提交 abdcd828 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into reduce-elementwise-warning

...@@ -24,6 +24,9 @@ static ProgramDesc* g_program_desc = nullptr; ...@@ -24,6 +24,9 @@ static ProgramDesc* g_program_desc = nullptr;
ProgramDesc& GetProgramDesc() { ProgramDesc& GetProgramDesc() {
if (g_program_desc == nullptr) { if (g_program_desc == nullptr) {
g_program_desc = new ProgramDesc(); g_program_desc = new ProgramDesc();
auto root_block = g_program_desc->mutable_blocks()->Add();
root_block->set_idx(0);
root_block->set_parent_idx(-1);
} }
return *g_program_desc; return *g_program_desc;
} }
......
...@@ -18,7 +18,7 @@ namespace paddle { ...@@ -18,7 +18,7 @@ namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
template class SoftmaxFunctor<platform::GPUPlace, float>; template class SoftmaxFunctor<platform::CPUPlace, float>;
} // namespace math } // namespace math
} // namespace operators } // namespace operators
......
...@@ -82,40 +82,38 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { ...@@ -82,40 +82,38 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Logits"), PADDLE_ENFORCE(ctx->HasInput("Logits"),
"Input(Logits) should be not null."); "Input(Logits) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
"Input(Label) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Softmax"), PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
"Output(Softmax) should be not null."); "Output(Softmax) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Loss"), PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");
"Output(Loss) should be not null.");
const Tensor* logits = ctx.Input<Tensor>("Logits"); auto logits_dims = ctx->GetInputDim("Logits");
const Tensor* labels = ctx.Input<Tensor>("Label"); auto labels_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
logits->dims().size(), 2UL, logits_dims.size(), 2UL,
"The input of softmax_with_cross_entropy should be a 2-D tensor."); "The input of softmax_with_cross_entropy should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Label")->dims().size(), 2UL, PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
"The labels should be a 2-D tensor."); "The labels should be a 2-D tensor.");
if (ctx.Attr<bool>("softLabel")) { if (ctx->Attrs().Get<bool>("softLabel")) {
PADDLE_ENFORCE_EQ(logits->dims()[1], labels->dims()[1], PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
"If Attr(softLabel) == true, the 2nd dimension of " "If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(labels->dims()[1], 1UL, PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of " "If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."); "Input(Label) should be 1.");
} }
ctx.Output<framework::Tensor>("Softmax")->Resize(logits->dims()); ctx->SetOutputDim("Softmax", logits_dims);
ctx.Output<framework::Tensor>("Loss")->Resize({logits->dims()[0], 1}); ctx->SetOutputDim("Loss", {logits_dims[0], 1});
ctx.ShareLoD("Logits", /*->*/ "Softmax"); ctx->ShareLoD("Logits", /*->*/ "Softmax");
ctx.ShareLoD("Logits", /*->*/ "Loss"); ctx->ShareLoD("Logits", /*->*/ "Loss");
} }
}; };
...@@ -124,33 +122,32 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { ...@@ -124,33 +122,32 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Loss")), PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
"Input(Loss@Grad) should not be null."); "Input(Loss@Grad) should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Softmax"), PADDLE_ENFORCE(ctx->HasInput("Softmax"),
"Input(Softmax) should be not null."); "Input(Softmax) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
"Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(framework::GradVarName("Logits")),
"Output(Logits@Grad) should be not null."); "Output(Logits@Grad) should be not null.");
const Tensor* softmax = ctx.Input<Tensor>("Softmax"); auto softmax_dims = ctx->GetInputDim("Softmax");
const Tensor* labels = ctx.Input<Tensor>("Label"); auto labels_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Label")->dims().size(), 2UL, PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
"The labels should be a 2-D tensor."); "The labels should be a 2-D tensor.");
if (ctx.Attr<bool>("softLabel")) { if (ctx->Attrs().Get<bool>("softLabel")) {
PADDLE_ENFORCE_EQ(softmax->dims()[1], labels->dims()[1], PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
"When Attr(softLabel) == true, the 2nd dimension of " "When Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(labels->dims()[1], 1UL, PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
"When Attr(softLabel) == false, the 2nd dimension of " "When Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."); "Input(Label) should be 1.");
} }
ctx.Output<framework::LoDTensor>(framework::GradVarName("Logits")) ctx->SetOutputDim(framework::GradVarName("Logits"),
->Resize(ctx.Input<Tensor>("Softmax")->dims()); ctx->GetInputDim("Softmax"));
} }
}; };
......
