From ad6b531917e164c0a6a2d74d7d661139f4e4a6bf Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Tue, 24 Oct 2017 22:35:00 +0800 Subject: [PATCH] add unit test for mkldnn_batch_norm layer --- paddle/gserver/tests/MKLDNNTester.cpp | 29 +++++++++---- paddle/gserver/tests/MKLDNNTester.h | 4 ++ paddle/gserver/tests/test_MKLDNN.cpp | 60 +++++++++++++++++++++++++++ 3 files changed, 84 insertions(+), 9 deletions(-) diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index 0a19fe2333..73b7e8857f 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -91,10 +91,16 @@ void MKLDNNTester::setInputImgSize() { // init randome parameters of ref, and copy to mkldnn void MKLDNNTester::randomWgtDatas() { EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); + const bool isBN = refLayer_->getType() == "batch_norm"; for (size_t i = 0; i < parameters_[REF].size(); ++i) { const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE); parameters_[REF][i]->randomize(); + if (isBN && i == 2) { + // this param is moving average in batch norm, which must larger than 0 + real offset = fabs(refValue->getMin()) + 1.0; + refValue->add(offset); + } dnnValue->copyFrom(*refValue); VLOG(MKLDNN_TESTS) << "Random weight " << parameters_[DNN][i]->getName(); @@ -132,8 +138,7 @@ void MKLDNNTester::checkForward() { void MKLDNNTester::checkBackwardData() { VLOG(MKLDNN_TESTS) << "Check Backward Data"; - // TODO(TJ): uncomment me when batch norm ready - // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm"; + const bool isBN = refLayer_->getType() == "batch_norm"; for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad(); const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad(); @@ -144,11 +149,11 @@ void MKLDNNTester::checkBackwardData() { double delta = compareMatrix(dnnDiff, refDiff); EXPECT_LE(fabs(delta), eps_); - // TODO(TJ): uncomment me when batch norm ready - // if (isBN) { - // // the other two inputs in batch norm are for moving mean and var - // break; - // } + if (isBN) { + // the other two inputs in batch norm are for moving mean and var + // do not have grad to compare + break; + } } } @@ -308,10 +313,14 @@ double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) { void MKLDNNTester::runOnce() { // test forward randomBotDatas(); - dnnLayer_->forward(PASS_TRAIN); - refLayer_->forward(PASS_TRAIN); + dnnLayer_->forward(passType_); + refLayer_->forward(passType_); checkForward(); + if (passType_ == PASS_TEST) { + return; + } + // test backward // simple updater UpdateCallback updateCallback = [](Parameter* para) { @@ -343,6 +352,7 @@ void MKLDNNTester::run(const TestConfig& dnn, size_t batchSize, size_t inputImgH, size_t inputImgW, + PassType passType, bool printDetails, size_t iter, float epsilon) { @@ -361,6 +371,7 @@ void MKLDNNTester::run(const TestConfig& dnn, ih_ = inputImgH; iw_ = inputImgW; + passType_ = passType; log_ = printDetails; iter_ = iter; eps_ = epsilon; diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index c385d1c727..19d8848f74 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -62,12 +62,15 @@ protected: float eps_; /// input image size, default 1 size_t ih_, iw_; + /// passType, PASS_TRAIN, PASS_TEST or PASS_GC (Gradient Check pass) + PassType passType_; public: explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) { iter_ = iter; eps_ = epsilon; log_ = false; + passType_ = PASS_TRAIN; } ~MKLDNNTester() {} @@ -78,6 +81,7 @@ public: size_t batchSize, size_t inputImgH = 1, size_t inputImgW = 1, + PassType passType = PASS_TRAIN, bool printDetails = false, size_t iter = 3, float epsilon = 1e-4); diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index 6cb4ca5e08..85d4f437c2 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -212,6 +212,66 @@ TEST(MKLDNNLayer, PoolLayer) { testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2}); } +struct testBatchNormDesc { + int bs; + int ic; + int ih, iw; +}; + +static void getMKLDNNBatchNormConfig(TestConfig& cfg, + const testBatchNormDesc& pm) { + cfg.layerConfig.set_size(pm.ic * pm.ih * pm.iw); + cfg.layerConfig.set_type("mkldnn_batch_norm"); + cfg.biasSize = pm.ic; + cfg.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), + /* size of weight= */ size_t(pm.ic)}); + cfg.inputDefs.push_back( + {INPUT_DATA, "layer_1_moving_mean", 1, size_t(pm.ic)}); + cfg.inputDefs.back().isStatic = true; + cfg.inputDefs.push_back({INPUT_DATA, "layer_2_moving_var", 1, size_t(pm.ic)}); + cfg.inputDefs.back().isStatic = true; + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + // TODO(TJ): uncomment me when refine and support comparing all zeroes vector + // cfg.layerConfig.set_active_type("relu"); + cfg.layerConfig.add_inputs(); + cfg.layerConfig.add_inputs(); + ImageConfig* img_conf = input->mutable_image_conf(); + img_conf->set_channels(pm.ic); + img_conf->set_img_size_y(pm.ih); + img_conf->set_img_size(pm.iw); +} + +void testBatchNormLayer(const testBatchNormDesc& pm) { + TestConfig dnnConfig; + getMKLDNNBatchNormConfig(dnnConfig, pm); + TestConfig refConfig = dnnConfig; + refConfig.layerConfig.set_type("batch_norm"); + // for PASS_TRAIN, use_global_stats always should be false, and batchsize != 1 + VLOG(MKLDNN_TESTS) << "check train phase"; + dnnConfig.layerConfig.set_use_global_stats(false); + refConfig.layerConfig.set_use_global_stats(false); + MKLDNNTester tester; + tester.run(dnnConfig, refConfig, pm.bs, pm.ih, pm.iw, PASS_TRAIN); + // for PASS_TEST, check use_global_stats true and false, and batchsize 1 + VLOG(MKLDNN_TESTS) << "check test phase"; + for (auto useGS : {false, true}) { + dnnConfig.layerConfig.set_use_global_stats(useGS); + refConfig.layerConfig.set_use_global_stats(useGS); + MKLDNNTester tester; + for (auto bs : {pm.bs, 1}) { + tester.run(dnnConfig, refConfig, bs, pm.ih, pm.iw, PASS_TEST); + } + } +} + +TEST(MKLDNNLayer, BatchNormLayer) { + testBatchNormLayer({4, 10, 6, 6}); + testBatchNormLayer({16, 32, 16, 16}); +} + struct testActDesc { int bs, ic, ih, iw; }; -- GitLab