Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b1401fb7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1401fb7
编写于
1月 07, 2020
作者:
Y
Yiqun Liu
提交者:
石晓伟
1月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove subgraph_detector from inference/analysis to the common framework/ir directory. (#22094)
test=develop
上级
50bee83f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
660 addition
and
673 deletion
+660
-673
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-1
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
+7
-11
paddle/fluid/framework/ir/subgraph_detector.cc
paddle/fluid/framework/ir/subgraph_detector.cc
+472
-474
paddle/fluid/framework/ir/subgraph_detector.h
paddle/fluid/framework/ir/subgraph_detector.h
+154
-160
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+0
-1
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
+5
-8
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
...luid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
+9
-8
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+11
-10
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
b1401fb7
...
...
@@ -39,6 +39,7 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
graph_traits SRCS graph_traits.cc DEPS graph
)
cc_library
(
graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits
)
cc_library
(
subgraph_detector SRCS subgraph_detector.cc DEPS graph_pattern_detector executor
)
cc_library
(
fuse_pass_base SRCS fuse_pass_base.cc DEPS pass
)
cc_library
(
placement_pass_base SRCS placement_pass_base.cc DEPS pass
)
...
...
@@ -99,7 +100,7 @@ endif()
if
(
WITH_NGRAPH
)
cc_library
(
ngraph_subgraph_pass SRCS ngraph_subgraph_pass.cc DEPS ngraph_bridge
analysis_helper subgraph_detector graph_pattern_detector pass
fuse_pass_base
${
op_library_DEPS
}
)
subgraph_detector
fuse_pass_base
${
op_library_DEPS
}
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
file
(
APPEND
${
pass_file
}
"USE_PASS(ngraph_subgraph_pass);
\n
"
)
set
(
INFER_IR_PASSES
${
INFER_IR_PASSES
}
ngraph_subgraph_pass CACHE INTERNAL
""
)
...
...
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
浏览文件 @
b1401fb7
...
...
@@ -20,8 +20,7 @@
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/ngraph_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
...
...
@@ -30,8 +29,6 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
namespace
ANAT
=
paddle
::
inference
::
analysis
;
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
const
std
::
set
<
std
::
string
>
&
engine_outputs
,
const
std
::
string
&
size
)
{
...
...
@@ -59,19 +56,18 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
return
!
paddle
::
operators
::
NgraphBridge
::
isRegister
(
op_type
);
};
ANAT
::
SubGraphFuser
fuser
(
graph
,
teller
,
0
,
"ngraph_engine"
);
SubGraphFuser
fuser
(
graph
,
teller
,
0
,
"ngraph_engine"
);
fuser
();
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
A
NAT
::
A
gent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
OpDesc
*
op_desc
=
node
->
Op
();
op_desc
->
SetType
(
"ngraph_engine"
);
CreateNgraphEngineOp
(
node
,
graph
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
ANAT
::
Agent
(
node
).
subgraph
()
->
begin
(),
ANAT
::
Agent
(
node
).
subgraph
()
->
end
());
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
...
...
@@ -79,7 +75,7 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
A
NAT
::
A
gent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
}
}
...
...
@@ -116,7 +112,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
return
;
}
auto
&
subgraph
=
*
A
NAT
::
A
gent
(
node
).
subgraph
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
std
::
unordered_set
<
std
::
string
>
inputs
;
std
::
unordered_set
<
std
::
string
>
outputs
;
for
(
auto
*
node
:
subgraph
)
{
...
...
@@ -138,7 +134,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
}
void
NgraphSubgraphPass
::
CreateNgraphEngineOp
(
Node
*
node
,
Graph
*
graph
)
const
{
auto
&
subgraph
=
*
A
NAT
::
A
gent
(
node
).
subgraph
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE_NE
(
subgraph
.
empty
(),
true
,
"subgraph cannot be empty"
);
framework
::
proto
::
BlockDesc
block_proto
;
...
...
paddle/fluid/
inference/analysis/ir_passes
/subgraph_detector.cc
→
paddle/fluid/
framework/ir
/subgraph_detector.cc
浏览文件 @
b1401fb7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
DECLARE_bool
(
use_ngraph
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Node
;
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
// NOLINT
std
::
unordered_set
<
Node
*>
nodes
(
graph
.
begin
(),
graph
.
end
());
std
::
unordered_set
<
Node
*>
inputs
;
std
::
unordered_set
<
Node
*>
outputs
;
// Input a Value, check whether its inlink is in the subgraph.
auto
inlink_in_subgraph
=
[
&
](
Node
*
n
)
{
for
(
auto
*
in
:
n
->
inputs
)
{
if
(
nodes
.
count
(
in
))
return
true
;
}
return
false
;
};
for
(
auto
&
node
:
graph
)
{
for
(
auto
*
in
:
node
->
inputs
)
{
// The Value that is written by nodes inside a sub-graph shouldn't be the
// input of the sub-graph.
if
(
!
nodes
.
count
(
in
)
&&
in
->
IsVar
()
&&
!
inlink_in_subgraph
(
in
))
{
inputs
.
insert
(
in
);
}
}
for
(
auto
*
out
:
node
->
outputs
)
{
if
(
!
nodes
.
count
(
out
)
&&
out
->
IsVar
())
{
outputs
.
insert
(
out
);
}
}
}
return
std
::
make_pair
(
std
::
vector
<
Node
*>
(
inputs
.
begin
(),
inputs
.
end
()),
std
::
vector
<
Node
*>
(
outputs
.
begin
(),
outputs
.
end
()));
}
// Filter the Intermediate results of the subgraph node.
void
FilterRedundantOutputOfSubGraph
(
Graph
*
graph
)
{
std
::
vector
<
Node
*>
op_nodes
;
for
(
auto
&
node
:
TopologicalSort
(
*
graph
))
{
if
(
node
.
