[2,10,11,16,17,27,34,35,36,37,39,40,50,51,54,58,59],period:[2,24,41,54,56,57,58,59],perl:[58,59],permiss:44,peroid:[10,16],persist:44,persistentvolum:44,persistentvolumeclaim:44,person:23,perspect:38,perturb:36,pgp:44,phase:27,photo:51,pick:[3,44],pickl:56,picklabl:8,pictur:54,piec:[10,11,16,17,27],pillow:51,pip:[28,35,39,51,56],pipe:55,pipelin:57,pixel:[3,10,16,20],pixels_float:3,pixels_str:3,place:[2,3,24,36,38,39,52,59],placehold:27,plai:[57,58],plain:[2,9,10,16],plan:[24,36],platform:[0,27,44],pleas:[3,5,7,10,11,12,15,16,17,23,24,26,28,29,30,34,35,36,44,49,51,54,56,57],plot:[23,51],plotcurv:51,png:[51,52],pnpairvalidationlay:41,pnpairvalidationpredict_fil:40,pod:[44,45],pod_nam:44,point:[27,38],polar:58,polici:44,polit:58,poll:58,poo:51,pool3:36,pool:[3,4,11,17,21,51,54,56],pool_attr:[11,17],pool_bias_attr:[11,17],pool_layer_attr:11,pool_pad:[11,17],pool_siz:[3,10,11,16,17],pool_size_i:[10,16],pool_strid:[11,17],pool_typ:[10,11,16,17],pooling_lay:[11,54,56],pooling_typ:[10,16,54],poolingtyp:19,popular:[27,52],port:[29,39,40,41,44,45],port_num:40,ports_num:41,ports_num_for_spars:[40,41,43],pos:[56,58],pose:24,posit:[3,9,10,16,20,54,57,58,59],positive_label:9,possibl:[23,35,38,50],post1:28,potenti:38,power:[10,54,59],practic:[8,10,16,27,34,36],pre:[3,10,11,17,23,29,44,45,49,51,57,58,59],pre_dictandmodel:49,precis:[9,28],pred:[54,57],predefin:58,predetermin:[10,41,59],predic:57,predicate_dict:57,predicate_dict_fil:57,predicate_slot:57,predict:[3,4,9,10,12,16,22,27,34,39,41,49,54,59],predict_fil:41,predict_output_dir:[40,41,54],predict_sampl:5,predicted_label_id:54,predictor:56,predin:51,prefer:58,prefetch:36,prefix:[24,44],pregrad:36,preinstal:28,premodel:49,prepar:[5,32,46,54],preprcess:58,preprocess:[20,34,39,45,58],prerequisit:28,present:[23,52,57,59],pretti:27,prev_batch_st:[40,41],prevent:[2,12,23,24],previou:[10,11,16,17,24,36,41,44,57,59],previous:[45,52],price:27,primari:16,primarili:58,principl:23,print:[7,15,22,23,27,34,41,49,54,56,57,58,59],printallstatu:38,printer:9,printstatu:38,prite:9,privileg:44,prob:[9,22,50],probabilist:[10,16,49],probability_of_label_0:54,probability_of_label_1:54,probabl:[9,10,16,22,34,35,52,54,57],problem:[5,10,12,16,23,32,54,57,58],proc:29,proc_from_raw_data:54,proce:[20,26,44],procedur:[49,57,59],proceed:[10,16,57],process:[2,3,5,7,8,10,11,12,15,16,17,23,27,29,34,39,41,43,44,45,49,51,52,54,56,57,58,59],process_pr:54,process_test:8,process_train:8,processdata:[51,52],processor:38,produc:[11,17,20,24,26,29,52,54],product:[0,29,36,44,54,58],productgraph:45,profil:28,proflier:38,program:[2,20,23,26,29,38,39,41],programm:55,progress:[24,41],proivid:3,proj:[10,16],project:[10,11,16,17,28,34,36,56],promis:[10,11,17],prompt:35,prone:23,prop:57,propag:[12,41,43],properli:54,properti:[3,41],propos:59,proposit:57,protect:36,proto:19,protobuf:28,protocol:41,prove:54,proven:59,provid:[0,8,10,16,20,23,27,29,34,38,39,44,49,50,51,52,55,58],providermemory_threshold_on_load_data:40,provis:44,provod:3,prune:10,ps_desir:24,pserver:[39,40,41,44],pserver_num_thread:[40,41],pserverstart_pserv:40,pseudo:23,psize:36,pull:[29,49,59],punctuat:58,purchas:54,purpos:[0,24,38],push_back:36,put:[24,29,36,39,45,54],pvc:44,pwd:29,py_paddl:[5,20,50],pydataprovid:[2,3,54],pydataprovider2:[4,5,27,34,54,56,58],pydataproviderwrapp:8,pyramid:[10,16],pyramid_height:[10,16],python:[2,3,4,8,16,22,23,25,27,28,35,39,49,50,51,57,58,59],pythonpath:51,pzo:58,qualifi:28,qualiti:54,queri:[10,16,44,59],question:[10,16,23,44,57],quick:[41,45,53,59],quick_start:[44,45,46,54],quick_start_data:45,quickli:27,quickstart:45,quit:38,quot:55,rac:10,rais:20,ramnath:58,ran:38,rand:[38,41,43,50,57],random:[3,7,10,15,16,20,26,27,41,50,51,57],randomli:58,randomnumberse:40,rang:[3,10,16,20,26,41,43,51,55,57],rank:[10,16,23,44,52,54],rare:3,rate:[7,9,12,15,36,39,51,54,56,58,59],rather:[5,44,58],ratio:41,raw:[10,16,27,54,58],raw_meta:56,rdma:[28,41],rdma_tcp:[40,41],reach:[24,38,57],read:[2,3,20,23,24,26,27,34,39,44,52,54,56],read_from_realistic_imag:23,read_from_rng:23,read_mnist_imag:23,read_ranking_model_data:23,reader:[22,59],reader_creator_bool:26,reader_creator_random_imag:[20,26],reader_creator_random_image_and_label:[20,26],readi:[24,27,44,45,51],readm:[55,56,58],readonesamplefromfil:3,readwritemani:44,real:[3,26,27,50],realist:23,reason:[10,11,17,23,24,29,45],rebas:35,recal:9,receiv:[8,24],recent:59,reciev:41,recogn:51,recognit:[3,10,16,52,58],recommand:3,recommend:[2,11,17,23,29,34,36,39,41,56],recommonmark:28,recompil:38,record:[44,56,57],recordio:23,recov:[24,27,50],rectangular:[10,16],recurr:[57,58],recurrent_group:[11,17,34],recurrent_lay:11,recurrentgroup:9,recurrentlay:41,recv:44,reduc:[12,39,41,43],refer:[2,5,7,8,10,11,12,15,16,17,24,34,36,39,45,49,51,54,56,59],referenc:10,regard:57,regardless:59,regex:56,region:[38,57],regist:[36,38],register_gpu_profil:38,register_lay:36,register_timer_info:38,registri:45,regress:[9,32,53],regular:[7,12,15,36,44,51,54,58],rel:[2,11,17,39],relat:[3,8,24,29,31,45,56,58],relationship:[20,27,50],releas:[28,29,31,44,55,57],relev:[57,59],reli:28,reliabl:24,relu:[6,10,16,36],reluactiv:10,remain:54,rememb:10,remot:[7,15,29,35,36,39,41,43,44],remoteparameterupdat:41,remov:[20,39,41,58],renam:59,reorgan:[10,16],repeat:10,replac:58,repo:[29,35],report:[38,39],repositori:35,repres:[3,5,10,12,16,20,34,36,44,51,54,55],represent:[54,58],reproduc:59,request:[24,44,45,49,59],requir