From b34df5f12c6d92d7785edc2dfc32f899db2d7745 Mon Sep 17 00:00:00 2001 From: sweetsky0901 Date: Tue, 12 Dec 2017 15:31:41 +0800 Subject: [PATCH] add some doc --- paddle/operators/detection_output_op.cc | 27 ++++++++++++++----------- 1 file changed, 15 insertions(+), 12 deletions(-) diff --git a/paddle/operators/detection_output_op.cc b/paddle/operators/detection_output_op.cc index ced9caf992..2bf0ef4414 100644 --- a/paddle/operators/detection_output_op.cc +++ b/paddle/operators/detection_output_op.cc @@ -22,36 +22,39 @@ class Detection_output_OpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Loc", - "(Tensor) The input tensor of detection_output operator. " + "(Tensor) The input tensor of detection_output operator." + "The input predict locations" "The format of input tensor is kNCHW. Where K is priorbox point " "numbers," "N is How many boxes are there on each point, " "C is 4, H and W both are 1."); AddInput("Conf", - "(Tensor) The input tensor of detection_output operator. " + "(Tensor) The input tensor of detection_output operator." + "The input priorbox confidence." "The format of input tensor is kNCHW. Where K is priorbox point " "numbers," "N is How many boxes are there on each point, " "C is the number of classes, H and W both are 1."); AddInput("PriorBox", - "(Tensor) The input tensor of detection_output operator. " + "(Tensor) The input tensor of detection_output operator." "The format of input tensor is the position and variance " "of the boxes"); AddOutput("Out", "(Tensor) The output tensor of detection_output operator."); - AddAttr("background_label_id", - "(int), the attr of detection_output operator"); - AddAttr("num_classes", - "(int), the attr of detection_output operator"); + AddAttr("background_label_id", "(int), The background class index."); + AddAttr("num_classes", "(int), The number of the classification."); AddAttr("nms_threshold", - "(float), the attr of detection_output operator"); + "(float), The Non-maximum suppression threshold."); AddAttr("confidence_threshold", - "(float), the attr of detection_output operator"); - AddAttr("top_k", "(int), the attr of detection_output operator"); - AddAttr("nms_top_k", "(int), the attr of detection_output operator"); + "(float), The classification confidence threshold."); + AddAttr("top_k", "(int), The bbox number kept of the layer’s output."); + AddAttr("nms_top_k", + "(int), The bbox number kept of the NMS’s output."); AddComment(R"DOC( detection output for SSD(single shot multibox detector) - + Apply the NMS to the output of network and compute the predict + bounding box location. The output’s shape of this layer could + be zero if there is no valid bounding box. )DOC"); } }; -- GitLab