IsVar
()
||
Agent
(
&
node
).
deleted
())
{
continue
;
}
op_nodes
.
push_back
(
&
node
);
}
size_t
op_num
=
op_nodes
.
size
();
for
(
size_t
i
=
0
;
i
<
op_num
;
i
++
)
{
if
(
op_nodes
[
i
]
->
IsOp
())
continue
;
std
::
unordered_set
<
std
::
string
>
follow_up_input_names
;
for
(
size_t
j
=
i
+
1
;
j
<
op_num
;
j
++
)
{
for
(
auto
*
in
:
op_nodes
[
j
]
->
inputs
)
{
follow_up_input_names
.
insert
(
in
->
Name
());
}
}
std
::
vector
<
Node
*>
filtered_subgraph_outlinks
;
for
(
auto
*
out
:
op_nodes
[
i
]
->
outputs
)
{
if
(
follow_up_input_names
.
count
(
out
->
Name
()))
{
filtered_subgraph_outlinks
.
push_back
(
out
);
}
else
{
Agent
(
out
).
set_deleted
(
true
);
}
}
// The filtered_subgraph_outlinks may be empty.
op_nodes
[
i
]
->
outputs
=
filtered_subgraph_outlinks
;
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
operator
()()
{
MarkNodesInsideSubGraph
();
return
ExtractSubGraphs
();
}
// Mark the output variables inside a subgraph with the func.
inline
void
MarkOutLinksInSubGraph
(
const
Node
*
func
)
{
for
(
auto
*
var
:
func
->
outputs
)
{
Agent
(
var
).
set_marked
(
true
);
}
}
void
SubgraphDetector
::
MarkNodesInsideSubGraph
()
{
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
DFS
(
*
graph_
))
{
if
(
node_inside_subgraph_teller_
(
&
node
))
{
Agent
(
&
node
).
set_marked
(
true
);
if
(
node
.
IsOp
())
{
// If a function is inside the sub-graph, mark all the output variables
// to be inside too, so that two marked functions will be inside a same
// sub-graph, lets take a example: A_function->var->B_function, if
// A_function is marked, var should also be marked, so that B_function
// will be in the same sub-graph with A_function if B_function is
// marked.
MarkOutLinksInSubGraph
(
&
node
);
}
}
}
}
// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using
node_map_t
=
std
::
unordered_map
<
int
,
Node
*>
;
// Find the ancestor id of a node.
int
UnionFindGetAncestor
(
const
node_map_t
&
node_map
,
size_t
id
)
{
int
tmp
=
id
;
do
{
tmp
=
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
();
}
while
(
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
()
!=
tmp
);
return
tmp
;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void
UnionFindCombine
(
const
node_map_t
&
node_map
,
size_t
a
,
size_t
b
)
{
int
a_ancestor
=
UnionFindGetAncestor
(
node_map
,
a
);
int
b_ancestor
=
UnionFindGetAncestor
(
node_map
,
b
);
Agent
(
node_map
.
at
(
b_ancestor
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
a
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
b
)).
set_union_find_parent
(
a_ancestor
);
}
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct
BriefNode
{
explicit
BriefNode
(
Node
*
n
)
{
node
=
n
;
}
Node
*
node
;
std
::
vector
<
BriefNode
*>
inlinks
;
std
::
vector
<
BriefNode
*>
outlinks
;
};
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
void
UnionContractedNodes
(
const
std
::
unordered_map
<
int
,
BriefNode
*>
&
node_map
,
int
src_id
,
int
dst_id
)
{
// merge the two adjacent nodes into one node.
BriefNode
*
src_node
=
node_map
.
at
(
src_id
);
BriefNode
*
dst_node
=
node_map
.
at
(
dst_id
);
std
::
unordered_set
<
BriefNode
*>
inputs
(
src_node
->
inlinks
.
begin
(),
src_node
->
inlinks
.
end
());
std
::
unordered_set
<
BriefNode
*>
outputs
;
for
(
auto
*
n
:
src_node
->
outlinks
)
{
if
(
n
!=
dst_node
)
outputs
.
insert
(
n
);
}
// Add the inlinks and outlinks of dst node to src node.
std
::
vector
<
BriefNode
*>
dst_in_nodes
=
dst_node
->
inlinks
;
for
(
BriefNode
*
node
:
dst_in_nodes
)
{
if
(
node
!=
src_node
)
{
inputs
.
insert
(
node
);
}
}
std
::
vector
<
BriefNode
*>
dst_out_nodes
=
dst_node
->
outlinks
;
for
(
BriefNode
*
node
:
dst_out_nodes
)
{
outputs
.
insert
(
node
);
}
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
src_node
->
inlinks
=
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
());
src_node
->
outlinks
=
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
());
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#else
src_node
->
inlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
src_node
->
outlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#endif
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
n
==
src_node
||
n
==
dst_node
)
{
n
=
src_node
;
}
}
};
// Change all the dst inputs and outputs corresponding inlink and
// outlink to the src node.
for
(
auto
*
node
:
src_node
->
inlinks
)
{
inlink_or_outlink_cleaner
(
node
->
outlinks
);
}
for
(
auto
*
node
:
src_node
->
outlinks
)
{
inlink_or_outlink_cleaner
(
node
->
inlinks
);
}
}
// FlexibleDFS
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void
FlexibleDFS
(
const
std
::
vector
<
BriefNode
*>
&
source
,
bool
reverse
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
enter
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
leave
)
{
typedef
struct
{
const
BriefNode
*
node
;
bool
leave
;
}
FNode
;
std
::
vector
<
FNode
>
stack
;
for
(
auto
&
node
:
source
)
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
std
::
unordered_set
<
const
BriefNode
*>
visited
;
while
(
!
stack
.
empty
())
{
auto
fnode
=
stack
.
back
();
stack
.
pop_back
();
if
(
fnode
.
leave
)
{
if
(
leave
&&
!
leave
(
fnode
.
node
))
return
;
}
if
(
visited
.
count
(
fnode
.
node
))
continue
;
visited
.
insert
(
fnode
.
node
);
if
(
enter
&&
!
enter
(
fnode
.
node
))
return
;
if
(
leave
)
stack
.
push_back
(
FNode
{
fnode
.
node
,
true
});
const
std
::
vector
<
BriefNode
*>
iter_nodes
=
reverse
==
true
?
fnode
.
node
->
inlinks
:
fnode
.
node
->
outlinks
;
for
(
const
BriefNode
*
node
:
iter_nodes
)
{
if
(
!
visited
.
