diff --git a/paddle/fluid/operators/matmul_op.cc b/paddle/fluid/operators/matmul_op.cc index 75bbe2ba8c3ec88e9034a1130e01638a23a44dee..14f7f00a5fd026ccb5d7110eefb6b78937fcf863 100644 --- a/paddle/fluid/operators/matmul_op.cc +++ b/paddle/fluid/operators/matmul_op.cc @@ -324,12 +324,9 @@ class MatMulOp : public framework::OperatorWithKernel { protected: void InferShape(framework::InferShapeContext *context) const override { - PADDLE_ENFORCE(context->HasInput("X"), - "Input(X) of MatMulOp should not be null."); - PADDLE_ENFORCE(context->HasInput("Y"), - "Input(Y) of MatMulOp should not be null."); - PADDLE_ENFORCE(context->HasOutput("Out"), - "Output(Out) of MatMulOp should not be null."); + OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul"); + OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul"); + OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul"); auto dim_x = context->GetInputDim("X"); auto dim_y = context->GetInputDim("Y"); @@ -349,14 +346,15 @@ class MatMulOp : public framework::OperatorWithKernel { } if (context->IsRuntime()) { - PADDLE_ENFORCE( + PADDLE_ENFORCE_EQ( mat_dim_x.batch_size_ == mat_dim_y.batch_size_ || mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0, - "ShapeError: The batch size of the two matrices should be equal, or " - "at least one is zero.\n" - "But received X's shape: %s, Y's shape: %s.", - DumpMatrixShape(mat_dim_x).c_str(), - DumpMatrixShape(mat_dim_y).c_str()); + true, platform::errors::InvalidArgument( + "The batch size of the two matrices should be equal, or " + "at least one is zero.\n" + "But received X's shape: %s, Y's shape: %s.", + DumpMatrixShape(mat_dim_x).c_str(), + DumpMatrixShape(mat_dim_y).c_str())); } int64_t dim_out_y = mat_dim_y.width_; #if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) @@ -365,23 +363,23 @@ class MatMulOp : public framework::OperatorWithKernel { if (context->IsRuntime()) { PADDLE_ENFORCE_LE( head_number, mat_dim_x.width_, - "ShapeError: Unsatisfied mkl acceleration library requirements: " - "The number of heads " - "(%d) must be equal to X's width. But received X's shape: %s.", - head_number, DumpMatrixShape(mat_dim_x).c_str()); + platform::errors::InvalidArgument( + "Unsatisfied mkl acceleration library requirements: " + "The number of heads " + "(%d) must be equal to X's width. But received X's shape: %s.", + head_number, DumpMatrixShape(mat_dim_x).c_str())); if (!split_vertical_y && head_number > 0) { dim_out_y = head_number * mat_dim_y.width_; } } #else - PADDLE_ENFORCE_EQ( - mat_dim_x.width_, mat_dim_y.height_, - platform::errors::InvalidArgument( - "ShapeError: Input X's width should be equal to the Y's height, " - "but received X's shape: [%s]," - "Y's shape: [%s].", - dim_x, dim_y)); + PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_, + platform::errors::InvalidArgument( + "Input X's width should be equal to the Y's height, " + "but received X's shape: [%s]," + "Y's shape: [%s].", + dim_x, dim_y)); #endif std::vector dim_out; @@ -520,10 +518,10 @@ class MatMulOpGrad : public framework::OperatorWithKernel { protected: void InferShape(framework::InferShapeContext *context) const override { - PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null"); - PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); + OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul"); + OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul"); + OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input", + "Out@GRAD", "matmul"); auto x_dims = context->GetInputDim("X"); auto y_dims = context->GetInputDim("Y"); diff --git a/paddle/fluid/operators/mean_op.cc b/paddle/fluid/operators/mean_op.cc index 862273f72fb4aaf7d840a7759d448564e9f85b4b..7237dafaac19e718ea119d1e22b1e599bc9772b2 100644 --- a/paddle/fluid/operators/mean_op.cc +++ b/paddle/fluid/operators/mean_op.cc @@ -25,10 +25,8 @@ class MeanOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of MeanOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of MeanOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mean"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "mean"); ctx->SetOutputDim("Out", {1}); } }; diff --git a/paddle/fluid/operators/mean_op.cu b/paddle/fluid/operators/mean_op.cu index