if(WITH_PYTHON) if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc SRCS pybind.cc protobuf.cc
DEPS pybind python backward DEPS pybind python backward
${GLOB_OP_LIB}) ${GLOB_OP_LIB})
endif(WITH_PYTHON) endif(WITH_PYTHON)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/pybind/protobuf.h"
#include <deque>
#include <iostream>
#include "paddle/framework/attribute.h"
// Cast boost::variant for PyBind.
// Copy from
// https://github.com/pybind/pybind11/issues/576#issuecomment-269563199
namespace pybind11 {
namespace detail {
// Can be replaced by a generic lambda in C++14
struct variant_caster_visitor : public boost::static_visitor<handle> {
return_value_policy policy;
handle parent;
variant_caster_visitor(return_value_policy policy, handle parent)
: policy(policy), parent(parent) {}
template <class T>
handle operator()(T const &src) const {
return make_caster<T>::cast(src, policy, parent);
}
};
template <class Variant>
struct variant_caster;
template <template <class...> class V, class... Ts>
struct variant_caster<V<Ts...>> {
using Type = V<Ts...>;
template <typename T>
typename std::enable_if<
!std::is_same<T, boost::detail::variant::void_>::value,
bool>::type
try_load(handle src, bool convert) {
auto caster = make_caster<T>();
if (!load_success_ && caster.load(src, convert)) {
load_success_ = true;
value = cast_op<T>(caster);
return true;
}
return false;
}
template <typename T>
typename std::enable_if<std::is_same<T, boost::detail::variant::void_>::value,
bool>::type
try_load(handle src, bool convert) {
return false;
}
bool load(handle src, bool convert) {
auto unused = {false, try_load<Ts>(src, convert)...};
(void)(unused);
return load_success_;
}
static handle cast(Type const &src,
return_value_policy policy,
handle parent) {
variant_caster_visitor visitor(policy, parent);
return boost::apply_visitor(visitor, src);
}
PYBIND11_TYPE_CASTER(Type, _("Variant"));
bool load_success_{false};
};
// Add specialization for concrete variant type
template <class... Args>
struct type_caster<boost::variant<Args...>>
: variant_caster<boost::variant<Args...>> {};
} // namespace detail
} // namespace pybind11
namespace paddle {
namespace pybind {
using namespace paddle::framework; // NOLINT
// convert between std::vector and protobuf repeated.
template <typename T>
inline std::vector<T> RepeatedToVector(
const google::protobuf::RepeatedField<T> &repeated_field) {
std::vector<T> ret;
ret.reserve(repeated_field.size());
std::copy(
repeated_field.begin(), repeated_field.end(), std::back_inserter(ret));
return ret;
}
template <typename T, typename RepeatedField>
inline void VectorToRepeated(const std::vector<T> &vec,
RepeatedField *repeated_field) {
repeated_field->Reserve(vec.size());
for (const auto &elem : vec) {
*repeated_field->Add() = elem;
}
}
// Specialize vector<bool>.
template <typename RepeatedField>
inline void VectorToRepeated(const std::vector<bool> &vec,
RepeatedField *repeated_field) {
repeated_field->Reserve(vec.size());
for (auto elem : vec) {
*repeated_field->Add() = elem;
}
}
class ProgramDescBind;
class OpDescBind;
class BlockDescBind;
class VarDescBind;
// Each Protobuf Message, we provide a XXXBind class. In that class, we optimize
// read/write speed. Only when we want the protobuf message, the local changes
// will be synchronized (by `Sync` method).
