Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ae867a84
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ae867a84
编写于
6月 22, 2022
作者:
H
Haohongxiang
提交者:
GitHub
6月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] Fix bugs of supporting ProcessGroupNCCL on DCU (#43682)
* fix bugs * update * update * update * code style * code style check
上级
292b7254
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
523 addition
and
248 deletion
+523
-248
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-1
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+121
-55
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+401
-192
未找到文件。
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
ae867a84
...
...
@@ -129,7 +129,7 @@ endif()
if
(
NOT ON_INFER
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup eager_reducer
)
if
(
WITH_NCCL
)
if
(
WITH_NCCL
OR WITH_RCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_nccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
ae867a84
...
...
@@ -31,7 +31,7 @@ limitations under the License. */
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"
#if defined(PADDLE_WITH_NCCL)
#if defined(PADDLE_WITH_NCCL)
|| defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif
...
...
@@ -61,11 +61,15 @@ std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
>
process_group
,
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_parameters
)
{
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_parameters
)
{
auto
params
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
return
std
::
make_shared
<
distributed
::
EagerReducer
>
(
params
,
group_indices
,
is_sparse_gradient
,
process_group
,
group_size_limits
,
find_unused_parameters
);
return
std
::
make_shared
<
distributed
::
EagerReducer
>
(
params
,
group_indices
,
is_sparse_gradient
,
process_group
,
group_size_limits
,
find_unused_parameters
);
}
#if defined(PADDLE_WITH_GLOO)
...
...
@@ -111,7 +115,8 @@ void BindDistributed(py::module *m) {
.
def
(
"name"
,
&
distributed
::
ProcessGroup
::
GetBackendName
)
.
def
(
"allreduce"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
distributed
::
ReduceOp
op
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
AllreduceOptions
opts
;
...
...
@@ -121,12 +126,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
AllReduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"broadcast"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
source_rank
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
BroadcastOptions
opts
;
...
...
@@ -136,7 +143,8 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Broadcast
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
...
...
@@ -151,7 +159,8 @@ void BindDistributed(py::module *m) {
.
def
(
"send"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
...
...
@@ -159,12 +168,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Send
(
tensors
,
dst
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
...
...
@@ -172,12 +183,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Recv
(
tensors
,
src
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_gather"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
...
...
@@ -189,12 +202,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllGather
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"alltoall"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
...
...
@@ -206,13 +221,16 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllToAll
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"reduce"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
int
dst
,
distributed
::
ReduceOp
op
)
{
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
int
dst
,
distributed
::
ReduceOp
op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
distributed
::
ReduceOptions
opts
;
opts
.
reduce_op
=
op
;
...
...
@@ -222,14 +240,17 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Reduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"scatter"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
int
src
)
{
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
int
src
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
distributed
::
ScatterOptions
opts
;
...
...
@@ -242,17 +263,25 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
Scatter
(
in_tensors
,
out_tensors
,
opts
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL)
#if defined(PADDLE_WITH_
RCCL) || defined(PADDLE_WITH_
NCCL)
py
::
class_
<
distributed
::
ProcessGroupNCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupNCCL
>>
(
*
m
,
"ProcessGroupNCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CUDAPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CUDAPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
...
...
@@ -261,29 +290,53 @@ void BindDistributed(py::module *m) {
py
::
class_
<
distributed
::
ProcessGroupHeter
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHeter
>>
(
*
m
,
"ProcessGroupHeter"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
#if defined(PADDLE_WITH_ASCEND_CL)
const
platform
::
NPUPlace
&
,
#else
const
platform
::
CUDAPlace
&
,
#endif
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
py
::
class_
<
distributed
::
ProcessGroupHCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHCCL
>>
(
*
m
,
"ProcessGroupHCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
NPUPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
NPUPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
...
...