cdd138d7bdc998fddef8af2e468e31b6f70aef49..d2b01fafb731f64b141af529c2d60ced78e0acbe 100644 --- a/paddle/fluid/operators/mean_op.cu +++ b/paddle/fluid/operators/mean_op.cu @@ -59,17 +59,20 @@ class MeanCUDAKernel : public framework::OpKernel { auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes, trans_x, out_data, size_prob, stream); - PADDLE_ENFORCE_CUDA_SUCCESS(err, - "MeanOP failed to get reduce workspace size", - cudaGetErrorString(err)); + PADDLE_ENFORCE_CUDA_SUCCESS( + err, platform::errors::External( + "MeanOP failed to get reduce workspace size %s.", + cudaGetErrorString(err))); framework::Tensor tmp; auto* temp_storage = tmp.mutable_data( framework::make_ddim({static_cast(temp_storage_bytes)}), context.GetPlace()); err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes, trans_x, out_data, size_prob, stream); - PADDLE_ENFORCE_CUDA_SUCCESS(err, "MeanOP failed to run reduce computation", - cudaGetErrorString(err)); + PADDLE_ENFORCE_CUDA_SUCCESS( + err, platform::errors::External( + "MeanOP failed to run CUDA reduce computation: %s.", + cudaGetErrorString(err))); } }; @@ -78,11 +81,11 @@ class MeanCUDAGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto OG = context.Input(framework::GradVarName("Out")); - PADDLE_ENFORCE_EQ( - OG->numel(), 1, - platform::errors::InvalidArgument( - "Mean Gradient Input Tensor len should be 1. But received %d", - OG->numel())); + PADDLE_ENFORCE_EQ(OG->numel(), 1, + platform::errors::InvalidArgument( + "Mean Gradient Input Tensor len should be 1. But " + "received Out@Grad's elements num is %d.", + OG->numel())); auto IG = context.Output(framework::GradVarName("X")); IG->mutable_data(context.GetPlace()); diff --git a/paddle/fluid/operators/mean_op.h b/paddle/fluid/operators/mean_op.h index 360b2f68a749f630d3c7ed009c16cb51ec150581..4780150751bf66c3d53e5eebb1ad1080a48a7420 100644 --- a/paddle/fluid/operators/mean_op.h +++ b/paddle/fluid/operators/mean_op.h @@ -50,7 +50,11 @@ class MeanGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto OG = context.Input(framework::GradVarName("Out")); - PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar"); + PADDLE_ENFORCE_EQ(OG->numel(), 1UL, + platform::errors::InvalidArgument( + "Mean Gradient should be scalar. But received " + "Out@Grad's elements num is %d.", + OG->numel())); auto IG = context.Output(framework::GradVarName("X")); IG->mutable_data(context.GetPlace()); diff --git a/paddle/fluid/operators/mul_op.cc b/paddle/fluid/operators/mul_op.cc index 006330da5b12bc9655f33d33d6047ecf9cb007a7..d1ac0e0dff56b6324d4ca295b9da7a3eb9da8cd6 100644 --- a/paddle/fluid/operators/mul_op.cc +++ b/paddle/fluid/operators/mul_op.cc @@ -74,10 +74,9 @@ class MulOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ( x_mat_dims[1], y_mat_dims[0], platform::errors::InvalidArgument( - "After flatten the input tensor X and Y to 2-D dimensions " - "matrix X1 and Y1, the matrix X1's width must be equal with matrix " - "Y1's height. But received X's shape = [%s], X1's shape = [%s], " - "X1's " + "After flatten the input tensor X and Y to 2-D dimensions matrix " + "X1 and Y1, the matrix X1's width must be equal with matrix Y1's " + "height. But received X's shape = [%s], X1's shape = [%s], X1's " "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = " "%s.", x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, @@ -212,10 +211,10 @@ class MulGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul"); + OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", + "Out@GRAD", "mul"); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); @@ -253,9 +252,9 @@ class MulDoubleGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); - PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null"); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul"); + OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul"); + OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul"); if (ctx->HasOutput("DDOut") && (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) { diff --git a/paddle/fluid/operators/reduce_ops/cub_reduce.h b/paddle/fluid/operators/reduce_ops/cub_reduce.h index 66fea71c635441571e89f34f5ee52865eb431cb9..49bcbf3abb1b32ca6f6336c25949f931f095ce9c 100644 --- a/paddle/fluid/operators/reduce_ops/cub_reduce.h +++ b/paddle/fluid/operators/reduce_ops/cub_reduce.h @@ -43,7 +43,11 @@ struct Array { template static inline Array From(const VectorLikeType& vec) { - PADDLE_ENFORCE_EQ(vec.size(), ElementCount, "size not match"); + PADDLE_ENFORCE_EQ(vec.size(), ElementCount, + platform::errors::InvalidArgument( + "Cub reduce Array: size not match. Received " + "vec.size() %d != ElementCount %d.", + vec.size(), ElementCount)); size_t n = static_cast(vec.size()); Array ret; for (size_t i = 0; i < n; ++i) ret[i] = vec[i]; @@ -159,13 +163,20 @@ static inline int GetDesiredBlockDim(int block_dim) { static inline void CheckReduceRankIsValid(int reduce_rank, int rank) { if (rank % 2 == 0) { - PADDLE_ENFORCE_EQ(reduce_rank, rank / 2); + PADDLE_ENFORCE_EQ(reduce_rank, rank / 2, + platform::errors::InvalidArgument( + "ReduceOp: invalid reduce rank. When rank = %d, " + "reduce_rank must be %d, but got %d.", + rank, rank / 2, reduce_rank)); } else { auto lower_rank = (rank - 1) / 2; auto upper_rank = (rank + 1) / 2; - PADDLE_ENFORCE(reduce_rank == lower_rank || reduce_rank == upper_rank, - "When rank = %d, reduce_rank must be %d or %d, but got %d", - rank, lower_rank, upper_rank, reduce_rank); + PADDLE_ENFORCE_EQ( + reduce_rank == lower_rank || reduce_rank == upper_rank, true, + platform::errors::InvalidArgument( + "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank " + "must be %d or %d, but got %d.", + rank, lower_rank, upper_rank, reduce_rank)); } } diff --git a/paddle/fluid/operators/reduce_ops/reduce_op.h b/paddle/fluid/operators/reduce_ops/reduce_op.h index a40df3a82716e189237f1ad31f64a2633671ab12..383eea9d073c600f54857f706fe96926b3c5fc1b 100644 --- a/paddle/fluid/operators/reduce_ops/reduce_op.h +++ b/paddle/fluid/operators/reduce_ops/reduce_op.h @@ -264,31 +264,31 @@ class ReduceOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of ReduceOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of ReduceOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp"); auto x_dims = ctx->GetInputDim("X"); auto x_rank = x_dims.size(); PADDLE_ENFORCE_LE(x_rank, 6, - "ShapeError: The input tensor X's dimensions of Reduce " - "should be less equal than 6. But received X's " - "dimensions = %d, X's shape = [%s].", - x_rank, x_dims); + platform::errors::InvalidArgument( + "The input tensor X's dimensions of ReduceOp " + "should be less equal than 6. But received X's " + "dimensions = %d, X's shape = [%s].", + x_rank, x_dims)); auto dims = ctx->Attrs().Get>("dim"); - PADDLE_ENFORCE_GT( - dims.size(), 0, - "ShapeError: The input dim dimensions of Reduce " - "should be greater than 0. But received the dim dimesions of Reduce " - " = %d", - dims.size()); + PADDLE_ENFORCE_GT(dims.size(), 0, + platform::errors::InvalidArgument( + "The input dim dimensions of ReduceOp " + "should be greater than 0. But received the dim " + "dimesions of Reduce = %d.", + dims.size())); for (size_t i = 0; i < dims.size(); ++i) { PADDLE_ENFORCE_LT(dims[i], x_rank, - "ShapeError: The reduce dim index %d should be in the " - "range [-dimension(X), dimension(X)]." - "which dimesion = %d, But received dim index = %d", - i, x_rank, dims[i]); + platform::errors::InvalidArgument( + "The reduce dim index %d should be in the " + "range [-dimension(X), dimension(X)] " + "which dimesion = %d. But received dim index = %d.", + i, x_rank, dims[i])); if (dims[i] < 0) dims[i] = x_rank + dims[i]; } sort(dims.begin(), dims.end()); @@ -346,19 +346,24 @@ class ReduceGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", + "Out@GRAD", "ReduceOp"); auto x_dims = ctx->GetInputDim("X"); auto x_rank = x_dims.size(); - PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported."); + PADDLE_ENFORCE_LE(x_rank, 6, + platform::errors::InvalidArgument( + "Tensors with rank at most 6 are supported by " + "ReduceOp. Received tensor with rank %d.", + x_rank)); auto dims = ctx->Attrs().Get>("dim"); for (size_t i = 0; i < dims.size(); ++i) { PADDLE_ENFORCE_LT(dims[i], x_rank, - "ShapeError: The reduce dim index %d should be in the " - "range [-dimension(X), dimension(X)]." - "which dimesion = %d, But received dim index = %d", - i, x_rank, dims[i]); + platform::errors::InvalidArgument( + "The reduce dim index %d should be in the " + "range [-dimension(X), dimension(X)], " + "which