count
(
node
))
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
}
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
ExtractSubGraphs
()
{
// Run the Extract algorithm to find all subgraphs.
std
::
vector
<
Node
*>
marked_nodes
;
// We use brief_node_map to represent the original graph in order to avoid
// changing the original graph.
std
::
unordered_map
<
int
,
BriefNode
*>
brief_node_map
;
std
::
unordered_set
<
int32_t
>
valid_node_ids
;
for
(
auto
*
node
:
graph_
->
Nodes
())
{
valid_node_ids
.
insert
(
node
->
id
());
}
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
TS
(
*
graph_
))
{
brief_node_map
[
node
.
id
()]
=
new
BriefNode
(
&
node
);
if
(
Agent
(
&
node
).
marked
())
{
marked_nodes
.
push_back
(
&
node
);
}
}
// extract sub-graphs in the marked node set, use Union Find algorithm.
node_map_t
node_map
;
// id to ptr
for
(
auto
*
n
:
marked_nodes
)
{
// n's parent == n.id means it is the ancestor
Agent
(
n
).
set_union_find_parent
(
n
->
id
());
node_map
[
n
->
id
()]
=
n
;
}
// create breif node map
for
(
auto
&
itr
:
brief_node_map
)
{
for
(
Node
*
node
:
itr
.
second
->
node
->
inputs
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
continue
;
}
itr
.
second
->
inlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
for
(
Node
*
node
:
itr
.
second
->
node
->
outputs
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
continue
;
}
itr
.
second
->
outlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
}
for
(
auto
&
itr
:
brief_node_map
)
{
BriefNode
*
brief_node
=
itr
.
second
;
if
(
!
Agent
(
brief_node
->
node
).
marked
())
{
VLOG
(
4
)
<<
brief_node
->
node
->
id
()
<<
" node not a trt candidate."
;
continue
;
}
// Our algorithm must guarantee that:
// 1. The graph is always directed acyclic graph(DAG).
// 2. If there is a path in the subgraph from X to Y (X and Y are both
// nodes in the subgraph), then all paths from X to Y are in the
// subgraph.
//
// In order to achieve the above guarantee.
// For adjacent nodes src -> dst.
// 1. Get all dst input nodes except src.
// 2. Reverse DFS from those input nodes
// 3. If there is a path from input nodes to src,
// then the src and dst nodes can not be fused into one node,
// otherwise it can be done.
while
(
true
)
{
std
::
unordered_set
<
BriefNode
*>
contract_nodes
;
for
(
auto
*
out
:
brief_node
->
outlinks
)
{
// must be an trt candidate
if
(
!
Agent
(
out
->
node
).
marked
())
continue
;
// get all dst input nodes except src.
std
::
vector
<
BriefNode
*>
source_nodes
;
for
(
auto
*
n
:
out
->
inlinks
)
{
if
(
n
!=
brief_node
)
{
source_nodes
.
push_back
(
n
);
}
}
// Reverse DFS from the source_nodes.
bool
have_excess_path
=
false
;
FlexibleDFS
(
source_nodes
,
true
,
nullptr
,
[
&
have_excess_path
,
brief_node
](
const
BriefNode
*
n
)
{
if
(
n
==
brief_node
)
{
have_excess_path
=
true
;
return
false
;
}
return
true
;
});
if
(
have_excess_path
)
continue
;
contract_nodes
.
insert
(
out
);
}
if
(
contract_nodes
.
empty
())
break
;
for
(
auto
dst_node
:
contract_nodes
)
{
UnionFindCombine
(
node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
UnionContractedNodes
(
brief_node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
}
}
}
std
::
unordered_map
<
int
/*ancestor*/
,
std
::
vector
<
Node
*>>
clusters
;
for
(
auto
*
n
:
marked_nodes
)
{
if
(
n
->
IsOp
())
{
clusters
[
UnionFindGetAncestor
(
node_map
,
Agent
(
n
).
union_find_parent
())]
.
push_back
(
n
);
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
result
;
std
::
for_each
(
clusters
.
begin
(),
clusters
.
end
(),
[
&
](
const
decltype
(
clusters
)
::
value_type
&
it
)
{
result
.
push_back
(
it
.
second
);
});
return
result
;
}
void
SubGraphFuser
::
operator
()()
{
ReplaceNodesWithSubGraphs
();
}
void
RemoveIntermediateOutputInSubgraph
(
const
std
::
vector
<
Node
*>
&
subgraph
,
Graph
*
graph
,
std
::
vector
<
Node
*>
*
outputs
)
{
std
::
unordered_set
<
Node
*>
subgraph_set
(
subgraph
.
begin
(),
subgraph
.
end
());
std
::
unordered_set
<
Node
*>
valid_output
;
for
(
auto
*
output
:
*
outputs
)
{
int
num_used
=
0
;
for
(
auto
*
node
:
output
->
outputs
)
{
if
(
!
subgraph_set
.
count
(
node
))
++
num_used
;
if
(
num_used
>
0
)
valid_output
.
insert
(
output
);
}
}
// In use for ngraph subgraph pass for parallel executor,
// this will remove all nodes, bypass this and let ngraph
// subgraph pass to process outputs
if
(
FLAGS_use_ngraph
&&
valid_output
.
size
()
==
0
)
return
;
outputs
->
assign
(
valid_output
.
begin
(),
valid_output
.
end
());
}
void
DetachDeletedNodes
(
framework
::
ir
::
Graph
*
graph
)
{
std
::
unordered_set
<
const
Node
*>
nodes
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
Agent
(
node
).
deleted
())
{
node
->
inputs
.
clear
();
node
->
outputs
.
clear
();
}
}
}
void
SubGraphFuser
::
ReplaceNodesWithSubGraphs
()
{
auto
subgraphs
=
SubgraphDetector
(
graph_
,
node_inside_subgraph_teller_
)();
for
(
auto
&
subgraph
:
subgraphs
)
{
if
(
subgraph
.
size
()
<=
(
size_t
)
min_subgraph_size_
)
continue
;
std
::
unordered_set
<
Node
*>
subgraph_uniq
(
subgraph
.
begin
(),
subgraph
.
end
());
// replace this sub-graph with the first node. Two steps: 1. Create a Block
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph
// as deleted. 3. Replace the deleted node with the new Block Node.
framework
::
OpDesc
empty_desc
;
empty_desc
.
