diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 43eb4de2c1d4ff61f295c05af9dfd5f26c2ba365..0fa1fca2bcd3117e1e9a6a54c343b2d0d8c3822b 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -103,12 +103,16 @@ set(DEPS_OPS recurrent_op cond_op cross_entropy_op - softmax_with_cross_entropy_op) + softmax_with_cross_entropy_op + sum_op) + + op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc DEPS framework_proto tensor net_op) op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) op_library(cross_entropy_op DEPS cross_entropy) op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) +op_library(sum_op DEPS net_op) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index c54843faa698654dafac786979045bebf0ebc95d..7c422b477083fba4661aeb427422abb623b172bb 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -11,6 +11,7 @@ limitations under the License. */ #include "paddle/operators/sum_op.h" #include <vector> +#include "paddle/operators/net_op.h" namespace paddle { namespace operators { @@ -57,21 +58,23 @@ or not. But the output only shares the LoD with the first input. } }; -class SumGradOp : public framework::OperatorWithKernel { +class SumGradOp : public NetOp { public: - using framework::OperatorWithKernel::OperatorWithKernel; + SumGradOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : NetOp(type, inputs, outputs, attrs) { + auto& x_grad_names = Outputs(framework::GradVarName("X")); + auto out_grad_name = this->Input(framework::GradVarName("Out")); - protected: - void InferShape(framework::InferShapeContextBase* ctx) const override { - auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out")); - auto x_grad_names = ctx->Outputs(framework::GradVarName("X")); - size_t x_length = x_grad_names.size(); - std::vector<framework::DDim> x_grad_dims; - x_grad_dims.reserve(x_length); - for (size_t i = 0; i < x_length; ++i) { - x_grad_dims.push_back(out_grad_dims); + framework::AttributeMap grad_attrs; + grad_attrs["scale"] = 1.0f; + for (auto& x_grad_name : x_grad_names) { + AppendOp(framework::OpRegistry::CreateOp( + "scale", {{"X", {out_grad_name}}}, {{"Out", {x_grad_name}}}, + grad_attrs)); } - ctx->SetOutputsDim(framework::GradVarName("X"), x_grad_dims); + CompleteAddOp(false); } }; @@ -81,5 +84,3 @@ class SumGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp); REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>); -REGISTER_OP_CPU_KERNEL(sum_grad, - ops::SumGradKernel<paddle::platform::CPUPlace, float>); diff --git a/paddle/operators/sum_op.cu b/paddle/operators/sum_op.cu index a465cf3659ba7c51338abadfc62962fb6755a39d..7129e6bf62d5608037c683add68412166ac86c81 100644 --- a/paddle/operators/sum_op.cu +++ b/paddle/operators/sum_op.cu @@ -13,6 +13,4 @@ limitations under the License. */ #include "paddle/operators/sum_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>); -REGISTER_OP_GPU_KERNEL(sum_grad, - ops::SumGradKernel<paddle::platform::GPUPlace, float>); +REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>); \ No newline at end of file diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index 7e8fbb9e41c694df9169ea583ce47c33d3bcf2bb..91e5da8b40d452db8715990cdbe2731b3aea44b9 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -42,24 +42,5 @@ class SumKernel : public framework::OpKernel<T> { } }; -template <typename Place, typename T> -class SumGradKernel : public framework::OpKernel<T> { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* input = context.Input<Tensor>(framework::GradVarName("Out")); - auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X")); - for (auto out : outs) { - out->mutable_data<T>(context.GetPlace()); - } - - auto place = context.GetEigenDevice<Place>(); - auto in = EigenVector<T>::Flatten(*input); - for (auto out : outs) { - auto result = EigenVector<T>::Flatten(*out); - result.device(place) = in; - } - } -}; - } // namespace operators } // namespace paddle