:[2,9,10,16,23,24,36,39,44,45,50,51,54,56],requrest:35,res5_3_branch2c_bn:52,res5_3_branch2c_conv:52,res:57,research:[10,16,51,55,58],resembl:58,reserv:3,reserveoutput:36,reset:[10,16,24],reshap:26,reshape_s:[10,16],residu:52,resnet:53,resnet_101:52,resnet_152:52,resnet_50:52,resolv:[35,45],resourc:[29,44],respect:[3,27,34,36,41,51,52,57,59],respons:[10,16,44,45],rest:[3,10,16,27],restart:[24,44,45],restartpolici:[44,45],restrict:41,resu:26,result:[5,9,10,14,16,22,34,38,41,44,51,52,54,56,57,58],result_fil:[9,34],ret_val:56,retir:55,retran:44,retriev:[36,45],return_seq:[11,17],reus:[26,36],reveal:23,revers:[10,11,16,17,34,57,58],review:[35,45,54,58],reviews_electronics_5:45,revis:54,rewrit:59,rgb:[10,16],rgen:58,rho:12,rich:27,right:[3,10,16,52],rmsprop:[12,54],rmspropoptim:56,rnn:[10,11,17,37,40,54,58],rnn_bias_attr:34,rnn_layer_attr:34,rnn_out:34,rnn_step:10,rnn_use_batch:[40,41],rnnlm:20,robot:51,role:[23,34,44,53,58],roman:58,romanc:55,root:[12,19,29,39,44,45],root_dir:39,rot:[10,16],rotat:10,roughli:[3,50],routin:56,routledg:58,row:[5,9,10,16,20,36,52],row_id:[10,16],rsize:44,rtype:[10,56],rule:[36,44],run:[23,24,29,35,36,37,38,41,44,46,47,49,51,52,54,56,58,59],runinitfunct:38,runtim:[2,3,28,29,39],s_fusion:56,s_id:56,s_param:50,s_recurrent_group:34,sacrif:2,sai:[27,41,43],sake:36,sale:55,same:[3,5,8,9,10,11,16,17,23,34,39,43,44,49,54,56,57,58,59],samping_id:[10,16],sampl:[3,5,9,20,39,41,43,49,50,52,54,56,57,58,59],sample_dim:50,sample_id:9,sample_num:9,santiago:58,satisfi:[39,44,54],save:[3,10,16,20,24,27,41,43,44,45,51,52,54,56,57,58,59],save_dir:[27,41,43,45,50,51,54,56,57,58,59],save_only_on:[40,41],saving_period:[40,41],saving_period_by_batch:[40,41,43,54],saw:3,sbin:29,scalabl:0,scalar:[3,10,16],scale:[0,10,14,52,55,56],scalingproject:[10,16],scatter:10,scenario:[27,40],scene:40,schdule:44,schedul:[44,50],scheduler_factor:[7,15],schema:49,scheme:[9,12,57],schmidhub:58,schwenk:59,sci:55,scienc:58,scientist:[0,55],score:[9,10,16,56,58,59],screen:56,scrip:54,script:[5,20,29,39,44,51,52,54,57,58,59],seaplane_s_000978:51,search:[10,24,28,34,41,57,59],seat:59,second:[3,10,16,20,23,26,27,35,39,49,52,54,55,56,58],secret:44,section:[3,34,36,39,44,54],sed:58,see:[3,5,10,11,16,17,23,27,29,35,38,44,49,50,52,54,56,58,59],seed:[38,41],segment:9,segmentor:49,sel_fc:[10,16],select:[10,16,35,44,55,59],selectiv:[10,16],selector:45,self:[27,36,55,58],selfnorm:[10,16],semant:[23,34,53,58],semat:23,sen_len:57,send:[24,41,44],sens:10,sent:[23,45],sent_id:34,sentenc:[3,10,34,54,57,58,59],sentiment:[3,27,53,54,57],sentiment_data:58,sentiment_net:58,sentimental_provid:3,separ:[3,9,41,49,54,55,56,57,59],seq:[10,16,56],seq_pool:[10,16],seq_text_print:9,seq_to_seq_data:[49,59],seq_typ:[3,20,56],seqtext_printer_evalu:34,seqtoseq:[10,34,49,59],seqtoseq_net:[10,34,49,59],sequel:3,sequenc:[3,9,10,11,14,16,17,19,20,36,49,54,56,57,58,59],sequence_conv_pool:54,sequence_layer_group:10,sequence_nest_layer_group:10,sequencesoftmax:6,sequencestartposit:[10,16],sequencetextprint:9,sequencetyp:3,sequenti:[8,10,16,34,54,57],seri:[11,17,58],serial:3,serv:[29,38,44,50],server:[23,29,36,39,40],serverless:24,servic:[29,55],session:[29,38],set:[2,3,5,7,9,10,11,15,16,17,20,23,24,27,28,29,31,34,36,37,38,39,40,41,43,44,45,49,51,52,54,55,56,57,58,59],set_active_typ:36,set_default_parameter_nam:[7,15],set_drop_r:36,set_input:10,set_siz:36,set_typ:36,setp:44,settup:36,setup:[3,29,36,54],sever:[3,10,16,39,43,44,53,54,56,57,58,59],sgd:[12,23,24,39,50,58,59],sgdasync_count:40,shallow:57,shape:[10,16,52],shard:[24,44],share:[10,16,28,29,38,41,45,57],shared_bia:[11,17],shared_bias:[10,16],shell:[44,52],shift:52,ship:51,shold:58,shop:58,shorten:[10,16],shorter:52,should:[3,5,9,10,12,16,20,22,23,26,27,31,34,35,39,44,51,54,56,57,58,59],should_be_fals:23,should_be_tru:23,should_shuffl:[3,57],shouldn:35,show:[5,12,16,20,24,27,35,41,44,45,49,52,54,56,57,58,59],show_check_sparse_distribution_log:[40,41],show_layer_stat:[40,41],show_parameter_stats_period:[40,41,43,45,54,57,58,59],shown:[3,9,10,16,23,34,36,38,44,50,51,52,54,56,58,59],shrink:36,shuf:56,shuffl:[3,20,56,58],sid:44,side:[10,16,52],sig:44,sigint:39,sigmoid:[6,10,16,17,36],sigmoidactiv:[10,11],sign:44,signal:39,signatur:44,signific:38,similar:[10,16,26,44,54,56],similarli:[10,16,57],simpl:[2,3,9,10,11,14,16,17,20,28,29,32,35,38,41,54,56,57,58],simple_attent:34,simple_gru:54,simple_lstm:[10,16,54],simple_rnn:[10,34],simplest:44,simpli:[2,10,16,23,28,29,34,35,38,49,52,56,58,59],simplifi:[23,36,45],simultan:44,sinc:[10,16,24,26,27,29,38,44,50,54,55,59],sincer:[35,58],singl:[3,9,11,12,17,20,24,29,36,39,45,52,54,57,59],site:44,six:[49,57,59],size:[3,9,10,11,12,16,17,20,24,26,27,34,36,39,41,50,51,52,54,55,56,57,58,59],size_a:[10,16],size_b:[10,16],size_t:36,sizeof:49,skill:59,skip:[26,27,39,44,52],slide:[10,12,16,24],slightli:51,slope:[10,16],slot:[56,57],slot_dim:56,slot_nam:56,slottyp:56,slow:[3,38],small:[3,36,39,41,51,59],small_messag:[40,41],small_vgg:51,smaller:[10,16,24],smith:58,snap:45,snapshot:44,snippet:[34,36,38,44,54],social:58,sock_recv_buf_s:[40,41],sock_send_buf_s:[40,41],socket:41,softmax:[6,10,11,16,17,23,34,36,49,54,57,58],softmax_param_attr:[11,17],softmax_selfnorm_alpha:[10,16],softmaxactiv:[34,54],softrelu:6,softwar:[29,38],solv:[23,57],solver:59,some:[3,7,10,12,15,16,20,23,27,28,35,36,38,40,41,43,44,50,54,55,56,57,58,59],some_python_class:25,somecppclass:25,somedata