SetType
(
name_
);
auto
*
block_node
=
graph_
->
CreateOpNode
(
&
empty_desc
);
Agent
(
block_node
).
set_subgraph
({});
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
block_node
->
inputs
=
std
::
move
(
io
.
first
);
block_node
->
outputs
=
std
::
move
(
io
.
second
);
RemoveIntermediateOutputInSubgraph
(
subgraph
,
graph_
,
&
block_node
->
outputs
);
for
(
auto
*
node
:
subgraph
)
{
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
// pass.
Agent
(
node
).
set_deleted
(
true
);
Agent
(
block_node
).
subgraph
()
->
push_back
(
node
);
}
// Change all the sub-graph's inputs and outputs corresponding inlink and
// outlink to this sub-graph node.
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
Node
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
subgraph_uniq
.
count
(
n
))
{
n
=
block_node
;
}
}
std
::
unordered_set
<
Node
*>
uniq
(
nodes
.
begin
(),
nodes
.
end
());
nodes
.
assign
(
uniq
.
begin
(),
uniq
.
end
());
};
for
(
auto
*
i
:
block_node
->
inputs
)
{
inlink_or_outlink_cleaner
(
i
->
outputs
);
}
for
(
auto
*&
o
:
block_node
->
outputs
)
{
inlink_or_outlink_cleaner
(
o
->
inputs
);
}
}
// DetachDeletedNodes(graph_);
FilterRedundantOutputOfSubGraph
(
graph_
);
}
inline
bool
CheckNodeIndegreeEquals
(
const
Node
&
node
,
size_t
n
)
{
return
node
.
inputs
.
size
()
==
n
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
DECLARE_bool
(
use_ngraph
);
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
// NOLINT
std
::
unordered_set
<
Node
*>
nodes
(
graph
.
begin
(),
graph
.
end
());
std
::
unordered_set
<
Node
*>
inputs
;
std
::
unordered_set
<
Node
*>
outputs
;
// Input a Value, check whether its inlink is in the subgraph.
auto
inlink_in_subgraph
=
[
&
](
Node
*
n
)
{
for
(
auto
*
in
:
n
->
inputs
)
{
if
(
nodes
.
count
(
in
))
return
true
;
}
return
false
;
};
for
(
auto
&
node
:
graph
)
{
for
(
auto
*
in
:
node
->
inputs
)
{
// The Value that is written by nodes inside a sub-graph shouldn't be the
// input of the sub-graph.
if
(
!
nodes
.
count
(
in
)
&&
in
->
IsVar
()
&&
!
inlink_in_subgraph
(
in
))
{
inputs
.
insert
(
in
);
}
}
for
(
auto
*
out
:
node
->
outputs
)
{
if
(
!
nodes
.
count
(
out
)
&&
out
->
IsVar
())
{
outputs
.
insert
(
out
);
}
}
}
return
std
::
make_pair
(
std
::
vector
<
Node
*>
(
inputs
.
begin
(),
inputs
.
end
()),
std
::
vector
<
Node
*>
(
outputs
.
begin
(),
outputs
.
end
()));
}
// Filter the Intermediate results of the subgraph node.
void
FilterRedundantOutputOfSubGraph
(
Graph
*
graph
)
{
std
::
vector
<
Node
*>
op_nodes
;
for
(
auto
&
node
:
TopologicalSort
(
*
graph
))
{
if
(
node
.
IsVar
()
||
Agent
(
&
node
).
deleted
())
{
continue
;
}
op_nodes
.
push_back
(
&
node
);
}
size_t
op_num
=
op_nodes
.
size
();
for
(
size_t
i
=
0
;
i
<
op_num
;
i
++
)
{
if
(
op_nodes
[
i
]
->
IsOp
())
continue
;
std
::
unordered_set
<
std
::
string
>
follow_up_input_names
;
for
(
size_t
j
=
i
+
1
;
j
<
op_num
;
j
++
)
{
for
(
auto
*
in
:
op_nodes
[
j
]
->
inputs
)
{
follow_up_input_names
.
insert
(
in
->
Name
());
}
}
std
::
vector
<
Node
*>
filtered_subgraph_outlinks
;
for
(
auto
*
out
:
op_nodes
[
i
]
->
outputs
)
{
if
(
follow_up_input_names
.
count
(
out
->
Name
()))
{
filtered_subgraph_outlinks
.
push_back
(
out
);
}
else
{
Agent
(
out
).
set_deleted
(
true
);
}
}
// The filtered_subgraph_outlinks may be empty.
op_nodes
[
i
]
->
outputs
=
filtered_subgraph_outlinks
;
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
operator
()()
{
MarkNodesInsideSubGraph
();
return
ExtractSubGraphs
();
}
// Mark the output variables inside a subgraph with the func.
inline
void
MarkOutLinksInSubGraph
(
const
Node
*
func
)
{
for
(
auto
*
var
:
func
->
outputs
)
{
Agent
(
var
).
set_marked
(
true
);
}
}
void
SubgraphDetector
::
MarkNodesInsideSubGraph
()
{
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
DFS
(
*
graph_
))
{
if
(
node_inside_subgraph_teller_
(
&
node
))
{
Agent
(
&
node
).
set_marked
(
true
);
if
(
node
.
IsOp
())
{
// If a function is inside the sub-graph, mark all the output variables
// to be inside too, so that two marked functions will be inside a same
// sub-graph, lets take a example: A_function->var->B_function, if
// A_function is marked, var should also be marked, so that B_function
// will be in the same sub-graph with A_function if B_function is
// marked.