@@ -291,22 +344,29 @@ void BindDistributed(py::module *m) {
py
::
class_
<
distributed
::
ProcessGroup
::
Task
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
::
Task
>>
(
*
m
,
"task"
)
.
def
(
"is_completed"
,
&
distributed
::
ProcessGroup
::
Task
::
IsCompleted
)
.
def
(
"wait"
,
&
distributed
::
ProcessGroup
::
Task
::
Wait
,
.
def
(
"wait"
,
&
distributed
::
ProcessGroup
::
Task
::
Wait
,
py
::
arg
(
"timeout"
)
=
kWaitTimeout
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"synchronize"
,
&
distributed
::
ProcessGroup
::
Task
::
Synchronize
,
.
def
(
"synchronize"
,
&
distributed
::
ProcessGroup
::
Task
::
Synchronize
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_GLOO)
py
::
class_
<
ProcessGroupGloo
,
std
::
shared_ptr
<
ProcessGroupGloo
>>
(
*
m
,
"ProcessGroupGloo"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CPUPlace
&
,
int
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CPUPlace
&
,
int
,
std
::
shared_ptr
<
GlooOptions
>
&>
(),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
py
::
init
([](
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
store
,
int
rank
,
int
world_size
,
const
platform
::
CPUPlace
&
place
,
int
gid
)
{
int
rank
,
int
world_size
,
const
platform
::
CPUPlace
&
place
,
int
gid
)
{
auto
opts
=
GlooOptions
::
create
();
char
*
ifname
=
getenv
(
GLOO_SOCKET_IFNAME_ENV
.
c_str
());
if
(
ifname
&&
strlen
(
ifname
)
>
1
)
{
...
...
@@ -315,11 +375,14 @@ void BindDistributed(py::module *m) {
}
else
{
opts
->
device
=
ProcessGroupGloo
::
createDefaultDevice
();
}
return
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
rank
,
world_size
,
place
,
gid
,
opts
);
return
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
rank
,
world_size
,
place
,
gid
,
opts
);
}),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def_static
(
"create_default_device"
,
&
ProcessGroupGloo
::
createDefaultDevice
);
...
...
@@ -327,21 +390,23 @@ void BindDistributed(py::module *m) {
m
->
def
(
"eager_assign_group_by_size"
,
[](
py
::
handle
py_tensors
,
std
::
vector
<
bool
>
is_sparse_gradient
,
[](
py
::
handle
py_tensors
,
std
::
vector
<
bool
>
is_sparse_gradient
,
std
::
vector
<
size_t
>
group_size_limits
,
std
::
vector
<
int64_t
>
tensor_indices
)
{
auto
tensors
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
return
distributed
::
Eager_AssignGroupBySize
(
tensors
,
is_sparse_gradient
,
group_size_limits
,
tensor_indices
);
},
py
::
arg
(
"tensors"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"tensors"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"group_size_limits"
)
=
std
::
vector
<
size_t
>
{
25
*
1024
*
1024
},
py
::
arg
(
"tensor_indices"
)
=
std
::
vector
<
int64_t
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
class_
<
distributed
::
EagerReducer
,
std
::
shared_ptr
<
distributed
::
EagerReducer
>>
(
*
m
,
"EagerReducer"
,
R"DOC()DOC"
)
std
::
shared_ptr
<
distributed
::
EagerReducer
>>
(
*
m
,
"EagerReducer"
,
R"DOC()DOC"
)
.
def
(
py
::
init
(
&
CreateEagerReducer
))
.
def
(
"prepare_for_backward"
,
...
...
@@ -349,7 +414,8 @@ void BindDistributed(py::module *m) {
auto
params
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
self
.
PrepareForBackward
(
params
);
},
py
::
arg
(
"tensors"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
arg
(
"tensors"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
}
}
// end namespace pybind
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
ae867a84
...
...
@@ -149,7 +149,8 @@ Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
VLOG
(
6
)
<<
"Call GetSliceIndexFromTensor in Eager"
;
paddle
::
experimental
::
Tensor
tensor
=
CastPyArg2Tensor
(
obj
,
0
);
PADDLE_ENFORCE_EQ
(
tensor
.
initialized
(),
true
,
tensor
.
initialized
(),
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"We can only support initialized tensor in slice, however we got "
"uninitialized tensor %s, please check your code."
,
...
...
@@ -167,7 +168,8 @@ bool PyCheckTensor(PyObject* obj) {
return
PyObject_IsInstance
(
obj
,
reinterpret_cast
<
PyObject
*>
(
p_tensor_type
));
}
static
PyObject
*
tensor_method_numpy
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_numpy
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
&
api
=
pybind11
::
detail
::
npy_api
::
get
();
...
...