:22,somegotyp:25,someth:[3,10,16],sometim:[12,26,38,58],soon:24,sophist:[27,36,39],sort:[10,16,20,41,44,56,58,59],sourc:[0,8,10,16,26,27,29,32,34,35,44,45,49,54,56,59],source_dict_dim:34,source_language_word:34,space:[9,29,34,38],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,15,16,20,36,39,41,44,54],sparse_binary_vector:[3,20,54],sparse_binary_vector_sequ:20,sparse_float_vector:3,sparse_non_value_slot:20,sparse_upd:[7,15],sparse_value_slot:20,sparse_vector:20,sparse_vector_sequ:20,sparseparam:36,sparseprefetchrowcpumatrix:36,spatial:[10,16,51],speak:[34,59],spec:[44,45],specfii:41,speci:51,special:[10,28,49,54,59],specif:[2,43,51,54,56],specifi:[2,3,9,10,16,20,23,27,28,34,36,41,44,50,51,52,54,55,56,58,59],speech:[10,16],speed:[11,17],spefici:52,sphinx:[25,28,29],sphinx_rtd_them:28,split:[3,10,16,39,43,44,49,52,54,57],split_count:44,spp:10,sql:2,squar:[6,10,12,16,19,27],squarerootn:13,squarerootnpool:[10,16],squash:59,srand:41,src:59,src_backward:34,src_dict:34,src_embed:34,src_forward:34,src_id:34,src_root:5,src_word_id:34,srl:57,ssd:16,ssh:[29,39,44,45],sshd:29,ssl:28,sstabl:23,stabl:44,stack:[27,44,54,57],stacked_lstm_net:58,stacked_num:58,stackexchang:[10,16],stage:39,stake:59,stale:35,stamp:38,standard:[7,15,49,51,57,58,59],stanford:[20,45],stanh:6,star:55,start:[10,16,24,27,29,34,35,38,39,41,48,49,53,56,59],start_pass:[40,41],start_pserv:41,startup:[24,44],stat:[28,38,41,57,58,59],state:[10,11,16,17,24,27,34,41,45,50,57,59],state_act:[10,11,16,17],statement:[36,44],staticinput:[10,34],statist:[10,16,41,54,57,58,59],statset:38,statu:[9,35,38,44,45],status:45,std:[36,41],stderr:39,stdout:39,step:[5,10,11,12,16,17,19,24,34,36,38,39,44,45,54,56,57,58,59],still:52,stmt1482205552000:44,stmt1482205746000:44,stochast:[12,24],stock:58,stop:[10,29,39,41,45,56],storag:[44,45,51],store:[9,10,16,24,36,39,41,44,45,49,51,52,54,56,57,58,59],str:[22,43],straight:35,strategi:[3,19,24,41,57],street:[10,16,57],strength:50,strict:26,stride:[10,16],stride_i:[10,16],stride_x:[10,16],string:[2,3,8,9,10,16,36,41,44,58],strip:[54,56,57],structur:[20,39,44,49,51,54,56,57,58,59],sts:44,stub:[10,16],student:55,stuff:35,stun:3,style:[3,10,16,28,35],sub:[9,10,16,20,23,34,36,51,54,59],sub_sequ:3,subgradi:12,submit:[35,40,41,44],subnet0:44,subnet:[23,44],subobjectpath:45,subsequenceinput:10,subset:[36,59],substanti:52,substitut:59,succe:58,succeed:45,success:[44,45,52,57],successfulcr:45,successfuli:58,successfulli:[52,56,58],successor:[41,59],sucessfulli:59,sudo:[28,31,44,51],suffic:[26,27],suffici:41,suffix:59,suggest:[10,16,38],suitabl:[35,41,51],sum:[9,10,12,13,16,34,36],sum_:10,sum_to_one_norm:10,summar:[54,58],sumpool:[10,16],support:[7,9,10,12,15,16,19,20,24,26,28,29,31,34,36,38,41,44,57],suppos:[27,36,54],sure:[35,36,44,51,58],survei:58,swap_channel:52,swig:[5,25,28],swig_paddl:[5,20,50],symbol:10,sync:[24,35,41,50],syncflag:36,synchron:[12,24,39,41,44],syntact:57,syntax:[26,56],synthect:27,synthes:50,synthet:27,sys:52,system:[24,28,29,39,45,54,57,58,59],t2b:49,tab:[29,54],tabl:[3,10,16,52,54,59],tableproject:[10,16],tag:[9,29,34],tagtyp:9,take:[3,5,9,10,11,16,17,23,34,36,38,44,45,50,57,59],taken:[3,57],tanh:[6,10,11,16,17,36],tanhactiv:[10,11,34],taobao:58,tar:[20,28,44],tarbal:44,target:[10,16,34,49,54,59],target_dict_dim:34,target_language_word:34,targetinlink:10,task:[3,9,10,16,27,34,43,49,52,57,58,59],tbd:25,tconf:58,tcp:[41,44],teach:54,tear:38,technic:24,technician:55,techniqu:[34,36],tee:[45,51,56,57,58,59],tell:[24,29,38,56],tellig:58,templat:[45,57],tempor:[10,16,54,57],tensor:10,term:[10,11,16,17,57,58],termin:45,terminolog:27,tese:2,tesh:57,test:[2,3,8,9,10,16,20,23,26,28,29,31,35,38,39,40,49,51,52,54,55,59],test_all_data_in_one_period:[45,51,56,57,58],test_data:59,test_fcgrad:36,test_gpuprofil:38,test_layergrad:36,test_list:[3,8,27,51,54],test_part_000:58,test_pass:[40,41,43,59],test_period:[40,41,43],test_ratio:56,test_wait:[40,41],testa:23,testb:23,testbilinearfwdbwd:38,testconfig:36,tester:[56,59],testfcgrad:36,testfclay:36,testlayergrad:36,testmodel_list:40,testq:23,testsave_dir:40,testutil:36,text:[2,3,9,11,17,20,23,29,34,44,49,53,54,56,58],text_conv:54,text_conv_pool:56,text_fil:[20,58],tflop:38,tgz:28,than:[3,5,7,9,10,11,12,15,16,17,24,28,29,34,36,39,44,52,57,58,59],thank:[0,49,59],thei:[3,23,24,27,29,34,36,38,39,40,44,52,58],them:[2,3,11,17,23,24,26,27,29,34,38,40,41,44,51,52,54,56,58,59],theori:38,therefor:28,therein:[10,16],therun:52,thi:[2,3,7,8,9,10,11,12,15,16,17,20,23,24,26,27,28,29,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],thing:[3,27,34,35,38,56,57],think:23,third:[10,16,24,38,52,58],those:[24,52,57],thought:38,thread:[36,38,41,43,56,57,58,59],thread_local_rand_use_global_se:[40,41],threadid:43,threadloc:38,three:[3,9,10,12,16,24,26,27,34,41,50,52,58,59],threshold:[7,9,12,15,24,41,58],thriller:55,through:[5,10,16,24,34,36,38,39,49,50,51,58,59],throughout:54,throughput:38,thu:[3,10,16,27,36,44,59],tier:45,tight:28,time:[3,10,11,16,17,19,20,23,24,26,27,34,38,41,43,45,54,55,57,58,59],timelin:[10,16,38],timeo:44,timeout:24,timer:28,timestamp:[10,16,55],timestep:[3,10,16],titil:56,titl:[35,55,56],tmall:58,todo:[9,11,17,20,22,24],toend:[10,16],togeth:[3,10,11,16,17,20,34],token:[9,10,23,34,49,58,59],too:[29,31],tool:[29,34,35,44,58],toolchain:28,toolkit:[28,31],top:[9,52,57],top_k:9,topolog:[16,20,23],toronto:[20,51],total:[9,24,26,38,39,45,49,59],total_pass:26,touch