MarkOutLinksInSubGraph
(
&
node
);
}
}
}
}
// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using
node_map_t
=
std
::
unordered_map
<
int
,
Node
*>
;
// Find the ancestor id of a node.
int
UnionFindGetAncestor
(
const
node_map_t
&
node_map
,
size_t
id
)
{
int
tmp
=
id
;
do
{
tmp
=
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
();
}
while
(
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
()
!=
tmp
);
return
tmp
;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void
UnionFindCombine
(
const
node_map_t
&
node_map
,
size_t
a
,
size_t
b
)
{
int
a_ancestor
=
UnionFindGetAncestor
(
node_map
,
a
);
int
b_ancestor
=
UnionFindGetAncestor
(
node_map
,
b
);
Agent
(
node_map
.
at
(
b_ancestor
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
a
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
b
)).
set_union_find_parent
(
a_ancestor
);
}
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct
BriefNode
{
explicit
BriefNode
(
Node
*
n
)
{
node
=
n
;
}
Node
*
node
;
std
::
vector
<
BriefNode
*>
inlinks
;
std
::
vector
<
BriefNode
*>
outlinks
;
};
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
void
UnionContractedNodes
(
const
std
::
unordered_map
<
int
,
BriefNode
*>
&
node_map
,
int
src_id
,
int
dst_id
)
{
// merge the two adjacent nodes into one node.
BriefNode
*
src_node
=
node_map
.
at
(
src_id
);
BriefNode
*
dst_node
=
node_map
.
at
(
dst_id
);
std
::
unordered_set
<
BriefNode
*>
inputs
(
src_node
->
inlinks
.
begin
(),
src_node
->
inlinks
.
end
());
std
::
unordered_set
<
BriefNode
*>
outputs
;
for
(
auto
*
n
:
src_node
->
outlinks
)
{
if
(
n
!=
dst_node
)
outputs
.
insert
(
n
);
}
// Add the inlinks and outlinks of dst node to src node.
std
::
vector
<
BriefNode
*>
dst_in_nodes
=
dst_node
->
inlinks
;
for
(
BriefNode
*
node
:
dst_in_nodes
)
{
if
(
node
!=
src_node
)
{
inputs
.
insert
(
node
);
}
}
std
::
vector
<
BriefNode
*>
dst_out_nodes
=
dst_node
->
outlinks
;
for
(
BriefNode
*
node
:
dst_out_nodes
)
{
outputs
.
insert
(
node
);
}
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
src_node
->
inlinks
=
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
());
src_node
->
outlinks
=
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
());
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#else
src_node
->
inlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
src_node
->
outlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
#endif
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
n
==
src_node
||
n
==
dst_node
)
{
n
=
src_node
;
}
}
};
// Change all the dst inputs and outputs corresponding inlink and
// outlink to the src node.
for
(
auto
*
node
:
src_node
->
inlinks
)
{
inlink_or_outlink_cleaner
(
node
->
outlinks
);
}
for
(
auto
*
node
:
src_node
->
outlinks
)
{
inlink_or_outlink_cleaner
(
node
->
inlinks
);
}
}
// FlexibleDFS
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void
FlexibleDFS
(
const
std
::
vector
<
BriefNode
*>
&
source
,
bool
reverse
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
enter
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
leave
)
{
typedef
struct
{
const
BriefNode
*
node
;
bool
leave
;
}
FNode
;
std
::
vector
<
FNode
>
stack
;
for
(
auto
&
node
:
source
)
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
std
::
unordered_set
<
const
BriefNode
*>
visited
;
while
(
!
stack
.
empty
())
{
auto
fnode
=
stack
.
back
();
stack
.
pop_back
();
if
(
fnode
.
leave
)
{
if
(
leave
&&
!
leave
(
fnode
.
node
))
return
;
}
if
(
visited
.
count
(
fnode
.
node
))
continue
;
visited
.
insert
(
fnode
.
node
);
if
(
enter
&&
!
enter
(
fnode
.
node
))
return
;
if
(
leave
)
stack
.
push_back
(
FNode
{
fnode
.
node
,
true
});
const
std
::
vector
<
BriefNode
*>
iter_nodes
=
reverse
==
true
?
fnode
.
node
->
inlinks
:
fnode
.
node
->
outlinks
;
for
(
const
BriefNode
*
node
:
iter_nodes
)
{
if
(
!
visited
.
count
(
node
))
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
}
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
ExtractSubGraphs
()
{
// Run the Extract algorithm to find all subgraphs.
std
::
vector
<
Node
*>
marked_nodes
;
// We use brief_node_map to represent the original graph in order to avoid
// changing the original graph.
std
::
unordered_map
<
int
,
BriefNode
*>
brief_node_map
;
std
::
unordered_set
<
int32_t
>
valid_node_ids
;
for
(
auto
*
node
:
graph_
->
Nodes
())
{
valid_node_ids
.
insert
(
node
->
id
());
}
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
TS
(
*
graph_
))
{
brief_node_map
[
node
.
id
()]
=
new
BriefNode
(
&
node
);
if
(
Agent
(
&
node
).
marked
())
{
marked_nodes
.
push_back
(
&
node
);
}
}
// extract sub-graphs in the marked node set, use Union Find algorithm.
node_map_t
node_map
;
// id to ptr
for
(
auto
*
n
:
marked_nodes
)
{
// n's parent == n.id means it is the ancestor
Agent
(
n
).
set_union_find_parent
(
n
->
id
());
node_map
[
n
->
id
()]
=
n
;
}
// create breif node map
for
(
auto
&
itr
:
brief_node_map
)
{
for
(
Node
*
node
:
itr
.
second
->
node
->
inputs
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
continue
;
}
itr
.
second
->
inlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
for
(
Node
*
node
:
itr
.
second
->
node
->
outputs
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
continue
;
}
itr
.
second
->
outlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
}
for
(
auto
&
itr
:
brief_node_map
)
{
BriefNode
*
brief_node
=
itr
.
second
;
if
(
!
Agent
(
brief_node
->
node
).
marked
())
{
VLOG
(
4
)
<<
brief_node
->
node
->
id
()
<<
" node not a trt candidate."
;
continue
;
}
// Our algorithm must guarantee that:
// 1. The graph is always directed acyclic graph(DAG).
// 2. If there is a path in the subgraph from X to Y (X and Y are both
// nodes in the subgraph), then all paths from X to Y are in the
// subgraph.
//
// In order to achieve the above guarantee.
// For adjacent nodes src -> dst.
// 1. Get all dst input nodes except src.
// 2. Reverse DFS from those input nodes
// 3. If there is a path from input nodes to src,
// then the src and dst nodes can not be fused into one node,
// otherwise it can be done.
while
(
true
)
{
std
::
unordered_set
<
BriefNode
*>
contract_nodes
;
for
(
auto
*
out
:
brief_node
->
outlinks
)
{
// must be an trt candidate
if
(
!