@@ -179,8 +181,11 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_FLOAT_
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_FLOAT_
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -199,8 +204,12 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
}
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
tensor_dims
.
size
(),
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
tensor_dims
.
size
(),
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -210,8 +219,12 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
py_dims
[
0
]
=
0
;
py_strides
[
0
]
=
0
;
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -233,7 +246,9 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
paddle
::
memory
::
Copy
(
place
,
reinterpret_cast
<
void
*>
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
),
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
}
else
{
VLOG
(
6
)
<<
"Getting DenseTensor's numpy value"
;
auto
dense_tensor
=
...
...
@@ -242,11 +257,18 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
paddle
::
memory
::
Copy
(
place
,
reinterpret_cast
<
void
*>
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
),
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
}
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA)
|| defined(PADDLE_WITH_HIP)
}
else
if
(
self
->
tensor
.
is_gpu
())
{
#if defined(PADDLE_WITH_CUDA)
gpuMemcpyKind
kind
=
cudaMemcpyDeviceToHost
;
#elif defined(PADDLE_WITH_HIP)
gpuMemcpyKind
kind
=
hipMemcpyDeviceToHost
;
#endif
if
(
self
->
tensor
.
is_selected_rows
())
{
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
auto
*
selected_rows
=
...
...
@@ -254,19 +276,21 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
auto
*
dense_tensor
=
static_cast
<
paddle
::
framework
::
LoDTensor
*>
(
selected_rows
->
mutable_value
());
paddle
::
platform
::
GpuMemcpySync
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
paddle
::
framework
::
DataTypeSize
(
dense_tensor
->
dtype
())
*
dense_tensor
->
numel
(),
cudaMemcpyDeviceToHost
);
kind
);
}
else
{
VLOG
(
6
)
<<
"Getting DenseTensor's numpy value"
;
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
self
->
tensor
.
impl
());
paddle
::
platform
::
GpuMemcpySync
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
paddle
::
framework
::
DataTypeSize
(
dense_tensor
->
dtype
())
*
dense_tensor
->
numel
(),
cudaMemcpyDeviceToHost
);
kind
);
}
#endif
}
else
{
...
...
@@ -294,8 +318,11 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_UNICODE_
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_UNICODE_
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -334,7 +361,9 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
curr_unicode_len
);
}
py
::
array
array
(
py
::
dtype
(
"U"
+
std
::
to_string
(
max_unicode_length
)),
tensor_dims
,
{},
py_array_data
);
tensor_dims
,
{},
py_array_data
);
return
array
.
release
().
ptr
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
...
...
@@ -384,7 +413,8 @@ static void IncreaseTensorReferenceCountUntilCopyComplete(
gc
->
DirectClearCallback
(
callback
);
}
static
PyObject
*
tensor_method__copy_to
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__copy_to
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
...
...
@@ -401,7 +431,8 @@ static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_cpu
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_cpu
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
cp_tensor
=
self
->
tensor
.
copy_to
(
phi
::
CPUPlace
(),
true
);
...
...
@@ -434,7 +465,8 @@ static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_copy_
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_copy_
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
src_tensor
=
...
...
@@ -465,7 +497,8 @@ static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_retain_grads
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_retain_grads
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
egr
::
Controller
::
Instance
().
HasGrad
())
{
...
...
@@ -482,7 +515,8 @@ static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_clear_gradient
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_clear_gradient
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"ClearGradient "
<<
self
->
tensor
.
name
();
...
...
@@ -543,7 +577,8 @@ static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__zero_grads
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__zero_grads
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"ZeroGrads "
<<
self
->
tensor
.
name
();
...
...
@@ -586,12 +621,14 @@ static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__share_buffer_to
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__share_buffer_to
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
dst_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -616,7 +653,8 @@ static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
*
dst_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -640,7 +678,8 @@ static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
*
src_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -657,7 +696,8 @@ static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
src_tensor
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
PADDLE_ENFORCE_EQ
(
src_tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
src_tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -671,11 +711,13 @@ static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_detach
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_detach
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized!"
,
self
->
tensor
.
name
()));
...
...
@@ -745,15 +787,24 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
// if index is a list, list_select_flag will be true
bool
list_select_flag
=
false
;
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"tensor %s has not been initialized, we can only slice initialized "
"tensor please init it first with numpy or other tensor."