dimesion = %d. But received dim index = %d.", + i, x_rank, dims[i])); if (dims[i] < 0) dims[i] = x_rank + dims[i]; } sort(dims.begin(), dims.end()); diff --git a/paddle/fluid/operators/uniform_random_op.cc b/paddle/fluid/operators/uniform_random_op.cc index df617742317b918e37b681dca7d9b6817ffe3d4c..9c956131a83bb2acdd8f8317e1890d59d6fa9041 100644 --- a/paddle/fluid/operators/uniform_random_op.cc +++ b/paddle/fluid/operators/uniform_random_op.cc @@ -93,16 +93,24 @@ class UniformRandomOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, - "Output(Out) of UniformRandomOp should not be null."); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandomOp"); - PADDLE_ENFORCE_LT(ctx->Attrs().Get("min"), - ctx->Attrs().Get("max"), - "uniform_random's min must less then max"); + PADDLE_ENFORCE_LT( + ctx->Attrs().Get("min"), ctx->Attrs().Get("max"), + platform::errors::InvalidArgument( + "The uniform_random's min must less then max. But received min = " + "%f great than or equal max = %f.", + ctx->Attrs().Get("min"), ctx->Attrs().Get("max"))); PADDLE_ENFORCE_GE(ctx->Attrs().Get("diag_num"), 0, - "diag_num must greater than or equal 0"); + platform::errors::InvalidArgument( + "The uniform_random's diag_num must greater than or " + "equal 0. But recevied diag_num (%d) < 0.", + ctx->Attrs().Get("diag_num"))); PADDLE_ENFORCE_GE(ctx->Attrs().Get("diag_step"), 0, - "diag_step must greater than or equal 0"); + platform::errors::InvalidArgument( + "The uniform_random's diag_step must greater than or " + "equal 0. But recevied diag_step (%d) < 0.", + ctx->Attrs().Get("diag_step"))); if (ctx->HasInputs("ShapeTensorList")) { // top prority shape diff --git a/paddle/fluid/operators/uniform_random_op.h b/paddle/fluid/operators/uniform_random_op.h index 649437aded1d2649c15f58ac6989c9961739fc8d..867b10441640c63fec9018363a59d29ac52c8743 100644 --- a/paddle/fluid/operators/uniform_random_op.h +++ b/paddle/fluid/operators/uniform_random_op.h @@ -59,8 +59,12 @@ inline std::vector GetNewDataFromShapeTensorList( vec_new_shape.reserve(list_new_shape_tensor.size()); for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) { auto tensor = list_new_shape_tensor[i]; - PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}), - "shape of dim tensor should be [1]"); + PADDLE_ENFORCE_EQ( + tensor->dims(), framework::make_ddim({1}), + platform::errors::InvalidArgument( + "Shape of dim tensor in uniform_random_op should be [1]" + "But received tensor's dim=%s.", + tensor->dims())); if (tensor->type() == framework::proto::VarType::INT32) { if (platform::is_gpu_place(tensor->place())) { diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index c50de053e9e4231e3396c58c6746dc666685eb67..9b2d79b92bd1feea8e8b987eae42f60ce0c9f4f0 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -4590,6 +4590,7 @@ def reduce_all(input, dim=None, keep_dim=False, name=None): # keep_dim=True, x.shape=(2,2), out.shape=(2,1) """ + check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all') helper = LayerHelper('reduce_all', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): @@ -4648,6 +4649,7 @@ def reduce_any(input, dim=None, keep_dim=False, name=None): # keep_dim=True, x.shape=(2,2), out.shape=(2,1) """ + check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any') helper = LayerHelper('reduce_any', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): @@ -4880,8 +4882,9 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): if len(x.shape) == 1: axis = 0 - helper = LayerHelper("l2_normalize", **locals()) + check_variable_and_dtype(x, "X", ("float32", "float64"), "norm") + helper = LayerHelper("l2_normalize", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) norm = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( @@ -9901,6 +9904,11 @@ def uniform_random_batch_size_like(input, """ + check_variable_and_dtype(input, 'Input', ("float32", 'float64'), + 'uniform_random_batch_size_like') + check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like') + check_dtype(dtype, 'dtype', ('float32', 'float64'), + 'uniform_random_batch_size_like') helper = LayerHelper('uniform_random_batch_size_like', **locals()) out = helper.create_variable_for_type_inference(dtype) @@ -14203,7 +14211,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random') if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) - check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random') + check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random') def get_new_shape_tensor(list_shape): new_shape_tensor = [] diff --git a/python/paddle/fluid/tests/unittests/test_norm_op.py b/python/paddle/fluid/tests/unittests/test_norm_op.py index 15e033dc211e9ad8aa4dcac7d46e4010aff0afb3..8a3632530c7f804dde49c3aee5d2c42821969d90 100644 --- a/python/paddle/fluid/tests/unittests/test_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_norm_op.py @@ -16,6 +16,8 @@ from __future__ import print_function import unittest import numpy as np +import paddle +import paddle.fluid as fluid from op_test import OpTest, skip_check_grad_ci @@ -87,5 +89,16 @@ class TestNormOp5(TestNormOp): pass +class API_NormTest(unittest.TestCase): + def test_errors(self): + with fluid.program_guard(fluid.Program()): + + def test_norm_x_type(): + data = fluid.data(name="x", shape=[3, 3], dtype="int64") + out = fluid.layers.l2_normalize(data) + + self.assertRaises(TypeError, test_norm_x_type) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_reduce_op.py b/python/paddle/fluid/tests/unittests/test_reduce_op.py index 644e0ca81671bf9fbeda9a9ed1829a1ada25cfc8..99c519b62935891f3d185eeef0f9fcaae2e6b91b 100644 --- a/python/paddle/fluid/tests/unittests/test_reduce_op.py +++ b/python/paddle/fluid/tests/unittests/test_reduce_op.py @@ -138,6 +138,18 @@ class TestAllOpWithKeepDim(OpTest): self.check_output() +class TestAllOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + # The input type of reduce_all_op must be Variable. + input1 = 12 + self.assertRaises(TypeError, fluid.layers.reduce_all, input1) + # The input dtype of reduce_all_op must be bool. + input2 = fluid.layers.data( + name='input2', shape=[12, 10], dtype="int32") + self.assertRaises(TypeError, fluid.layers.reduce_all, input2) + + class TestAnyOp(OpTest): def setUp(self): self.op_type = "reduce_any" @@ -174,6 +186,18 @@ class TestAnyOpWithKeepDim(OpTest): self.check_output() +class TestAnyOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + # The input type of reduce_any_op must be Variable. + input1 = 12 + self.assertRaises(TypeError, fluid.layers.reduce_any, input1) + # The input dtype of reduce_any_op must be bool. + input2 = fluid.layers.data( + name='input2', shape=[12, 10], dtype="int32") + self.assertRaises(TypeError, fluid.layers.reduce_any, input2) + + class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" diff --git a/python/paddle/fluid/tests/unittests/test_uniform_random_op.py b/python/paddle/fluid/tests/unittests/test_uniform_random_op.py index c4eb3852c5ecdc2b4421d69d6e1fb6f2dc8f86b9..bc939a5ac7be182aa22e6bafd7d3fc06f6bbbb5f 100644 --- a/python/paddle/fluid/tests/unittests/test_uniform_random_op.py +++ b/python/paddle/fluid/tests/unittests/test_uniform_random_op.py @@ -177,6 +177,12 @@ class TestUniformRandomOpError(unittest.TestCase): self.assertRaises(TypeError, test_Variable) + def test_Variable2(): + x1 = np.zeros((4, 784)) + fluid.layers.uniform_random(x1) + + self.assertRaises(TypeError, test_Variable2) + def test_dtype(): x2 = fluid.layers.data( name='x2', shape=[4, 784], dtype='float32') @@ -426,5 +432,33 @@ class TestUniformRandomDygraphMode(unittest.TestCase): self.assertTrue((x_np[i] > 0 and x_np[i] < 1.0)) +class TestUniformRandomBatchSizeLikeOpError(unittest.TestCase): + def test_errors(self): + main_prog = Program() + start_prog = Program() + with program_guard(main_prog, start_prog): + + def test_Variable(): + x1 = fluid.create_lod_tensor( + np.zeros((4, 784)), [[1, 1, 1, 1]], fluid.CPUPlace()) + fluid.layers.uniform_random_batch_size_like(x1) + + self.assertRaises(TypeError, test_Variable) + + def test_shape(): + x1 = fluid.layers.data( + name='x2', shape=[4, 784], dtype='float32') + fluid.layers.uniform_random_batch_size_like(x1, shape="shape") + + self.assertRaises(TypeError, test_shape) + + def test_dtype(): + x2 = fluid.layers.data( + name='x2', shape=[4, 784], dtype='float32') + fluid.layers.uniform_random_batch_size_like(x2, 'int32') + + self.assertRaises(TypeError, test_dtype) + + if __name__ == "__main__": unittest.main()