Agent
(
out
->
node
).
marked
())
continue
;
// get all dst input nodes except src.
std
::
vector
<
BriefNode
*>
source_nodes
;
for
(
auto
*
n
:
out
->
inlinks
)
{
if
(
n
!=
brief_node
)
{
source_nodes
.
push_back
(
n
);
}
}
// Reverse DFS from the source_nodes.
bool
have_excess_path
=
false
;
FlexibleDFS
(
source_nodes
,
true
,
nullptr
,
[
&
have_excess_path
,
brief_node
](
const
BriefNode
*
n
)
{
if
(
n
==
brief_node
)
{
have_excess_path
=
true
;
return
false
;
}
return
true
;
});
if
(
have_excess_path
)
continue
;
contract_nodes
.
insert
(
out
);
}
if
(
contract_nodes
.
empty
())
break
;
for
(
auto
dst_node
:
contract_nodes
)
{
UnionFindCombine
(
node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
UnionContractedNodes
(
brief_node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
}
}
}
std
::
unordered_map
<
int
/*ancestor*/
,
std
::
vector
<
Node
*>>
clusters
;
for
(
auto
*
n
:
marked_nodes
)
{
if
(
n
->
IsOp
())
{
clusters
[
UnionFindGetAncestor
(
node_map
,
Agent
(
n
).
union_find_parent
())]
.
push_back
(
n
);
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
result
;
std
::
for_each
(
clusters
.
begin
(),
clusters
.
end
(),
[
&
](
const
decltype
(
clusters
)
::
value_type
&
it
)
{
result
.
push_back
(
it
.
second
);
});
return
result
;
}
void
SubGraphFuser
::
operator
()()
{
ReplaceNodesWithSubGraphs
();
}
void
RemoveIntermediateOutputInSubgraph
(
const
std
::
vector
<
Node
*>
&
subgraph
,
Graph
*
graph
,
std
::
vector
<
Node
*>
*
outputs
)
{
std
::
unordered_set
<
Node
*>
subgraph_set
(
subgraph
.
begin
(),
subgraph
.
end
());
std
::
unordered_set
<
Node
*>
valid_output
;
for
(
auto
*
output
:
*
outputs
)
{
int
num_used
=
0
;
for
(
auto
*
node
:
output
->
outputs
)
{
if
(
!
subgraph_set
.
count
(
node
))
++
num_used
;
if
(
num_used
>
0
)
valid_output
.
insert
(
output
);
}
}
// In use for ngraph subgraph pass for parallel executor,
// this will remove all nodes, bypass this and let ngraph
// subgraph pass to process outputs
if
(
FLAGS_use_ngraph
&&
valid_output
.
size
()
==
0
)
return
;
outputs
->
assign
(
valid_output
.
begin
(),
valid_output
.
end
());
}
void
DetachDeletedNodes
(
framework
::
ir
::
Graph
*
graph
)
{
std
::
unordered_set
<
const
Node
*>
nodes
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
Agent
(
node
).
deleted
())
{
node
->
inputs
.
clear
();
node
->
outputs
.
clear
();
}
}
}
void
SubGraphFuser
::
ReplaceNodesWithSubGraphs
()
{
auto
subgraphs
=
SubgraphDetector
(
graph_
,
node_inside_subgraph_teller_
)();
for
(
auto
&
subgraph
:
subgraphs
)
{
if
(
subgraph
.
size
()
<=
(
size_t
)
min_subgraph_size_
)
continue
;
std
::
unordered_set
<
Node
*>
subgraph_uniq
(
subgraph
.
begin
(),
subgraph
.
end
());
// replace this sub-graph with the first node. Two steps: 1. Create a Block
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph
// as deleted. 3. Replace the deleted node with the new Block Node.
framework
::
OpDesc
empty_desc
;
empty_desc
.
SetType
(
name_
);
auto
*
block_node
=
graph_
->
CreateOpNode
(
&
empty_desc
);
Agent
(
block_node
).
set_subgraph
({});
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
block_node
->
inputs
=
std
::
move
(
io
.
first
);
block_node
->
outputs
=
std
::
move
(
io
.
second
);
RemoveIntermediateOutputInSubgraph
(
subgraph
,
graph_
,
&
block_node
->
outputs
);
for
(
auto
*
node
:
subgraph
)
{
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
// pass.
Agent
(
node
).
set_deleted
(
true
);
Agent
(
block_node
).
subgraph
()
->
push_back
(
node
);
}
// Change all the sub-graph's inputs and outputs corresponding inlink and
// outlink to this sub-graph node.
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
Node
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
subgraph_uniq
.
count
(
n
))
{
n
=
block_node
;
}
}
std
::
unordered_set
<
Node
*>
uniq
(
nodes
.
begin
(),
nodes
.
end
());
nodes
.
assign
(
uniq
.
begin
(),
uniq
.
end
());
};
for
(
auto
*
i
:
block_node
->
inputs
)
{
inlink_or_outlink_cleaner
(
i
->
outputs
);
}
for
(
auto
*&
o
:
block_node
->
outputs
)
{
inlink_or_outlink_cleaner
(
o
->
inputs
);
}
}
// DetachDeletedNodes(graph_);
FilterRedundantOutputOfSubGraph
(
graph_
);
}
inline
bool
CheckNodeIndegreeEquals
(
const
Node
&
node
,
size_t
n
)
{
return
node
.
inputs
.
size
()
==
n
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/
inference/analysis/ir_passes
/subgraph_detector.h
→
paddle/fluid/
framework/ir
/subgraph_detector.h
浏览文件 @
b1401fb7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file defines the the class to partition a graph.
*/
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/helper.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Graph
;
using
framework
::
ir
::
NodesTSIterator
;
const
char
kIsFunctionNode
[]
=
"__is_function_node__"
;
const
char
kFunctionNodeSubGraph
[]
=
"__function_node_sub_graph__"
;
const
char
kSubgraphSplitterMarkerAttrName
[]
=
"_sub_graph_splitter_inside_sub_graph"
;
/*
* Detect the nodes in a sub-graph that meet some conditions. This class doesn't
* modify the graph.