,
self
->
tensor
.
name
()));
auto
tensor
=
static_cast
<
phi
::
DenseTensor
*>
(
self
->
tensor
.
impl
().
get
());
ParseIndexingSlice
(
tensor
,
_index
,
&
slice_axes
,
&
slice_starts
,
&
slice_ends
,
&
slice_strides
,
&
decrease_axis
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
ParseIndexingSlice
(
tensor
,
_index
,
&
slice_axes
,
&
slice_starts
,
&
slice_ends
,
&
slice_strides
,
&
decrease_axis
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
auto
out
=
slice_axes
.
empty
()
&&
!
list_select_flag
?
self
->
tensor
...
...
@@ -782,9 +833,12 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
decrease_axis
.
end
());
if
(
op_type
==
"slice"
)
{
out
=
slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes_tmp
,
slice_starts
,
slice_ends
,
infer_flags_tmp
,
decrease_axis_tmp
);
out
=
slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes_tmp
,
slice_starts
,
slice_ends
,
infer_flags_tmp
,
decrease_axis_tmp
);
}
else
if
(
op_type
==
"strided_slice"
)
{
out
=
strided_slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes
,
slice_starts
,
slice_ends
,
slice_strides
);
...
...
@@ -839,27 +893,29 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
select_index
.
set_impl
(
idx_tensor
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
egr
::
Controller
::
Instance
().
GetExpectedPlace
());
paddle
::
framework
::
TensorFromVector
(
list_select_idxs
,
*
dev_ctx
,
idx_tensor
.
get
());
paddle
::
framework
::
TensorFromVector
(
list_select_idxs
,
*
dev_ctx
,
idx_tensor
.
get
());
framework
::
AttributeMap
attrs
=
{{
"dim"
,
0
}};
out
=
index_select_final_state_dygraph_function
(
self
->
tensor
,
select_index
,
0
);
out
=
index_select_final_state_dygraph_function
(
self
->
tensor
,
select_index
,
0
);
}
return
ToPyObject
(
out
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__getitem_from_offset
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__getitem_from_offset
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
ptr
=
static_cast
<
phi
::
DenseTensor
*>
(
self
->
tensor
.
impl
().
get
());
PADDLE_ENFORCE_NOT_NULL
(
ptr
,
platform
::
errors
::
InvalidArgument
(
"%s is not a DenseTensor."
,
self
->
tensor
.
name
()));
PADDLE_ENFORCE_NOT_NULL
(
ptr
,
platform
::
errors
::
InvalidArgument
(
"%s is not a DenseTensor."
,
self
->
tensor
.
name
()));
const
auto
&
tensor
=
*
ptr
;
PADDLE_ENFORCE_EQ
(
tensor
.
IsInitialized
(),
true
,
tensor
.
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor of %s is Empty, please check if it has no data."
,
self
->
tensor
.
name
()));
...
...
@@ -877,27 +933,33 @@ static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
}
size_t
offset
=
0
;
if
(
PyTuple_Size
(
args
)
==
0
)
{
PADDLE_ENFORCE_EQ
(
numel
,
1
,
PADDLE_ENFORCE_EQ
(
numel
,
1
,
platform
::
errors
::
InvalidArgument
(
"only one element tensors can be converted to Python "
"scalars when no input coordinates"
));
}
else
if
(
PyTuple_Size
(
args
)
==
1
)
{
offset
=
CastPyArg2AttrLong
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
PADDLE_ENFORCE_LT
(
offset
,
numel
,
offset
,
numel
,
platform
::
errors
::
InvalidArgument
(
"index %d is out of bounds for size %d"
,
offset
,
numel
));
}
else
{
PADDLE_ENFORCE_EQ
(
PyTuple_Size
(
args
),
dims
.
size
(),
PADDLE_ENFORCE_EQ
(
PyTuple_Size
(
args
),
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"incorrect number of indices for Tensor"
));
for
(
Py_ssize_t
i
=
0
;
i
<
PyTuple_Size
(
args
);
++
i
)
{
size_t
index
=
CastPyArg2AttrLong
(
PyTuple_GET_ITEM
(
args
,
i
),
i
);
PADDLE_ENFORCE_LT
(
index
,
dims
[
i
],
index
,
dims
[
i
],
platform
::
errors
::
InvalidArgument
(
"index %d is out fo bounds for axis %d with size %d"
,
index
,
i
,
"index %d is out fo bounds for axis %d with size %d"
,
index
,
i
,
dims
[
i
]));
offset
+=
index
*
strides
[
i
];
}
...
