From adba432f27045eef605c6445302ac438874bb0a1 Mon Sep 17 00:00:00 2001 From: liym27 <33742067+liym27@users.noreply.github.com> Date: Thu, 20 Aug 2020 19:02:02 +0800 Subject: [PATCH] [API 2.0] Add api paddle.reshape(x, shape, name) (#26338) (1) Add api paddle.reshape(x, shape, name); (2) Use Tensor replaces Variable. test=develop --- python/paddle/fluid/layers/nn.py | 17 ++- .../fluid/tests/unittests/test_reshape_op.py | 127 ++++++++++++------ python/paddle/tensor/manipulation.py | 84 +++++++++++- 3 files changed, 173 insertions(+), 55 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 41531f67f3..9298664f18 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -5965,7 +5965,6 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): """ :alias_main: paddle.reshape :alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape - :old_api: paddle.fluid.layers.reshape This operator changes the shape of ``x`` without changing its data. @@ -6008,14 +6007,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape. Args: - x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``. - shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1. + x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``. + shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1. The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. - If ``shape`` is an Variable, it should be an 1-D Tensor . + If ``shape`` is an Tensor, it should be an 1-D Tensor . actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape according to this given shape rather than ``shape`` specifying shape. That is to say ``actual_shape`` has a higher priority - than ``shape(list|tuple)`` but not ``shape(Variable)``. \ + than ``shape(list|tuple)`` but not ``shape(Tensor)``. \ This argument ``actual_shape`` will be removed in a future version. \ Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``. act (str, optional): The non-linear activation to be applied to the reshaped input. Default None. @@ -6027,10 +6026,10 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): For more information, please refer to :ref:`api_guide_Name` . Returns: - Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable. + Tensor: A reshaped Tensor with the same data type as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable. Raises: - TypeError: If actual_shape is neither Variable nor None. + TypeError: If actual_shape is neither Tensor nor None. ValueError: If more than one elements of ``shape`` is -1. ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``. ValueError: If the elements in ``shape`` is negative except -1. @@ -6041,7 +6040,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): import paddle.fluid as fluid # example 1: - # attr shape is a list which doesn't contain tensor Variable. + # attr shape is a list which doesn't contain Tensors. data_1 = fluid.data( name='data_1', shape=[2, 4, 6], dtype='float32') reshaped_1 = fluid.layers.reshape( @@ -6049,7 +6048,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): # the shape of reshaped_1 is [2,4,3,2]. # example 2: - # attr shape is a list which contains tensor Variable. + # attr shape is a list which contains Tensors. data_2 = fluid.layers.fill_constant([2,25], "int32", 3) dim = fluid.layers.fill_constant([1], "int32", 5) reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10]) diff --git a/python/paddle/fluid/tests/unittests/test_reshape_op.py b/python/paddle/fluid/tests/unittests/test_reshape_op.py index 3dfd9023f5..275f9d21f9 100644 --- a/python/paddle/fluid/tests/unittests/test_reshape_op.py +++ b/python/paddle/fluid/tests/unittests/test_reshape_op.py @@ -18,6 +18,7 @@ import unittest import numpy as np from op_test import OpTest +import paddle import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard @@ -227,35 +228,43 @@ class TestReshapeUint8Op(TestReshapeInt8Op): # Test python API class TestReshapeAPI(unittest.TestCase): - # situation 1: have shape( list, no tensor), no actual shape(Tensor) - def test_1(self): + def _set_paddle_api(self): + self.fill_constant = paddle.fill_constant + self.data = paddle.data + self.reshape = paddle.reshape + self.to_tensor = paddle.to_tensor + + def _set_fluid_api(self): + self.fill_constant = fluid.layers.fill_constant + self.data = fluid.data + self.reshape = fluid.layers.reshape + + def _test_api(self): input = np.random.random([2, 25]).astype("float32") shape = [2, 5, 5] - positive_five = fluid.layers.fill_constant([1], "int32", 5) - x = fluid.layers.data( - name="x", shape=[2, 25], append_batch_size=False, dtype="float32") + main_prog = Program() + with program_guard(main_prog, Program()): + positive_five = self.fill_constant([1], "int32", 5) + x = self.data(name="x", shape=[2, 25], dtype="float32") - actual_shape = fluid.layers.data( - name="shape", - shape=[1, 3], - append_batch_size=False, - dtype="float32") + actual_shape = self.data(name="shape", shape=[3], dtype="int32") - # situation 1: have shape( list, no tensor), no actual shape(Tensor) - out_1 = fluid.layers.reshape(x, shape) + # situation 1: have shape( list, no tensor), no actual shape(Tensor) + out_1 = self.reshape(x, shape) - # situation 2: have shape(list, no tensor), have actual shape(Tensor) - out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape) + # situation 2: have shape(list, no tensor), have actual shape(Tensor) + out_2 = fluid.layers.reshape( + x, shape=shape, actual_shape=actual_shape) - # Situation 3: have shape(list, have tensor), no actual shape(Tensor) - out_3 = fluid.layers.reshape(x, shape=[positive_five, 10]) + # Situation 3: have shape(list, have tensor), no actual shape(Tensor) + out_3 = self.reshape(x, shape=[positive_five, 10]) - # Situation 4: have shape(Tensor), no actual shape(Tensor) - out_4 = fluid.layers.reshape(x, shape=actual_shape) + # Situation 4: have shape(Tensor), no actual shape(Tensor) + out_4 = self.reshape(x, shape=actual_shape) exe = fluid.Executor(place=fluid.CPUPlace()) res_1, res_2, res_3, res_4 = exe.run( - fluid.default_main_program(), + main_prog, feed={"x": input, "shape": np.array([2, 5, 5]).astype("int32")}, fetch_list=[out_1, out_2, out_3, out_4]) @@ -265,76 +274,108 @@ class TestReshapeAPI(unittest.TestCase): assert np.array_equal(res_3, input.reshape([5, 10])) assert np.array_equal(res_4, input.reshape(shape)) + def test_paddle_api(self): + self._set_paddle_api() + self._test_api() + + def test_fluid_api(self): + self._set_fluid_api() + self._test_api() + + def test_imperative(self): + self._set_paddle_api() + input = np.random.random([2, 25]).astype("float32") + shape = [2, 5, 5] + with fluid.dygraph.guard(): + x = self.to_tensor(input) + positive_five = self.fill_constant([1], "int32", 5) + + out_1 = self.reshape(x, shape) + + out_2 = self.reshape(x, shape=[positive_five, 10]) + + shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32")) + out_3 = self.reshape(x, shape=shape_tensor) + + assert np.array_equal(out_1.numpy(), input.reshape(shape)) + assert np.array_equal(out_2.numpy(), input.reshape([5, 10])) + assert np.array_equal(out_3.numpy(), input.reshape(shape)) + # Test Input Error class TestReshapeOpError(unittest.TestCase): - def test_errors(self): + def _set_paddle_api(self): + self.data = paddle.data + self.reshape = paddle.reshape + + def _set_fluid_api(self): + self.data = fluid.data + self.reshape = fluid.layers.reshape + + def _test_errors(self): with program_guard(Program(), Program()): # The x type of reshape_op must be Variable. def test_x_type(): x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) - fluid.layers.reshape(x1, shape=[1]) + self.reshape(x1, shape=[1]) self.assertRaises(TypeError, test_x_type) # The x dtype of reshape_op must be float16, float32, float64, int32 or int64. def test_x_dtype(): - x2 = fluid.layers.data( - name="x2", - shape=[2, 25], - append_batch_size=False, - dtype="bool") - fluid.layers.reshape(x2, shape=[2, 5, 5]) + x2 = self.data(name="x2", shape=[2, 25], dtype="bool") + self.reshape(x2, shape=[2, 5, 5]) self.assertRaises(TypeError, test_x_dtype) def test_x_dtype_float16(): - x_float16 = fluid.layers.data( - name="x_float16", - shape=[2, 25], - append_batch_size=False, - dtype="float16") - fluid.layers.reshape(x_float16, shape=[2, 5, 5]) + x_float16 = self.data( + name="x_float16", shape=[2, 25], dtype="float16") + self.reshape(x_float16, shape=[2, 5, 5]) test_x_dtype_float16() - x3 = fluid.layers.data( - name="x3", - shape=[2, 25], - append_batch_size=False, - dtype="float32") + x3 = self.data(name="x3", shape=[2, 25], dtype="float32") # The argument shape's type of reshape_op must be list, tuple or Variable. def test_shape_type(): - fluid.layers.reshape(x3, shape=1) + self.reshape(x3, shape=1) self.assertRaises(TypeError, test_shape_type) # The argument actual_shape's type of reshape_op must be Variable or None. def test_actual_shape_type(): - fluid.layers.reshape(x3, shape=[25, 2], actual_shape=1) + self.reshape(x3, shape=[25, 2], actual_shape=1) self.assertRaises(TypeError, test_actual_shape_type) # The argument shape have more than one -1. def test_shape_1(): - fluid.layers.reshape(x3, shape=[-1, -1, 5]) + self.reshape(x3, shape=[-1, -1, 