*/
class
SubgraphDetector
{
public:
// Tell whether a node is inside a sub-graph.
using
NodeInsideSubgraphTeller
=
std
::
function
<
bool
(
const
framework
::
ir
::
Node
*
)
>
;
SubgraphDetector
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
)
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
)
{}
std
::
vector
<
std
::
vector
<
framework
::
ir
::
Node
*>>
operator
()();
protected:
// Mark the nodes inside the accepted sub-graph using
// node_inside_subgraph_teller.
void
MarkNodesInsideSubGraph
();
// Merge the marked nodes into sub-graphs and return the sub-graphs.
std
::
vector
<
std
::
vector
<
framework
::
ir
::
Node
*>>
ExtractSubGraphs
();
private:
Graph
*
graph_
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
};
/*
* SubGraphFuser - Replace some nodes with the sub-graph node they are inside.
* To some extent, the TensorRT engine is just a fusion op for a model.
*/
class
SubGraphFuser
{
public:
using
NodeInsideSubgraphTeller
=
SubgraphDetector
::
NodeInsideSubgraphTeller
;
SubGraphFuser
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
,
int
min_subgraph_size
,
std
::
string
name
=
"anakin_engine"
)
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
),
min_subgraph_size_
{
min_subgraph_size
},
name_
{
name
}
{}
// The main method which run all the logic.
void
operator
()();
protected:
// Remove the nodes inside sub-graphs and replace with the SubGraphNode.
void
ReplaceNodesWithSubGraphs
();
private:
Graph
*
graph_
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
int
min_subgraph_size_
;
const
std
::
string
name_
;
};
struct
NodeWrapper
{
bool
deleted
{
false
};
bool
marked
{
false
};
int
union_find_parent
{
-
1
};
std
::
vector
<
framework
::
ir
::
Node
*>
subgraph
;
};
/*
* ir::Node agent for subgraph detector.
*/
struct
Agent
{
explicit
Agent
(
framework
::
ir
::
Node
*
x
)
:
x_
(
x
)
{}
NodeWrapper
&
wrapper
()
{
if
(
!
x_
->
IsWrappedBy
<
NodeWrapper
>
())
{
x_
->
WrappedBy
<
NodeWrapper
>
(
new
NodeWrapper
);
}
return
x_
->
template
Wrapper
<
NodeWrapper
>();
}
bool
deleted
()
{
return
wrapper
().
deleted
;
}
void
set_deleted
(
bool
x
)
{
wrapper
().
deleted
=
x
;
}
bool
marked
()
{
return
wrapper
().
marked
;
}
void
set_marked
(
bool
x
)
{
wrapper
().
marked
=
x
;
}
void
set_subgraph
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
x
)
{
wrapper
().
subgraph
=
x
;
}
int
union_find_parent
()
{
return
wrapper
().
union_find_parent
;
}
void
set_union_find_parent
(
int
v
)
{
wrapper
().
union_find_parent
=
v
;
}
std
::
vector
<
framework
::
ir
::
Node
*>
*
subgraph
()
{
return
&
wrapper
().
subgraph
;
}
std
::
vector
<
framework
::
ir
::
Node
*>
&
inputs
()
{
return
x_
->
inputs
;
}
std
::
vector
<
framework
::
ir
::
Node
*>
&
outputs
()
{
return
x_
->
outputs
;
}
private:
framework
::
ir
::
Node
*
x_
;
};
// The nodes those have no input will be treated as start points.
static
std
::
vector
<
framework
::
ir
::
Node
*>
ExtractStartPoints
(
const
Graph
&
g
)
{
std
::
vector
<
framework
::
ir
::
Node
*>
result
;
for
(
auto
*
node
:
g
.
Nodes
())
{
if
(
node
->
inputs
.
empty
())
{
result
.
push_back
(
node
);
}
}
return
result
;
}
static
iterator_range
<
NodesTSIterator
>
TopologicalSort
(
const
Graph
&
g
)
{
auto
start_points
=
ExtractStartPoints
(
g
);
PADDLE_ENFORCE
(
!
start_points
.
empty
());
NodesTSIterator
x
(
start_points
);
return
iterator_range
<
NodesTSIterator
>
(
NodesTSIterator
(
start_points
),
NodesTSIterator
());
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
const
char
kIsFunctionNode
[]
=
"__is_function_node__"
;
const
char
kFunctionNodeSubGraph
[]
=
"__function_node_sub_graph__"
;
const
char
kSubgraphSplitterMarkerAttrName
[]
=
"_sub_graph_splitter_inside_sub_graph"
;
/*
* Detect the nodes in a sub-graph that meet some conditions. This class doesn't
* modify the graph.
*/
class
SubgraphDetector
{
public:
// Tell whether a node is inside a sub-graph.
using
NodeInsideSubgraphTeller
=
std
::
function
<
bool
(
const
Node
*
)
>
;
SubgraphDetector
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
)
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
)
{}
std
::
vector
<
std
::
vector
<
Node
*>>
operator
()();
protected:
// Mark the nodes inside the accepted sub-graph using
// node_inside_subgraph_teller.
void
MarkNodesInsideSubGraph
();
// Merge the marked nodes into sub-graphs and return the sub-graphs.
std
::
vector
<
std
::
vector
<
Node
*>>
ExtractSubGraphs
();
private:
Graph
*
graph_
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
};
/*
* SubGraphFuser - Replace some nodes with the sub-graph node they are inside.
* To some extent, the TensorRT engine is just a fusion op for a model.
*/
class
SubGraphFuser
{
public:
using
NodeInsideSubgraphTeller
=
SubgraphDetector
::
NodeInsideSubgraphTeller
;
SubGraphFuser
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
,
int
min_subgraph_size
,
std
::
string
name
=
"anakin_engine"
)
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
),
min_subgraph_size_
{
min_subgraph_size
},
name_
{
name
}
{}
// The main method which run all the logic.
void
operator
()();
protected:
// Remove the nodes inside sub-graphs and replace with the SubGraphNode.
void
ReplaceNodesWithSubGraphs
();
private:
Graph
*
graph_
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
int
min_subgraph_size_
;
const
std
::
string
name_
;
};
struct
NodeWrapper
{
bool
deleted
{
false
};
bool
marked
{
false
};
int
union_find_parent
{
-
1
};
std
::
vector
<
Node
*>
subgraph
;
};
/*
* ir::Node agent for subgraph detector.