...
@@ -929,14 +991,19 @@ static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
py_strides[0] = 1; \
auto& api = pybind11::detail::npy_api::get(); \
PyObject* array = api.PyArray_NewFromDescr_( \
api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype), 1, \
py_dims, py_strides, nullptr, \
api.PyArray_Type_, \
api.PyArray_DescrFromType_(numpy_dtype), \
1, \
py_dims, \
py_strides, \
nullptr, \
pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ | \
pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_, \
nullptr); \
std::memcpy( \
reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
static_cast<void*>(&b), sizeof(b)); \
static_cast<void*>(&b), \
sizeof(b)); \
return array; \
}
...
...
@@ -991,9 +1058,17 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
infer_flags
,
list_select_idxs
;
// if index is a list, list_select_flag will be true
bool
list_select_flag
=
false
;
ParseIndexingSlice
(
self_tensor
,
index_ptr
,
&
axes
,
&
starts
,
&
ends
,
&
steps
,
&
decrease_axes
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
ParseIndexingSlice
(
self_tensor
,
index_ptr
,
&
axes
,
&
starts
,
&
ends
,
&
steps
,
&
decrease_axes
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
framework
::
AttributeMap
attrs
=
{{
"axes"
,
axes
},
{
"starts"
,
starts
},
...
...
@@ -1058,16 +1133,22 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
value
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
#else
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
value
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
#endif
}
else
{
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
value_tensor_tmp
.
place
(),
false
);
value
,
value_tensor_tmp
.
place
(),
false
);
}
value_tensor
=
value_tensor_tmp
;
...
...
@@ -1117,8 +1198,8 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
// Release gil and do tracing
py
::
gil_scoped_release
release
;
// use inplace set_value_ operator
self
->
tensor
=
set_value__dygraph_function
(
self
->
tensor
,
value_tensor
,
{},
{},
{},
attrs
);
self
->
tensor
=
set_value__dygraph_function
(
self
->
tensor
,
value_tensor
,
{},
{},
{},
attrs
);
}
if
(
PyCheckTensor
(
value_obj
))
{
// pass the stop_gradient from value to tensor.
...
...
@@ -1144,15 +1225,19 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
}
if
(
!
self
->
tensor
.
initialized
())
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
#else
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
#endif
}
else
{
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
self
->
tensor
.
place
(),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
self
->
tensor
.
place
(),
false
);
}
}
RETURN_PY_NONE
...
...
@@ -1160,7 +1245,8 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_register_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_register_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
int64_t
hook_id
;
...
...
@@ -1187,7 +1273,8 @@ static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
auto
accumulation_grad_node
=
std
::
dynamic_pointer_cast
<
egr
::
GradNodeAccumulation
>
(
grad_node
);
hook_id
=
accumulation_grad_node
->
RegisterGradientHook
(
rank_info
.
first
,
rank_info
.
second
,
rank_info
.
first
,
rank_info
.
second
,
std
::
make_shared
<
PyTensorHook
>
(
hook_func
));
}
else
{
...
...
@@ -1200,14 +1287,16 @@ static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
PyObject
*
hook_func
=
PyTuple_GET_ITEM
(
args
,
0
);
hook_id
=
grad_node
->
RegisterGradientHook
(
rank_info
.
first
,
rank_info
.
second
,
rank_info
.
first
,
rank_info
.
second
,
std
::
make_shared
<
PyTensorHook
>
(
hook_func
));
}
return
ToPyObject
(
hook_id
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_remove_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_remove_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
6
)
<<
"Remove the registered hook for tensor: "
<<
self
->
tensor
.
name
();
...
...
@@ -1220,14 +1309,16 @@ static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_register_reduce_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_register_reduce_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"Register reduce hook for tensor: "
<<
self
->
tensor
.
name
();
std
::
shared_ptr
<
egr
::
GradNodeBase
>
grad_node
=
egr
::
EagerUtils
::
grad_node
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
),
true
,
PADDLE_ENFORCE_EQ
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
),
true
,
platform
::
errors
::
InvalidArgument
(
"Only can register backward hook for leaf Tensor."
