Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
aeb2dc2b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aeb2dc2b
编写于
9月 25, 2018
作者:
W
Wu Yi
提交者:
GitHub
9月 25, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Nccl2 dist API (#13506)
* add nccl2 dist api * update apispec * update * update api spec
上级
c66a8d2c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
97 addition
and
18 deletion
+97
-18
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+20
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+75
-16
未找到文件。
paddle/fluid/API.spec
浏览文件 @
aeb2dc2b
...
...
@@ -53,7 +53,7 @@ paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'end
paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'
], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None
))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'
, 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174'
))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspilerConfig.__init__
...
...
@@ -336,7 +336,7 @@ paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'
], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None
))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'
, 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174'
))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.transpiler.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.HashName.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None)
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
aeb2dc2b
...
...
@@ -659,5 +659,25 @@ class TestLoadSliceVar(TranspilerTest):
pserver2
.
_slice_vars_and_attrs
[
idx
][
2
].
shape
))
class
TestNCCL2Transpile
(
TranspilerTest
):
def
test_nccl2_transpile
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
self
.
net_conf
()
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
mode
=
"nccl2"
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
0
,
trainers
=
"127.0.0.1:6174,127.0.0.1:6175"
,
current_endpoint
=
"127.0.0.1:6174"
,
startup_program
=
startup
)
print
([
op
.
type
for
op
in
startup
.
global_block
().
ops
])
self
.
assertEqual
(
startup
.
global_block
().
ops
[
-
1
].
type
,
"gen_nccl_id"
)
self
.
assertIsNotNone
(
startup
.
global_block
().
vars
.
get
(
"NCCLID"
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
aeb2dc2b
...
...
@@ -136,6 +136,8 @@ class DistributeTranspilerConfig(object):
slice_var_up
=
True
split_method
=
None
min_block_size
=
8192
# supported modes: pserver, nccl2
mode
=
"pserver"
print_log
=
False
...
...
@@ -144,27 +146,30 @@ class DistributeTranspiler(object):
**DistributeTranspiler**
Convert the fluid program to distributed data-parallelism programs.
Supports two modes: pserver mode and nccl2 mode.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
In pserver mode, the main_program will be transformed to use a remote
parameter server to do parameter optimization. And the optimization
graph will be put into a parameter server program.
In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
op in startup_program to share the NCCL_ID across the job nodes.
After transpile_nccl2 called, you ***must*** pass trainer_id and
num_trainers argument to ParallelExecutor to enable NCCL2 distributed
mode.
Examples:
.. code-block:: python
# Define your model before these codes.
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
# for pserver mode
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
role = os.getenv("PADDLE_TRAINING_ROLE")
t =
distribute_transpiler
.DistributeTranspiler()
t =
fluid
.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
if role == "PSERVER":
...
...
@@ -173,6 +178,18 @@ class DistributeTranspiler(object):
pserver_program)
elif role == "TRAINER":
trainer_program = t.get_trainer_program()
# for nccl2 mode
config = fluid.DistributeTranspilerConfig()
config.mode = "nccl2"
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
exe = fluid.ParallelExecutor(
use_cuda,
loss_name=loss_var.name,
num_trainers=len(trainers.split(",)),
trainer_id=trainer_id
)
"""
def
__init__
(
self
,
config
=
None
):
...
...
@@ -190,13 +207,41 @@ class DistributeTranspiler(object):
assert
(
self
.
config
.
min_block_size
>=
8192
)
assert
(
self
.
config
.
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
def
_transpile_nccl2
(
self
,
trainer_id
,
trainers
,
current_endpoint
,
startup_program
=
None
):
if
not
startup_program
:
startup_program
=
default_startup_program
()
if
trainer_id
>=
0
:
worker_endpoints
=
trainers
.
split
(
","
)
# send NCCL_ID to others or recv from trainer 0
worker_endpoints
.
remove
(
current_endpoint
)
nccl_id_var
=
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_program
.
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
worker_endpoints
,
"trainer_id"
:
trainer_id
})
return
nccl_id_var
else
:
raise
ValueError
(
"must set trainer_id > 0"
)
def
transpile
(
self
,
trainer_id
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
sync_mode
=
True
,
startup_program
=
None
):
startup_program
=
None
,
current_endpoint
=
"127.0.0.1:6174"
):
"""
Run the transpiler.
...
...
@@ -207,10 +252,15 @@ class DistributeTranspiler(object):
default is fluid.default_main_program().
pservers (str): comma separated ip:port string for the pserver
list.
trainers (int): number of trainers in the distributed job.
trainers (int|str): in pserver mode this is the number of
trainers, in nccl2 mode this is a string of trainer
endpoints.
sync_mode (bool): Do sync training or not, default is True.
startup_program (Program|None): startup_program to transpile,
default is fluid.default_main_program().
current_endpoint (str): need pass current endpoint when
transpile as nccl2 distributed mode. In pserver mode
this argument is not used.
"""
if
program
is
None
:
program
=
default_main_program
()
...
...
@@ -220,6 +270,15 @@ class DistributeTranspiler(object):
self
.
startup_program
=
startup_program
self
.
origin_startup_program
=
self
.
startup_program
.
clone
()
if
self
.
config
.
mode
==
"nccl2"
:
assert
(
isinstance
(
trainers
,
str
))
self
.
_transpile_nccl2
(
trainer_id
,
trainers
,
current_endpoint
,
startup_program
=
startup_program
)
return
self
.
trainer_num
=
trainers
self
.
sync_mode
=
sync_mode
self
.
trainer_id
=
trainer_id
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录