:58,tourism:58,tourist:59,toward:27,tra:59,track:[10,24],tractabl:10,tradesman:55,tradit:[10,16],trail:20,train:[1,2,3,5,7,8,9,10,12,15,16,20,32,34,36,37,38,40,46,47,52],train_conf:[49,59],train_config_dir:44,train_data:59,train_id:44,train_list:[3,8,27,51,52,54],train_part_000:58,trainabl:[10,16],traindot_period:40,trainer:[3,5,23,27,36,39,41,43,50,54,57,58,59],trainer_config:[2,3,27,39,44,45,54,56,58],trainer_config_help:[3,6,7,8,9,10,11,12,13,27,36,51,54,56],trainer_count:[40,41,43,44,45,56,57,58,59],trainer_id:[41,44],trainerintern:[54,56,59],training_machin:50,trainingtest_period:40,trainonedatabatch:50,tran:[10,36,41],trane:3,transact:[24,58],transfer:[2,3],transform:[10,16,34,36,50,51,54,57],transform_param_attr:[11,17],translat:[10,11,17,27,49,56,58,59],transpar:39,transport:41,transpos:[10,16,36,50],transposedfullmatrixproject:[10,16],travel:[3,11],travi:[28,35],treat:[10,16,34],tree:[10,16,35,41,59],trg:59,trg_dict:34,trg_dict_path:34,trg_embed:34,trg_id:34,trg_ids_next:34,triain:2,tricki:25,trivial:3,trn:54,truck:51,true_imag:26,true_label:26,true_read:26,truth:[9,10,16,54,59],tst:54,tune:[7,15,37,54,56,59],tuninglog_barrier_abstract:40,tupl:[3,8,10,11,16,20,26],ture:[10,16],turn:[10,26,50],tutori:[29,34,35,36,38,39,44,45,46,47,48,52,54],tweet:58,twelv:59,twitter:58,two:[2,3,10,11,16,17,23,26,27,29,34,38,39,43,44,49,50,51,52,54,56,57,58,59],txt:[3,36,39,44,54,56,58],type:[3,8,9,10,11,12,16,17,19,20,22,23,24,25,26,27,29,34,36,41,43,44,45,51,52,54,56,57],type_nam:[10,56],typedef:25,typic:[5,9,29,38,58],ubuntu:31,ubyt:26,uci:20,ufldl:[10,16],uid:45,uint64:25,uint64_t:25,unbalanc:41,unbound:34,unconstrain:58,under:[27,28,29,44,55,58],underli:27,understand:[29,38,49,51,58],understudi:59,undeterminist:38,unemploi:55,unexist:57,uniform:[7,10,15,16,20,26,41,50],uniqu:[23,24,35,41,44],unique_ptr:36,unit:[10,11,16,17,27,28,29,34,35,57],unittestcheckgrad_ep:40,univ:59,unix:39,unk:[49,59],unk_idx:[54,57],unknown:[10,16],unlabel:58,unlik:[57,58,59],unseg:[10,16],unsup:58,unsupbow:58,until:[24,39,44,57],unus:56,unzip:56,updat:[7,10,12,15,16,24,28,36,39,41,43,58],updatecallback:36,updatestack:44,upload:24,upon:[0,57],upstream:35,uri:44,url:[31,58],urls_neg:58,urls_po:58,urls_unsup:58,usag:[2,3,9,10,11,16,17,20,22,27,38,49,50,56],use:[0,2,3,5,7,8,9,10,11,12,15,16,17,19,20,23,27,28,29,30,31,34,35,36,38,39,41,43,44,45,49,50,51,52,54,55,56,57,58,59],use_global_stat:[10,16],use_gpu:[40,41,43,45,50,51,52,54,56,57,58,59],use_jpeg:51,use_old_updat:[40,41],use_seq:[27,56],use_seq_or_not:56,used:[2,3,5,9,10,11,12,16,17,19,20,22,23,24,26,27,30,31,34,36,38,39,40,41,43,44,49,51,52,54,56,57,58,59],useful:[2,3,10,11,17,34,36,43,54,57,58],usegpu:[36,50],useless:39,user:[2,3,7,9,10,11,15,16,17,20,22,23,26,27,29,35,39,40,41,44,52,54,57],user_featur:56,user_head:56,user_id:56,user_meta:56,user_nam:56,userid:55,usernam:35,uses:[3,24,34,35,36,41,44,51,52,54,56,59],using:[2,3,5,7,8,10,15,16,20,23,24,26,27,29,34,35,36,38,41,43,44,45,49,50,51,52,54,57,58],usr:[28,29,39,41,44],usrdict:49,usrmodel:49,usual:[10,16,20,27,28,38,41,43,44,58],utf:49,util:[5,28,34,36,38,51,56,58],v28:[10,16],valid:[26,44,52,58],valu:[3,5,7,9,10,12,15,16,19,20,22,24,27,34,36,41,43,44,50,51,52,57,58],value1:41,value2:41,value_rang:20,vanilla:34,vanish:58,vari:[38,44],variabl:[3,10,16,20,23,27,28,31,36,39,44,45,58],varianc:[10,16,52],variant:29,vast:35,vector:[3,10,11,16,17,20,23,34,36,49,54,56,58,59],vectorenable_parallel_vector:40,verb:57,veri:[3,10,16,19,34,38,51,54,58],verifi:[35,36],versa:28,version:[10,11,16,17,28,29,31,36,38,39,40,41,44,45,49,51,55,57,58,59],versu:23,vertic:[10,16,52],vgg:[11,17,51],vgg_16_cifar:51,via:[24,26,28,38,39,44,54],vice:28,view:[10,16],vim:35,virtual:29,virtualenv:56,visibl:29,vision:51,visipedia:51,visual:[10,16,29,38],viterbi:57,voc_dim:54,vocab:58,volum:[29,45],volumemount:[44,45],volumn:44,voluntarili:55,vutbr:20,wai:[3,10,11,16,17,23,27,29,34,36,39,43,56,57,59],wait:[12,24,41],walk:[5,50],wall:57,want:[3,10,11,16,17,23,26,27,28,29,36,41,43,49,52,54,56,57,58],war:55,warn:[10,16],warp:[10,16,38],watch:24,wbia:[44,52],web:29,websit:[51,54,57,58],wei:[57,58],weight:[9,10,11,12,16,17,34,36,41,43,51,52],weight_act:[11,17],weightlist:36,weights_:36,weights_t:36,welcom:[56,58],well:[36,41,44,51,54],west:44,western:55,wether:[10,16],what:[7,10,11,12,15,16,17,27,39,54,56],wheel:28,when:[2,3,7,9,10,12,15,16,20,22,24,29,31,34,35,36,38,41,43,44,45,49,50,51,57,58,59],whenev:56,where:[3,10,11,12,16,17,23,24,27,34,36,38,39,41,43,49,52,57,59],whether:[9,10,11,16,17,26,36,41,50,51,56,58,59],which:[0,2,3,5,9,10,11,12,16,17,20,23,24,26,27,31,34,36,38,39,41,43,44,50,51,52,54,55,56,57,58,59],whichev:50,whl:28,who:[49,52,55],whole:[3,9,20,25,44,45,54,55,56,59],whole_cont:56,whose:[3,10,16,20,24,34,56,57],why:[11,17],wide:57,width:[9,10,16,20,25,26,36,51,59],wiki:[10,16],wikipedia:[10,16],wilder:3,window:[10,16,19,29,58],wise:[10,16],with_avx:29,with_avxcompil:28,with_coveragecompil:28,with_doccompil:28,with_doubl:36,with_doublecompil:28,with_dsocompil:28,with_gpu:29,with_gpucompil:28,with_profil:38,with_profilercompil:28,with_pythoncompil:28,with_rdmacompil:28,with_style_checkcompil:28,with_swig_pycompil:28,with_test:29,with_testingcompil:28,with_tim:38,with_timercompil:28,within:[10,27],without:[9,10,16,26,39,58],wmt14:59,wmt14_data:59,wmt14_model:59,wmt:59,woboq:29,won:[38,52],wonder:3,word:[3,9,10,20,34,43,53,56,57,58,59],word