class VarDescBind {
public:
explicit VarDescBind(const std::string &name) { desc_.set_name(name); }
VarDesc *Proto() { return &desc_; }
py::bytes Name() const { return desc_.name(); }
void SetShape(const std::vector<int64_t> &dims) {
VectorToRepeated(dims, desc_.mutable_lod_tensor()->mutable_dims());
}
void SetDataType(framework::DataType data_type) {
desc_.mutable_lod_tensor()->set_data_type(data_type);
}
std::vector<int64_t> Shape() const {
return RepeatedToVector(desc_.lod_tensor().dims());
}
framework::DataType DataType() const {
return desc_.lod_tensor().data_type();
}
private:
VarDesc desc_;
};
class OpDescBind {
public:
OpDesc *Proto() {
Sync();
return &op_desc_;
}
std::string Type() const { return op_desc_.type(); }
void SetType(const std::string &type) { op_desc_.set_type(type); }
const std::vector<std::string> &Input(const std::string &name) const {
auto it = inputs_.find(name);
PADDLE_ENFORCE(
it != inputs_.end(), "Input %s cannot be found in Op %s", name, Type());
return it->second;
}
std::vector<std::string> InputNames() const {
std::vector<std::string> retv;
retv.reserve(this->inputs_.size());
for (auto &ipt : this->inputs_) {
retv.push_back(ipt.first);
}
return retv;
}
void SetInput(const std::string &param_name,
const std::vector<std::string> &args) {
need_update_ = true;
inputs_[param_name] = args;
}
const std::vector<std::string> &Output(const std::string &name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(),
"Output %s cannot be found in Op %s",
name,
Type());
return it->second;
}
std::vector<std::string> OutputNames() const {
std::vector<std::string> retv;
retv.reserve(this->outputs_.size());
for (auto &ipt : this->outputs_) {
retv.push_back(ipt.first);
}
return retv;
}
void SetOutput(const std::string &param_name,
const std::vector<std::string> &args) {
need_update_ = true;
this->outputs_[param_name] = args;
}
std::string DebugString() { return this->Proto()->DebugString(); }
bool HasAttr(const std::string &name) const {
return attrs_.find(name) != attrs_.end();
}
framework::AttrType GetAttrType(const std::string &name) const {
auto it = attrs_.find(name);
PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name);
return static_cast<framework::AttrType>(it->second.which() - 1);
}
std::vector<std::string> AttrNames() const {
std::vector<std::string> retv;
retv.reserve(attrs_.size());
for (auto &attr : attrs_) {
retv.push_back(attr.first);
}
return retv;
}
void SetAttr(const std::string &name, const Attribute &v) {
this->attrs_[name] = v;
need_update_ = true;
}
void SetBlockAttr(const std::string &name, BlockDescBind &block);
Attribute GetAttr(const std::string &name) const {
auto it = attrs_.find(name);
PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name);
return it->second;
}
int GetBlockAttr(const std::string &name) const {
auto it = attrs_.find(name);
PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name);
return boost::get<BlockDesc *>(it->second)->idx();
}
private:
struct SetAttrDescVisitor : public boost::static_visitor<void> {
explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {}
mutable OpDesc::Attr *attr_;
void operator()(int v) const { attr_->set_i(v); }
void operator()(float v) const { attr_->set_f(v); }
void operator()(const std::string &v) const { attr_->set_s(v); }
void operator()(bool b) const { attr_->set_b(b); }
void operator()(const std::vector<int> &v) const {
VectorToRepeated(v, attr_->mutable_ints());
}
void operator()(const std::vector<float> &v) const {
VectorToRepeated(v, attr_->mutable_floats());
}
void operator()(const std::vector<std::string> &v) const {
