From ad7047155c6bcc0ddfa768988768e6dd5602e4bb Mon Sep 17 00:00:00 2001 From: thunder95 <290844930@qq.com> Date: Fri, 2 Sep 2022 10:53:54 +0800 Subject: [PATCH] =?UTF-8?q?=E3=80=90PaddlePaddle=20Hackathon=203=20No.31?= =?UTF-8?q?=E3=80=91=E4=B8=BA=20Paddle=20=E4=BC=98=E5=8C=96=20dist=20op=20?= =?UTF-8?q?=E5=9C=A8=20GPU=20=E4=B8=8A=E7=9A=84=E8=AE=A1=E7=AE=97=E6=80=A7?= =?UTF-8?q?=E8=83=BD=20(#44946)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * add dist cuda kernel * reuse some funcs in phi * 使用pnorm * fix code style - explicit * fix code sytle * fix bug * remove unused headers --- paddle/phi/kernels/dist_kernel.cc | 4 - paddle/phi/kernels/gpu/dist_kernel.cu | 176 ++++++++++++++++++++++++++ 2 files changed, 176 insertions(+), 4 deletions(-) create mode 100644 paddle/phi/kernels/gpu/dist_kernel.cu diff --git a/paddle/phi/kernels/dist_kernel.cc b/paddle/phi/kernels/dist_kernel.cc index ed1fa0dafe..90f199531d 100644 --- a/paddle/phi/kernels/dist_kernel.cc +++ b/paddle/phi/kernels/dist_kernel.cc @@ -34,7 +34,3 @@ void DistKernel(const Context& dev_ctx, } // namespace phi PD_REGISTER_KERNEL(dist, CPU, ALL_LAYOUT, phi::DistKernel, float, double) {} - -#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) -PD_REGISTER_KERNEL(dist, GPU, ALL_LAYOUT, phi::DistKernel, float, double) {} -#endif diff --git a/paddle/phi/kernels/gpu/dist_kernel.cu b/paddle/phi/kernels/gpu/dist_kernel.cu new file mode 100644 index 0000000000..e89a98d49e --- /dev/null +++ b/paddle/phi/kernels/gpu/dist_kernel.cu @@ -0,0 +1,176 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/dist_kernel.h" +#include "paddle/phi/backends/gpu/gpu_launch_config.h" +#include "paddle/phi/core/kernel_registry.h" +#include "paddle/phi/kernels/elementwise_subtract_kernel.h" +#include "paddle/phi/kernels/funcs/math_cuda_utils.h" +#include "paddle/phi/kernels/gpu/reduce.h" +#include "paddle/phi/kernels/p_norm_kernel.h" + +namespace phi { + +#define FULL_MASK 0xffffffff + +template +struct ZeroOrderFunctor { + public: + __device__ T operator()(const T& x, const T& y) const { + return static_cast((x - y) != 0); + } +}; + +template +struct OtherOrderFunctor { + explicit OtherOrderFunctor(const T& p_order) : p_order_(p_order) {} + __device__ T operator()(const T& x, const T& y) const { + return static_cast(pow(abs(x - y), p_order_)); + } + + private: + T p_order_; +}; + +template +struct PowFunctor { + explicit PowFunctor(const T& p_order) : p_order_(p_order) {} + HOSTDEVICE inline T operator()(const T x) const { + return static_cast(pow(x, p_order_)); + } + T p_order_; +}; + +template +__global__ void ReduceSumWithSubtract( + const T* x, const T* y, T* out, int64_t N, Functor func) { + T sum_val = 0; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + sum_val += func(x[i], y[i]); + } + + __syncthreads(); + sum_val = phi::funcs::blockReduceSum(sum_val, FULL_MASK); + if (threadIdx.x == 0) { + out[blockIdx.x] = sum_val; + } +} + +template +__global__ void ReduceMaxWithSubtract(const T* x, + const T* y, + T* out, + int64_t N) { + T max_val = -1e10f; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + max_val = max(max_val, abs(x[i] - y[i])); + } + + __syncthreads(); + max_val = phi::funcs::blockReduceMax(max_val, FULL_MASK); + if (threadIdx.x == 0) { + out[blockIdx.x] = max_val; + } +} + +template +__global__ void ReduceMinWithSubtract(const T* x, + const T* y, + T* out, + int64_t N) { + T min_val = 1e10f; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + min_val = min(min_val, abs(x[i] - y[i])); + } + + __syncthreads(); + min_val = phi::funcs::blockReduceMin(min_val, FULL_MASK); + if (threadIdx.x == 0) { + out[blockIdx.x] = min_val; + } +} + +template +void DistKernel(const Context& dev_ctx, + const DenseTensor& x, + const DenseTensor& y, + float p, + DenseTensor* out) { + DenseTensor intermediate; + const T* x_ptr = x.data(); + const T* y_ptr = y.data(); + T* o_ptr = dev_ctx.template Alloc(out); + auto stream = dev_ctx.stream(); + + auto xdim = x.dims(); + if (xdim == y.dims()) { // same shape + auto n = x.numel(); + auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n); + intermediate.Resize(phi::make_ddim({config.block_per_grid.x})); + T* i_ptr = dev_ctx.template Alloc(&intermediate); + + std::vector axis_dims = {static_cast(-1)}; + std::vector reduce_axis = + funcs::details::GetReduceDim(axis_dims, xdim.size(), true); + + if (p == 0) { + ReduceSumWithSubtract + <<>>( + x_ptr, y_ptr, i_ptr, n, ZeroOrderFunctor()); + phi::funcs::ReduceKernel>( + dev_ctx, intermediate, out, kps::IdentityFunctor(), reduce_axis); + + } else if (p == INFINITY) { + ReduceMaxWithSubtract + <<>>( + x_ptr, y_ptr, i_ptr, n); + phi::funcs::ReduceKernel>( + dev_ctx, intermediate, out, kps::IdentityFunctor(), reduce_axis); + + } else if (p == -INFINITY) { + ReduceMinWithSubtract + <<>>( + x_ptr, y_ptr, i_ptr, n); + + phi::funcs::ReduceKernel>( + dev_ctx, intermediate, out, kps::IdentityFunctor(), reduce_axis); + + } else { + T p_order = static_cast(p); + ReduceSumWithSubtract + <<>>( + x_ptr, y_ptr, i_ptr, n, OtherOrderFunctor(p_order)); + phi::funcs::ReduceKernel>( + dev_ctx, intermediate, out, kps::IdentityFunctor(), reduce_axis); + + const DenseTensor* tmp_norm = out; + std::vector ins = {tmp_norm}; + std::vector outs = {out}; + T p_order_ = static_cast(1. / p_order); + phi::funcs::ElementwiseKernel( + dev_ctx, ins, &outs, PowFunctor(p_order_)); + } + + } else { + auto t = Subtract(dev_ctx, x, y); + PNormKernel(dev_ctx, t, p, -1, 1e-12, false, true, out); + } +} + +} // namespace phi + +PD_REGISTER_KERNEL(dist, GPU, ALL_LAYOUT, phi::DistKernel, float, double) {} -- GitLab