_dict:[54,57],word_dim:54,word_id:3,word_slot:57,word_vector:54,word_vector_dim:[34,49],words_freq_sort:20,work:[3,5,20,23,24,26,28,34,35,36,38,39,41,44,45,54,56],worker:44,workercount:44,workflow:[29,35,44],workspac:[29,41,56],worri:27,wors:50,would:[22,26,29,39,44,50,54,57],wrap:57,wrapper:[11,17,38],writ:56,write:[3,20,23,24,26,29,34,35,37,39,44,51,56,57,59],writelin:27,writer:[23,55],written:[56,58],wrong:[3,26],wsize:44,wsj:57,www:[10,16,20,51,59],x64:28,xarg:36,xgbe0:41,xgbe1:41,xiaojun:58,xrang:[26,27,36],xxbow:58,xxx:[23,52,59],xxxxxxxxx:44,xxxxxxxxxx:44,xxxxxxxxxxxxx:44,xxxxxxxxxxxxxxxxxxx:44,xzf:28,y_i:10,y_predict:27,yaml:[44,56],yann:20,year:55,yeild:51,yield:[3,20,23,26,27,34,54,56,57,58],you:[2,3,5,7,10,11,12,15,16,17,27,28,29,31,34,35,36,38,39,41,43,44,49,50,51,52,54,56,57,58,59],your:[3,10,16,23,28,29,36,38,39,43,44,54,58],your_access_key_id:44,your_secrete_access_kei:44,yum:28,yuyang18:[11,17,20,22],zachari:58,zeng:58,zero:[3,7,10,12,15,16,20,24,36,41,44,54],zhidao:49,zhou:[57,58],zip:55,zone:44,zxvf:44},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Activation","Parameter Attribute","Layers","Networks","Optimizer","Pooling","Datasets","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Design Doc: Distributed Training","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","&lt;no title&gt;","&lt;no title&gt;","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"\u4e0d\u4f7f\u7528":25,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":25,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":25,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":25,"\u4ec5\u4ec5\u4f7f\u7528void":25,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":25,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":25,"\u539f\u56e0":25,"\u539f\u56e0\u5217\u8868":25,"\u57fa\u672c\u8981\u6c42":25,"\u5bfc\u51fac":25,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":25,"\u7b26\u53f7":25,"\u7b80\u5355\u5b9e\u73b0":25,"\u7c7b":25,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":25,"\u80cc\u666f":25,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":25,"case":43,"class":36,"function":49,"new":36,"paddle\u52a8\u6001\u5e93\u4e2d":25,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":25,"return":26,AWS:44,Abs:14,DNS:44,EFS:44,For:45,KMS:44,Use:[43,45],Using:[29,35],With:29,about:0,absactiv:6,access:44,account:44,activ:[6,14],adadelta:18,adadeltaoptim:12,adagrad:18,adagradoptim:12,adam:18,adamax:18,adamaxoptim:12,adamoptim:12,add:44,address:44,addto:16,addto_lay:10,adversari:50,aggreg:[10,16],algorithm:[24,54],analysi:58,api:[1,4,29],appendix:54,applic:4,approach:38,architectur:[34,54],argument:[26,40,43,54],asset:44,associ:44,async:41,attent:34,attribut:[7,15],auc_evalu:9,avg:19,avgpool:13,aws:44,background:27,base:[9,10],baseactiv:6,basepool:19,basepoolingtyp:13,basesgdoptim:12,batch:26,batch_norm:16,batch_norm_lay:10,batch_siz:26,beam_search:[10,16],between:23,bidirect:58,bidirectional_lstm:[11,17],bilinear_interp:16,bilinear_interp_lay:10,bleu:59,block_expand:16,block_expand_lay:10,book:29,brelu:14,breluactiv:6,bucket:44,build:[28,30,45],built:38,cach:3,cento:28,check:[10,16,36,39],chines:49,choos:44,chunk_evalu:9,cifar:20,classif:[9,51],classification_error_evalu:9,classification_error_printer_evalu:9,clone:35,cloudform:44,cluster:[39,43,44],code:35,column_sum_evalu:9,command:[42,43,54,59],commit:[35,45],common:41,commun:41,compos:26,concat:16,concat_lay:10,concept:44,config:[4,43,56,57],configur:[21,34,37,39,44,54,56],conll05:20,connect:[10,16],contain:[29,45],content:[38,44],context_project:[10,16],contribut:35,conv:[10,16],conv_oper:[10,16],conv_project:[10,16],conv_shift:16,conv_shift_lay:10,convolut:[51,54],core:44,cos_sim:[10,16],cost:[10,16],cpu:[29,43],creat:[26,35,44,45],creator:26,credenti:44,credit:0,crf:16,crf_decod:16,crf_decoding_lay:10,crf_layer:10,cross_channel_norm:16,cross_entropi:10,cross_entropy_cost:16,cross_entropy_with_selfnorm:10,cross_entropy_with_selfnorm_cost:16,ctc:16,ctc_error_evalu:9,ctc_layer:10,cudnnavg:19,cudnnmax:19,custom:26,dat:55,data:[10,16,20,26,27,34,44,45,49,50,51,54,56,57,58,59],data_lay:10,datafeed:20,dataprovid:[3,4,41],dataset:[20,24,55,56,59],datasourc:8,datatyp:20,date:35,debian:31,decayedadagrad:18,decayedadagradoptim:12,decor:26,defin:[44,54,58,59],delet:44,delv:51,demo:44,depend:28,deriv:36,descript:[41,50,55,57],design:[23,24,26],destroi:44,detail:[41,51],develop:[29,37],devic:43,dictionari:[26,49],differ:43,directori:44,distribut:[23,24,39,41,44],doc:[23,24,26],docker:[29,45],document:[29,48],dotmul_oper:[10,16],dotmul_project:[10,16],down:44,download:[28,44,45,49,52,56,59],dropout_lay:[11,17],dynam:24,ec2:44,elast:44,embed:[16,49,54],embedding_lay:10,entri:26,eos:16,eos_lay:10,equat:36,evalu:[9,27,56],evalutaion:59,event:[22,23],exampl:[23,49,50],exercis:51,exp:14,expactiv:6,expand:16,expand_lay:10,extern:44,extract:[49,52,56,59],fault:24,fc_layer:10,featur:[52,55,56,57],field:56,file:[44,45,54,55,56],find:44,first_seq:[10,16],fork:35,format:[24,54],from:[23,28,30],full_matrix_project:[10,16],fulli:[10,16],gan:50,gate:34,gener:[34,50,59],get:[32,45],get_output:16,get_output_lay:10,github:35,gpu:[29,38,41,43],gradient:36,gradient_printer_evalu:9,group:[10,16,44],gru:[11,17,41],gru_group:[11,17],gru_step:16,gru_step_lay:10,gru_unit:[11,17],grumemori:[10,16],guid:31,hand:38,handler:[23,25],hook:35,how:[26,37,38],