));
PADDLE_ENFORCE_EQ
(
...
...
@@ -1253,7 +1344,8 @@ static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__set_grad_type
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__set_grad_type
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
var_type
=
pybind
::
CastPyArg2ProtoType
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
...
...
@@ -1269,7 +1361,8 @@ static PyObject* tensor__set_grad_type(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__clear
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__clear
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
self
->
tensor
.
reset
();
...
...
@@ -1278,26 +1371,31 @@ static PyObject* tensor__clear(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__copy_gradient_from
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__copy_gradient_from
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
src
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
if
(
self
->
tensor
.
initialized
())
{
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
dtype
(),
src
.
dtype
(),
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
dtype
(),
src
.
dtype
(),
platform
::
errors
::
PreconditionNotMet
(
"Tensor %s has different data type with Tensor %s"
,
self
->
tensor
.
name
(),
src
.
name
()));
self
->
tensor
.
name
(),
src
.
name
()));
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
impl
()
->
type_info
().
id
(),
src
.
impl
()
->
type_info
().
id
(),
platform
::
errors
::
PreconditionNotMet
(
"Tensor %s has different type with Tensor %s, Tensor "
"ShareGradientDataWith cannot be performed!"
,
self
->
tensor
.
name
(),
src
.
name
()));
self
->
tensor
.
name
(),
src
.
name
()));
}
VLOG
(
6
)
<<
"Tensor copy gradient from: "
<<
src
.
name
();
auto
*
p_grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
if
(
p_grad
)
{
PADDLE_ENFORCE_EQ
(
src
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
src
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized"
,
src
.
name
()));
p_grad
->
set_impl
(
src
.
impl
());
...
...
@@ -1307,7 +1405,8 @@ static PyObject* tensor__copy_gradient_from(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_set_vocab
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_set_vocab
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
using
Vocab
=
std
::
unordered_map
<
std
::
wstring
,
int
>
;
...
...
@@ -1337,7 +1436,8 @@ static PyObject* tensor_method_get_map_tensor(TensorObject* self,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE_EQ
(
egr
::
IsVariableCompatTensor
(
self
->
tensor
),
true
,
egr
::
IsVariableCompatTensor
(
self
->
tensor
),
true
,
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for VariableCompatTensor"
));
using
Vocab
=
std
::
unordered_map
<
std
::
wstring
,
int
>
;
...
...
@@ -1417,7 +1517,8 @@ static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_dense
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_dense
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1427,7 +1528,8 @@ static PyObject* tensor_method_is_dense(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1438,7 +1540,8 @@ static PyObject* tensor_method_is_sparse(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1448,7 +1551,8 @@ static PyObject* tensor_method_is_sparse_coo(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1458,7 +1562,8 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
csr_tensor
=
self
->
tensor
.
to_sparse_csr
();
...
...
@@ -1472,7 +1577,8 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
uint32_t
inplace_version
=
self
->
tensor
.
current_inplace_version
();
...
...
@@ -1481,7 +1587,8 @@ static PyObject* tensor__inplace_version(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
uint32_t
element_size
=
framework
::
DataTypeSize
(
self
->
tensor
.
dtype
());
...
...
@@ -1510,7 +1617,8 @@ static PyObject* tensor_method_is_selected_rows(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_rows
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_get_rows
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_selected_rows
(),
...
...
@@ -1522,7 +1630,8 @@ static PyObject* tensor_method_get_rows(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_methon_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_methon_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
return
ToPyObject
(
paddle
::
experimental
::
SizeOf
(
self
->
tensor
.
dtype
()));
...
...
@@ -1550,11 +1659,13 @@ static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method__share_memory
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__share_memory
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
#ifndef _WIN32
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
platform
::
errors
::
InvalidArgument
(
"Sharing memory only support CPU Tensor currently"
));
// 1. get LoDTensor
...
...
@@ -1571,8 +1682,11 @@ static PyObject* tensor_method__share_memory(TensorObject* self, PyObject* args,
const
std
::
string
&
ipc_name
=
shared_writer_holder
->
ipc_name
();
memory
::
allocation
::
MemoryMapFdSet
::
Instance
().