*/
struct
Agent
{
explicit
Agent
(
Node
*
x
)
:
x_
(
x
)
{}
NodeWrapper
&
wrapper
()
{
if
(
!
x_
->
IsWrappedBy
<
NodeWrapper
>
())
{
x_
->
WrappedBy
<
NodeWrapper
>
(
new
NodeWrapper
);
}
return
x_
->
template
Wrapper
<
NodeWrapper
>();
}
bool
deleted
()
{
return
wrapper
().
deleted
;
}
void
set_deleted
(
bool
x
)
{
wrapper
().
deleted
=
x
;
}
bool
marked
()
{
return
wrapper
().
marked
;
}
void
set_marked
(
bool
x
)
{
wrapper
().
marked
=
x
;
}
void
set_subgraph
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
x
)
{
wrapper
().
subgraph
=
x
;
}
int
union_find_parent
()
{
return
wrapper
().
union_find_parent
;
}
void
set_union_find_parent
(
int
v
)
{
wrapper
().
union_find_parent
=
v
;
}
std
::
vector
<
Node
*>
*
subgraph
()
{
return
&
wrapper
().
subgraph
;
}
std
::
vector
<
Node
*>
&
inputs
()
{
return
x_
->
inputs
;
}
std
::
vector
<
Node
*>
&
outputs
()
{
return
x_
->
outputs
;
}
private:
Node
*
x_
;
};
// The nodes those have no input will be treated as start points.
static
std
::
vector
<
Node
*>
ExtractStartPoints
(
const
Graph
&
g
)
{
std
::
vector
<
Node
*>
result
;
for
(
auto
*
node
:
g
.
Nodes
())
{
if
(
node
->
inputs
.
empty
())
{
result
.
push_back
(
node
);
}
}
return
result
;
}
static
iterator_range
<
NodesTSIterator
>
TopologicalSort
(
const
Graph
&
g
)
{
auto
start_points
=
ExtractStartPoints
(
g
);
PADDLE_ENFORCE_GT
(
start_points
.
size
(),
0U
,
platform
::
errors
::
InvalidArgument
(
"Expected the number of graph's start points >= 1. Expected %d."
,
start_points
.
size
()));
NodesTSIterator
x
(
start_points
);
return
iterator_range
<
NodesTSIterator
>
(
NodesTSIterator
(
start_points
),
NodesTSIterator
());
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
b1401fb7
...
...
@@ -24,7 +24,6 @@
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
...
...
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
浏览文件 @
b1401fb7
cc_library
(
subgraph_detector SRCS subgraph_detector.cc subgraph_util.cc DEPS proto_desc
)
if
(
WITH_TESTING
)
add_dependencies
(
subgraph_detector gtest
)
endif
()
cc_library
(
subgraph_util SRCS subgraph_util.cc DEPS subgraph_detector
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
cc_library
(
tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass.cc DEPS subgraph_
detector
tensorrt_op_teller
)
cc_library
(
tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass.cc DEPS subgraph_
util
tensorrt_op_teller
)
set
(
analysis_deps
${
analysis_deps
}
subgraph_
detector
tensorrt_subgraph_pass
subgraph_
util
tensorrt_subgraph_pass
CACHE INTERNAL
""
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
...
...
@@ -16,10 +13,10 @@ if (WITH_GPU AND TENSORRT_FOUND)
endif
()
if
(
ANAKIN_SUBGRAPH
)
cc_library
(
anakin_subgraph_pass SRCS anakin_subgraph_pass.cc DEPS subgraph_
detector
anakin_op_teller
)
cc_library
(
anakin_subgraph_pass SRCS anakin_subgraph_pass.cc DEPS subgraph_
util
anakin_op_teller
)
set
(
analysis_deps
${
analysis_deps
}
subgraph_
detector
anakin_subgraph_pass
subgraph_
util
anakin_subgraph_pass
CACHE INTERNAL
""
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
...
...
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
浏览文件 @
b1401fb7
...
...
@@ -22,11 +22,11 @@
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#include "paddle/fluid/inference/anakin/op_teller.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
...
...
@@ -50,7 +50,7 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
return
anakin
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
};
SubGraphFuser
fuser
(
graph
,
teller
,
6
/* min_subgraph_size */
);
framework
::
ir
::
SubGraphFuser
fuser
(
graph
,
teller
,
6
/* min_subgraph_size */
);
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
...
...
@@ -61,17 +61,18 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateAnakinOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
}
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
framework
::
ir
::
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
}
}
...
...
@@ -96,11 +97,11 @@ std::string GenerateAnakinEngineKey(const std::set<std::string> &engine_inputs,
}
void
AnakinSubgraphPass
::
CreateAnakinOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
framework
::
ir
::
Node
*
node
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
framework
::
ProgramDesc
*
program_desc
=
...
...
@@ -164,7 +165,7 @@ void AnakinSubgraphPass::CreateAnakinOp(
graph_var_map
[
node
->
Name
()]
=
node
;
}
}
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph_nodes
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
b1401fb7
...
...
@@ -17,8 +17,8 @@
#include <set>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
...
...
@@ -40,9 +40,9 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
return
tensorrt
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
};
SubGraphFuser
fuser
(
graph
,
teller
,
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
,
"tensorrt_engine"
);
framework
::
ir
::
SubGraphFuser
fuser
(
graph
,
teller
,
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
,
"tensorrt_engine"
);
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
...
...
@@ -52,18 +52,19 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateTensorRTOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
}
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
framework
::
ir
::
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
}
}
...
...
@@ -88,11 +89,11 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
framework
::
ir
::
Node
*
node
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
framework
::
ProgramDesc
*
program_desc
=
...
...
@@ -161,7 +162,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
if
(
precision_mode
==
AnalysisConfig
::
Precision
::
kHalf
)
enable_fp16
=
true
;
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
use_calib_mode
=
Get
<
bool
>
(
"use_calib_mode"
);
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph_nodes
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录