hsigmoid:[10,16],huber_cost:[10,16],iam:44,ident:14,identity_project:[10,16],identityactiv:6,imag:[10,11,16,17,29,45,51],imagenet:52,imdb:[20,58],img_cmrnorm:16,img_cmrnorm_lay:10,img_conv:16,img_conv_bn_pool:[11,17],img_conv_group:[11,17],img_conv_lay:10,img_pool:16,img_pool_lay:10,imikolov:20,implement:[26,36,50],infer:[22,54],info:52,ingredi:23,init_hook:3,initi:[43,44],input_typ:3,inspect:44,instal:[28,30,31,44,54],instanc:44,integr:44,interfac:[20,24,26,52],interpol:16,interpolation_lay:10,introduct:[2,49,52,58,59],isn:26,job:[24,39,44,45],join:[10,16],keep:35,kei:44,kill:39,kube:44,kubectl:44,kubernet:[44,45],label:57,lambda_cost:[10,16],last_seq:[10,16],lastest:35,launch:39,layer:[10,16,23,36,43],layeroutput:10,layertyp:10,line:[42,54],linear:[14,27],linear_comb:16,linear_comb_lay:10,linearactiv:6,list:26,local:[43,44],log:[14,54],logactiv:6,logist:54,lstm:[11,17,41,57,58],lstm_step:16,lstm_step_lay:10,lstmemori:[10,16],lstmemory_group:[11,17],lstmemory_unit:[11,17],map:26,master:24,math:[10,16],matrix:41,max:19,maxframe_printer_evalu:9,maxid:16,maxid_lay:10,maxid_printer_evalu:9,maxout:16,maxout_lay:10,maxpool:13,memori:[10,16],meta:56,mini:26,minibatch:20,misc:[11,17],mix:[10,16,43],mixed_lay:10,mnist:[20,50],model:[3,4,21,23,27,29,33,34,39,43,49,50,51,52,53,54,59],modifi:45,momentum:18,momentumoptim:12,movi:[55,56],movielen:[20,55,56],mse_cost:10,multi_binary_label_cross_entropi:10,multi_binary_label_cross_entropy_cost:16,multipl:26,name:44,nce:16,nce_lay:10,need:[26,38],network:[11,17,34,43,50,51,52,54,56,57],neural:[34,51,54,56,57],neuralnetwork:27,nlp:[11,17,41],non:3,norm:[10,16],nvprof:38,nvvp:38,object:[24,56],observ:[49,52],onli:[26,29],optim:[12,18,24,37,54],option:[28,49],outlin:40,output:[11,39,44],overview:54,packag:31,pad:16,pad_lay:10,paddl:[26,45],paddlepaddl:[23,29,30,44,48,49,59],pair:44,parallel_nn:43,paramet:[7,15,22,23,24,41,42,44,49,52],paraphras:49,pass:43,perform:[38,41],pnpair_evalu:9,point:44,pool:[10,13,16,19],pooling_lay:10,power:16,power_lay:10,pre:35,precision_recall_evalu:9,predict:[5,51,52,56,57,58],prefetch:26,prepar:[27,34,39,44,49,50,51,56,58,59],preprocess:[49,51,54,56,59],prerequisit:39,pretrain:[49,59],print:9,privat:44,problem:27,process:24,profil:38,provid:[3,26,54,56,57],pull:35,push:35,pydataprovider2:3,python:[5,26,29,36,52,54,56],queue:24,quick:54,randomnumb:41,rank:9,rank_cost:[10,16],rat:56,rate:55,reader:[20,23,26],recoveri:24,recurr:[10,11,16,17,34,54],recurrent_group:[10,16],recurrent_lay:10,refer:[3,38,57,58],region:44,regress:[27,54,56],relu:14,reluactiv:6,render:44,repeat:16,repeat_lay:10,request:35,requir:[28,35],reshap:[10,16],resnet:52,result:[39,45,59],revis:[35,49],rmsprop:18,rmspropoptim:12,rnn:[33,34,41],role:57,rotat:16,rotate_lay:10,route53:44,run:[39,45,57],sampl:[10,16],sampling_id:16,sampling_id_lay:10,scale:[16,24],scaling_lay:10,scaling_project:[10,16],script:45,secur:44,selective_fc:16,selective_fc_lay:10,semant:57,sentiment:[20,58],seq_concat:16,seq_concat_lay:10,seq_reshap:16,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:34,sequence_conv_pool:[11,17],sequencesoftmax:14,sequencesoftmaxactiv:6,sequenti:3,server:[24,41,44],servic:44,set:[12,42],setup:[28,44],sgd:41,share:23,shuffl:26,sigmoid:14,sigmoidactiv:6,simpl:[27,34],simple_attent:[11,17],simple_gru:[11,17],simple_img_conv_pool:[11,17],simple_lstm:[11,17],singl:26,slice:[10,16],slope_intercept:16,slope_intercept_lay:10,softmax:14,softmaxactiv:6,softrelu:14,softreluactiv:6,sourc:[28,30],span:28,spars:43,specifi:[43,49],split:56,spp:16,spp_layer:10,squar:14,squareactiv:6,squarerootn:19,squarerootnpool:13,stack:58,standard:54,stanh:14,stanhactiv:6,start:[23,32,44,45,54],startup:45,structur:50,suffici:26,sum:19,sum_cost:[10,16],sum_evalu:9,sum_to_one_norm:16,sum_to_one_norm_lay:10,summar:23,summari:54,sumpool:13,system:44,table_project:[10,16],take:26,tanh:14,tanhactiv:6,task:24,tear:44,templat:44,tensor:16,tensor_lay:10,test:[36,41,43,56,57,58],text:59,text_conv_pool:[11,17],timer:38,tip:38,toi:50,toler:24,tool:38,train:[22,23,24,26,27,29,39,41,43,44,45,49,50,51,54,56,57,58,59],trainer:[22,24,44,56],tran:16,trans_full_matrix_project:[10,16],trans_lay:10,transfer:54,tune:[38,41],tutori:[49,51,53,57,58,59],ubuntu:28,uci_h:20,unit:[36,41],updat:[23,35,44],usag:[26,29,37],use:26,user:[24,49,55,56,58,59],util:9,value_printer_evalu:9,vector:41,verifi:44,version:35,vgg_16_network:[11,17],visual:52,volum:44,vpc:44,warp_ctc:16,warp_ctc_lay:10,what:38,why:[26,38],wmt14:20,word:[49,54],work:29,workflow:59,workspac:39,wrapper:36,write:[36,54],yaml:45,your:35,zoo:[52,53]}})
\ No newline at end of file \ No newline at end of file
# Design Doc: Distributed Training
## Objective
In [this slides](https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses), we explained that we'd like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.
This poses technical challenges to PaddlePaddle:
1. Support fault-recovery.
1. Support both offline and online training.
1. [Serverless computing](https://en.wikipedia.org/wiki/Serverless_computing) of distributed training.
## Training Job
A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:
1. the *master process*, which dispatches tasks to
1. one or more *trainer processes*, which run distributed training and synchronize gradients/models via
1. one or more *parameter server processes*, where each holds a shard of the global model.