Insert
(
ipc_name
);
// 4. copy data & reset holder
memory
::
Copy
(
platform
::
CPUPlace
(),
shared_writer_holder
->
ptr
(),
platform
::
CPUPlace
(),
data_ptr
,
data_size
);
memory
::
Copy
(
platform
::
CPUPlace
(),
shared_writer_holder
->
ptr
(),
platform
::
CPUPlace
(),
data_ptr
,
data_size
);
t
->
ResetHolder
(
shared_writer_holder
);
return
ToPyObject
(
t
);
#else
...
...
@@ -1584,12 +1698,14 @@ static PyObject* tensor_method__share_memory(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__offset
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__offset
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
t
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
self
->
tensor
.
impl
());
PADDLE_ENFORCE_EQ
(
t
->
IsInitialized
(),
true
,
t
->
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized!"
,
self
->
tensor
.
name
()));
...
...
@@ -1597,12 +1713,14 @@ static PyObject* tensor__offset(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__grad_name
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__grad_name
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1610,12 +1728,14 @@ static PyObject* tensor__grad_name(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__grad_value
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__grad_value
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1635,12 +1755,14 @@ static PyObject* tensor__grad_value(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__unset_fake_empty
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__unset_fake_empty
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1656,15 +1778,18 @@ static PyObject* tensor__unset_fake_empty(TensorObject* self, PyObject* args,
}
#if defined(PADDLE_WITH_CUDA)
static
PyObject
*
tensor_method__uva
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__uva
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"Running in tensor_method__uva."
;
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
is_dense_tensor
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
is_dense_tensor
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Unified virtual addressing only support "
"DenseTensor currently."
));
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
platform
::
errors
::
InvalidArgument
(
"Unified virtual addressing only support "
"CPU Tensor currently."
));
...
...
@@ -1692,130 +1817,211 @@ static PyObject* tensor_method__is_string_tensor_hold_allocation(
}
PyMethodDef
variable_methods
[]
=
{
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_initialized"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_initialized
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_dense_tensor_hold_allocation"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_dense_tensor_hold_allocation
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__copy_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"copy_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_copy_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__copy_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"copy_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_copy_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"reconstruct_from_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_reconstruct_from_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"retain_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_retain_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"clear_gradient"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_clear_gradient
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_dense"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_dense
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_zero_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__zero_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_buffer_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_buffer_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"retain_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_retain_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"clear_gradient"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_clear_gradient
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_dense"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_dense
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_zero_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__zero_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_buffer_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_buffer_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_shared_buffer_with"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__is_shared_buffer_with
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_underline_tensor_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_underline_tensor_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_shared_underline_tensor_with"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__is_shared_underline_tensor_with
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"detach"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_detach
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"detach"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_detach
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_underline_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_selected_rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_underline_selected_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_getitem_index_not_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__getitem_index_not_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_getitem_from_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__getitem_from_offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"__setitem_eager_tensor__"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__setitem_eager_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_register_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_register_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_remove_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_remove_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_remove_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_remove_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_register_backward_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_register_reduce_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_set_grad_type"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__set_grad_type
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_clear"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__clear
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_set_grad_type"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__set_grad_type
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_clear"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__clear
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_gradient_from"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__copy_gradient_from
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/** the methods to adapt old dygraph, will be removed in the future **/
{
"set_string_list"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_string_list
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"set_vocab"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_vocab
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"set_vocab"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_vocab
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_map_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_map_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"values"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"values"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_bump_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__bump_inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_selected_rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_selected_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_methon_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_methon_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_reset_grad_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__reset_grad_inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_memory"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__share_memory
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_name"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_name
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_value"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_value
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_unset_fake_empty"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__unset_fake_empty
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_memory"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__share_memory
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_name"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_name
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_value"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_value
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_unset_fake_empty"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__unset_fake_empty
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
#if defined(PADDLE_WITH_CUDA)
{
"_tensor_uva"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__uva
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_tensor_uva"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__uva
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
#endif
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
@@ -1823,14 +2029,17 @@ PyMethodDef variable_methods[] = {
PyMethodDef
string_tensor_variable_methods
[]
=
{
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy_for_string_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_initialized"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_initialized
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_string_tensor_hold_allocation"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_string_tensor_hold_allocation
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
// TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录