5]) self.assertRaises(AssertionError, test_shape_1) # The argument shape have element 0 whose index exceed the input dimension. def test_shape_2(): - fluid.layers.reshape(x3, [2, 5, 5, 0]) + self.reshape(x3, [2, 5, 5, 0]) self.assertRaises(AssertionError, test_shape_2) # The argument shape have more than one negative value. def test_shape_3(): - fluid.layers.reshape(x3, [-1, -2, 5]) + self.reshape(x3, [-1, -2, 5]) self.assertRaises(AssertionError, test_shape_3) + def test_paddle_api_error(self): + self._set_paddle_api() + self._test_errors() + + def test_fluid_api_error(self): + self._set_fluid_api() + self._test_errors() + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/tensor/manipulation.py b/python/paddle/tensor/manipulation.py index 2c8157645d..99281656ef 100644 --- a/python/paddle/tensor/manipulation.py +++ b/python/paddle/tensor/manipulation.py @@ -14,7 +14,7 @@ from __future__ import print_function -from ..fluid.layers import core, reshape +from ..fluid.layers import core from ..fluid.layer_helper import LayerHelper from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_ from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype @@ -23,7 +23,7 @@ from ..fluid.layers import utils import numpy as np # TODO: define functions to manipulate a tensor from ..fluid.layers import cast #DEFINE_ALIAS -from ..fluid.layers import reshape #DEFINE_ALIAS +from ..fluid.layers import expand_as #DEFINE_ALIAS from ..fluid.layers import scatter #DEFINE_ALIAS from ..fluid.layers import slice #DEFINE_ALIAS from ..fluid.layers import strided_slice #DEFINE_ALIAS @@ -377,7 +377,7 @@ def roll(x, shifts, axis=None, name=None): outputs={'Out': out}, attrs={'axis': axis, 'shifts': shifts}) - out = reshape(out, shape=origin_shape, inplace=True) + out = layers.reshape(out, shape=origin_shape, inplace=True) return out @@ -1048,3 +1048,81 @@ def expand(x, shape, name=None): broadcast_to = expand + + +def reshape(x, shape, name=None): + """ + :alias_main: paddle.reshape + :alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape + + This operator changes the shape of ``x`` without changing its data. + + Some tricks exist when specifying the target shape. + + 1. -1 means the value of this dimension is inferred from the total element + number of x and remaining dimensions. Thus one and only one dimension can + be set -1. + + 2. 0 means the actual dimension value is going to be copied from the + corresponding dimension of x. The index of 0s in shape can not exceed + the dimension of x. + + Here are some examples to explain it. + + 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + is [6, 8], the reshape operator will transform x into a 2-D tensor with + shape [6, 8] and leaving x's data unchanged. + + 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + specified is [2, 3, -1, 2], the reshape operator will transform x into a + 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this + case, one dimension of the target shape is set to -1, the value of this + dimension is inferred from the total element number of x and remaining + dimensions. + + 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor + with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, + besides -1, 0 means the actual dimension value is going to be copied from + the corresponding dimension of x. + + Args: + x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``. + shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1. + The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. + If ``shape`` is an Tensor, it should be an 1-D Tensor . + name(str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` . + + Returns: + Tensor: A reshaped Tensor with the same data type as ``x``. + + Raises: + ValueError: If more than one elements of ``shape`` is -1. + ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``. + ValueError: If the elements in ``shape`` is negative except -1. + + Examples: + .. code-block:: python + + import numpy as np + import paddle + + paddle.disable_static() + + data = np.random.random([2, 4, 6]).astype("float32") + x = paddle.to_tensor(data) + + positive_four = paddle.fill_constant([1], "int32", 4) + + out_1 = paddle.reshape(x, [-1, 0, 3, 2]) + # the shape of out_1 is [2,4,3,2]. + + out_2 = paddle.reshape(x, shape=[positive_four, 12]) + # the shape of out_2 is [4, 12]. + + shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32")) + out_3 = paddle.reshape(x, shape=shape_tensor) + # the shape of out_2 is [8, 6]. + """ + return paddle.fluid.layers.reshape(x=x, shape=shape, name=name) -- GitLab