Their relation is illustrated in the following graph:
<img src="src/paddle-model-sharding.png"/>
### Master Process
The master process will:
- Partition a dataset into [tasks](#task) and dispatch tasks to trainers.
- Keep track of training progress on the dataset with [task queue](#task-queue). A training job will iterate on the dataset for a full pass until it goes into next pass.
#### Task
A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.
#### Task Queue
The master process has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master process. Each master process has three task queues.
<img src="src/paddle-task-queues.png"/>
- The todo queue holds tasks to be dispatched. When a job starts, the master process fills in the todo queue with all tasks.
- The pending queue holds tasks that are currently training by trainers.
- the done queue holds tasks that are already trained.
The life cycle of a single task is illustrated below:
<img src="src/paddle-task-states.png"/>
1. When a new pass of training starts, all tasks will be placed in the todo queue.
1. The master process will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion.
1. The trainer will work on its tasks and tell the master process once a task is completed. The master process will dispatch a new task to that trainer.
1. If a task timeout. the master process will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded.
1. The master process will move completed task to the done queue. When the todo queue is empty, the master process will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.
### Trainer Process
The trainer process will:
- Receive tasks from the master.
- Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.
### Parameter Server Process
Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.
The parameter server will:
- Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.
- Periodically save its parameters to distributed file system by overriding the previous save.
### Optimization Algorithms
The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:
- Synchronous Stochastic Gradient Descent (sync-SGD)
Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.
- Asynchronous Stochastic Gradient Descent (async-SGD)
There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:
- Each trainer uploads its accumulated gradient every n mini-batches.
- Every m mini-batches, the trainer downloads new parameters from parameter server.
- n and m do not have to be equal.
## Fault Tolerant
The training job will pause if the master processes is dead, or any of the parameter server process is dead. They will be started by [Kubernetes](https://kubernetes.io/) and recover in few minutes. Please refer to [fault recovery](#fault-recovery).
The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:
- sync-SGD
TODO
- async-SGD
Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.
## Fault Recovery
PaddlePaddle uses [etcd](https://github.com/coreos/etcd) to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.
Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:
<img src="src/paddle-etcd.png"/>
### Master Process
When the master is started by the Kubernetes, it executes the following steps at startup:
1. Grabs a unique *master* lock in etcd, which prevents concurrent master instantiations.
1. Recovers the task queues from etcd if they already exist, otherwise, the master will create them.
1. Watches the trainer prefix keys `/trainer/` on etcd to find the live trainers.
1. Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update.
The master process will kill itself if its etcd lease expires.
When the master process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.
### Trainer Process
When the trainer is started by the Kubernetes, it executes the following steps at startup:
1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count.
1. Generates a unique ID, and sets key `/trainer/<unique ID>` with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline.
1. Waits for tasks from the master to start training.
If trainer's etcd lease expires, it will try set key `/trainer/<unique ID>` again so that the master process can discover the trainer again.
### Parameter Server Process
When the parameter server is started by Kubernetes, it executes the following steps at startup:
1. Read desired total number of parameter servers from etcd `/ps_desired`
1. Search through etcd keys `/ps/<index>` (`/ps/0`, `/ps/1`, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server's index is inferred from the key name.
The desired number of parameter servers is 3:
<img src="src/paddle-ps-0.png"/>
The third parameter server joined:
<img src="src/paddle-ps-1.png"/>
1. The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).
1. Now the parameter server is ready for the trainers' requests.
If the parameter server's etcd lease expires, the parameter server will kill itself.
## Dynamic Scaling
### Trainer Scaling
TODO
### Parameter Server Scaling
Not planned for v1.
## Training Dataset Format
TODO
## User Interface
TODO
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Design Doc: Distributed Training &mdash; PaddlePaddle 文档</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="index" title="索引"
href="../../genindex.html"/>
<link rel="search" title="搜索" href="../../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a>Home</a></li>
<li><a>Get Started</a></li>
<li class="active"><a>Documentation</a></li>
<li><a>About Us</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_cn.html">完整教程</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/basic_usage/index_cn.html">经典的线性回归任务</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_cn.html">完整教程</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/quick_start/index_cn.html">快速入门</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/rec/ml_regression_cn.html">个性化推荐</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/image_classification/index_cn.html">图像分类</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/sentiment_analysis/index_cn.html">情感分析</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/semantic_role_labeling/index_cn.html">语义角色标注</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/text_generation/index_cn.html">机器翻译</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/imagenet_model/resnet_model_cn.html">ResNet模型</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/embedding_model/index_cn.html">词向量模型</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/concepts/use_concepts_cn.html">基本使用概念</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html#kubernetes">部署Kubernetes集群</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html#">选择存储方案</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html#kubectl">配置kubectl</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>
</nav>
<nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Design Doc: Distributed Training</a><ul>
<li><a class="reference internal" href="#objective">Objective</a></li>
<li><a class="reference internal" href="#training-job">Training Job</a><ul>
<li><a class="reference internal" href="#master-process">Master Process</a><ul>
<li><a class="reference internal" href="#task">Task</a></li>
<li><a class="reference internal" href="#task-queue">Task Queue</a></li>
</ul>
</li>
<li><a class="reference internal" href="#trainer-process">Trainer Process</a></li>
<li><a class="reference internal" href="#parameter-server-process">Parameter Server Process</a></li>
<li><a class="reference internal" href="#optimization-algorithms">Optimization Algorithms</a></li>
</ul>
</li>
<li><a class="reference internal" href="#fault-tolerant">Fault Tolerant</a></li>
<li><a class="reference internal" href="#fault-recovery">Fault Recovery</a><ul>
<li><a class="reference internal" href="#master-process">Master Process</a></li>
<li><a class="reference internal" href="#trainer-process">Trainer Process</a></li>
<li><a class="reference internal" href="#parameter-server-process">Parameter Server Process</a></li>
</ul>
</li>
<li><a class="reference internal" href="#dynamic-scaling">Dynamic Scaling</a><ul>
<li><a class="reference internal" href="#trainer-scaling">Trainer Scaling</a></li>
<li><a class="reference internal" href="#parameter-server-scaling">Parameter Server Scaling</a></li>
</ul>
</li>
<li><a class="reference internal" href="#training-dataset-format">Training Dataset Format</a></li>
<li><a class="reference internal" href="#user-interface">User Interface</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Design Doc: Distributed Training</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="design-doc-distributed-training">
<span id="design-doc-distributed-training"></span><h1>Design Doc: Distributed Training<a class="headerlink" href="#design-doc-distributed-training" title="永久链接至标题"></a></h1>
<div class="section" id="objective">
<span id="objective"></span><h2>Objective<a class="headerlink" href="#objective" title="永久链接至标题"></a></h2>
<p>In <a class="reference external" href="https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses">this slides</a>, we explained that we&#8217;d like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.</p>
<p>This poses technical challenges to PaddlePaddle:</p>
<ol class="simple">
<li>Support fault-recovery.</li>
<li>Support both offline and online training.</li>
<li><a class="reference external" href="https://en.wikipedia.org/wiki/Serverless_computing">Serverless computing</a> of distributed training.</li>
</ol>
</div>
<div class="section" id="training-job">
<span id="training-job"></span><h2>Training Job<a class="headerlink" href="#training-job" title="永久链接至标题"></a></h2>
<p>A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:</p>
<ol class="simple">
<li>the <em>master process</em>, which dispatches tasks to</li>
<li>one or more <em>trainer processes</em>, which run distributed training and synchronize gradients/models via</li>
<li>one or more <em>parameter server processes</em>, where each holds a shard of the global model.</li>
</ol>
<p>Their relation is illustrated in the following graph:</p>
<p><img src="src/paddle-model-sharding.png"/></p>
<div class="section" id="master-process">
<span id="master-process"></span><h3>Master Process<a class="headerlink" href="#master-process" title="永久链接至标题"></a></h3>
<p>The master process will:</p>
<ul class="simple">
<li>Partition a dataset into <a class="reference external" href="#task">tasks</a> and dispatch tasks to trainers.</li>
<li>Keep track of training progress on the dataset with <a class="reference external" href="#task-queue">task queue</a>. A training job will iterate on the dataset for a full pass until it goes into next pass.</li>
</ul>
<div class="section" id="task">
<span id="task"></span><h4>Task<a class="headerlink" href="#task" title="永久链接至标题"></a></h4>
<p>A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.</p>
</div>
<div class="section" id="task-queue">
<span id="task-queue"></span><h4>Task Queue<a class="headerlink" href="#task-queue" title="永久链接至标题"></a></h4>
<p>The master process has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master process. Each master process has three task queues.</p>
<p><img src="src/paddle-task-queues.png"/></p>
<ul class="simple">
<li>The todo queue holds tasks to be dispatched. When a job starts, the master process fills in the todo queue with all tasks.</li>
<li>The pending queue holds tasks that are currently training by trainers.</li>
<li>the done queue holds tasks that are already trained.</li>
</ul>
<p>The life cycle of a single task is illustrated below:</p>
<p><img src="src/paddle-task-states.png"/></p>
<ol class="simple">
<li>When a new pass of training starts, all tasks will be placed in the todo queue.</li>
<li>The master process will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion.</li>
<li>The trainer will work on its tasks and tell the master process once a task is completed. The master process will dispatch a new task to that trainer.</li>
<li>If a task timeout. the master process will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded.</li>
<li>The master process will move completed task to the done queue. When the todo queue is empty, the master process will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.</li>
</ol>
</div>
</div>
<div class="section" id="trainer-process">
<span id="trainer-process"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="永久链接至标题"></a></h3>
<p>The trainer process will:</p>
<ul class="simple">
<li>Receive tasks from the master.</li>
<li>Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.</li>
</ul>
</div>
<div class="section" id="parameter-server-process">
<span id="parameter-server-process"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="永久链接至标题"></a></h3>
<p>Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.</p>
<p>The parameter server will:</p>
<ul class="simple">
<li>Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.</li>
<li>Periodically save its parameters to distributed file system by overriding the previous save.</li>
</ul>
</div>
<div class="section" id="optimization-algorithms">
<span id="optimization-algorithms"></span><h3>Optimization Algorithms<a class="headerlink" href="#optimization-algorithms" title="永久链接至标题"></a></h3>
<p>The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:</p>
<ul>
<li><p class="first">Synchronous Stochastic Gradient Descent (sync-SGD)</p>
<p>Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.</p>
</li>
<li><p class="first">Asynchronous Stochastic Gradient Descent (async-SGD)</p>
<p>There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:</p>
<ul class="simple">
<li>Each trainer uploads its accumulated gradient every n mini-batches.</li>
<li>Every m mini-batches, the trainer downloads new parameters from parameter server.</li>
<li>n and m do not have to be equal.</li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="fault-tolerant">
<span id="fault-tolerant"></span><h2>Fault Tolerant<a class="headerlink" href="#fault-tolerant" title="永久链接至标题"></a></h2>
<p>The training job will pause if the master processes is dead, or any of the parameter server process is dead. They will be started by <a class="reference external" href="https://kubernetes.io/">Kubernetes</a> and recover in few minutes. Please refer to <a class="reference external" href="#fault-recovery">fault recovery</a>.</p>
<p>The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:</p>
<ul>
<li><p class="first">sync-SGD</p>
<p>TODO</p>
</li>
<li><p class="first">async-SGD</p>
<p>Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.</p>
</li>
</ul>
</div>
<div class="section" id="fault-recovery">
<span id="fault-recovery"></span><h2>Fault Recovery<a class="headerlink" href="#fault-recovery" title="永久链接至标题"></a></h2>
<p>PaddlePaddle uses <a class="reference external" href="https://github.com/coreos/etcd">etcd</a> to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.</p>
<p>Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:</p>
<p><img src="src/paddle-etcd.png"/></p>
<div class="section" id="master-process">
<span id="id1"></span><h3>Master Process<a class="headerlink" href="#master-process" title="永久链接至标题"></a></h3>
<p>When the master is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Grabs a unique <em>master</em> lock in etcd, which prevents concurrent master instantiations.</li>
<li>Recovers the task queues from etcd if they already exist, otherwise, the master will create them.</li>
<li>Watches the trainer prefix keys <code class="docutils literal"><span class="pre">/trainer/</span></code> on etcd to find the live trainers.</li>
<li>Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update.</li>
</ol>
<p>The master process will kill itself if its etcd lease expires.</p>
<p>When the master process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.</p>
</div>
<div class="section" id="trainer-process">
<span id="id2"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="永久链接至标题"></a></h3>
<p>When the trainer is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Watches the available parameter server prefix keys <code class="docutils literal"><span class="pre">/ps/</span></code> on etcd and waits until the count of parameter servers reaches the desired count.</li>
<li>Generates a unique ID, and sets key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline.</li>
<li>Waits for tasks from the master to start training.</li>
</ol>
<p>If trainer&#8217;s etcd lease expires, it will try set key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> again so that the master process can discover the trainer again.</p>
</div>
<div class="section" id="parameter-server-process">
<span id="id3"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="永久链接至标题"></a></h3>
<p>When the parameter server is started by Kubernetes, it executes the following steps at startup:</p>
<ol>
<li><p class="first">Read desired total number of parameter servers from etcd <code class="docutils literal"><span class="pre">/ps_desired</span></code></p>
</li>
<li><p class="first">Search through etcd keys <code class="docutils literal"><span class="pre">/ps/&lt;index&gt;</span></code> (<code class="docutils literal"><span class="pre">/ps/0</span></code>, <code class="docutils literal"><span class="pre">/ps/1</span></code>, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server&#8217;s index is inferred from the key name.</p>
<p>The desired number of parameter servers is 3:</p>
<p><img src="src/paddle-ps-0.png"/></p>
<p>The third parameter server joined:</p>
<p><img src="src/paddle-ps-1.png"/></p>
</li>
<li><p class="first">The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).</p>
</li>
<li><p class="first">Now the parameter server is ready for the trainers&#8217; requests.</p>
</li>
</ol>
<p>If the parameter server&#8217;s etcd lease expires, the parameter server will kill itself.</p>
</div>
</div>
<div class="section" id="dynamic-scaling">
<span id="dynamic-scaling"></span><h2>Dynamic Scaling<a class="headerlink" href="#dynamic-scaling" title="永久链接至标题"></a></h2>
<div class="section" id="trainer-scaling">
<span id="trainer-scaling"></span><h3>Trainer Scaling<a class="headerlink" href="#trainer-scaling" title="永久链接至标题"></a></h3>
<p>TODO</p>
</div>
<div class="section" id="parameter-server-scaling">
<span id="parameter-server-scaling"></span><h3>Parameter Server Scaling<a class="headerlink" href="#parameter-server-scaling" title="永久链接至标题"></a></h3>
<p>Not planned for v1.</p>
</div>
</div>
<div class="section" id="training-dataset-format">
<span id="training-dataset-format"></span><h2>Training Dataset Format<a class="headerlink" href="#training-dataset-format" title="永久链接至标题"></a></h2>
<p>TODO</p>
</div>
<div class="section" id="user-interface">
<span id="user-interface"></span><h2>User Interface<a class="headerlink" href="#user-interface" title="永久链接至标题"></a></h2>
<p>TODO</p>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/translations.js"></script>
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册