VectorToRepeated(v, attr_->mutable_strings());
}
void operator()(const std::vector<bool> &v) const {
VectorToRepeated(v, attr_->mutable_bools());
}
void operator()(BlockDesc *desc) const {
attr_->set_block_idx(desc->idx());
}
void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); }
};
void Sync() {
if (need_update_) {
this->op_desc_.mutable_inputs()->Clear();
for (auto &ipt : inputs_) {
auto *input = op_desc_.add_inputs();
input->set_parameter(ipt.first);
VectorToRepeated(ipt.second, input->mutable_arguments());
}
this->op_desc_.mutable_outputs()->Clear();
for (auto &opt : outputs_) {
auto *output = op_desc_.add_outputs();
output->set_parameter(opt.first);
VectorToRepeated(opt.second, output->mutable_arguments());
}
this->op_desc_.mutable_attrs()->Clear();
for (auto &attr : attrs_) {
auto *attr_desc = op_desc_.add_attrs();
attr_desc->set_name(attr.first);
attr_desc->set_type(
static_cast<framework::AttrType>(attr.second.which() - 1));
boost::apply_visitor(SetAttrDescVisitor(attr_desc), attr.second);
}
need_update_ = false;
}
}
OpDesc op_desc_;
std::unordered_map<std::string, std::vector<std::string>> inputs_;
std::unordered_map<std::string, std::vector<std::string>> outputs_;
std::unordered_map<std::string, Attribute> attrs_;
// need_update_ indicate there some local changes not be synchronized. If
// local changes should be synchronized, need_update_ should be set to true.
bool need_update_{false};
};
class BlockDescBind {
public:
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {}
BlockDescBind(const BlockDescBind &o) = delete;
BlockDescBind &operator=(const BlockDescBind &o) = delete;
int32_t ID() const { return desc_->idx(); }
int32_t Parent() const { return desc_->parent_idx(); }
VarDescBind *NewVar(py::bytes name_bytes) {
std::string name = name_bytes;
need_update_ = true;
auto it = vars_.find(name);
PADDLE_ENFORCE(it == vars_.end(), "Duplicated variable %s", name);
auto var = new VarDescBind(name);
vars_[name].reset(var);
return var;
}
VarDescBind *Var(py::bytes name_bytes) const {
std::string name = name_bytes;
auto it = vars_.find(name);
PADDLE_ENFORCE(
it != vars_.end(), "Can not find variable %s in current block.", name);
return it->second.get();
}
std::vector<VarDescBind *> AllVars() const {
std::vector<VarDescBind *> res;
for (const auto &p : vars_) {
res.push_back(p.second.get());
}
return res;
}
BlockDescBind *ParentBlock() const;
OpDescBind *AppendOp() {
need_update_ = true;
ops_.emplace_back(new OpDescBind());
return ops_.back().get();
}
OpDescBind *PrependOp() {
need_update_ = true;
ops_.emplace_front(new OpDescBind());
return ops_.front().get();
}
std::vector<OpDescBind *> AllOps() const {
std::vector<OpDescBind *> res;
for (const auto &op : ops_) {
res.push_back(op.get());
}
return res;
}
void Sync() {
if (need_update_) {
auto &op_field = *this->desc_->mutable_ops();
op_field.Clear();
op_field.Reserve(static_cast<int>(ops_.size()));
for (auto &op_desc : ops_) {
op_field.AddAllocated(op_desc->Proto());
}
need_update_ = false;
}
}
BlockDesc *RawPtr() { return desc_; }
private:
ProgramDescBind *prog_; // not_own
BlockDesc *desc_; // not_own
bool need_update_;
std::deque<std::unique_ptr<OpDescBind>> ops_;
std::unordered_map<std::string, std::unique_ptr<VarDescBind>> vars_;
};
using ProgDescMap =
std::unordered_map<ProgramDesc *, std::unique_ptr<ProgramDescBind>>;
static ProgDescMap *g_bind_map = nullptr;
class ProgramDescBind {
public:
static ProgramDescBind &Instance(ProgramDesc *prog) {
if (g_bind_map == nullptr) {
g_bind_map = new ProgDescMap();
}
auto &map = *g_bind_map;
auto &ptr = map[prog];
if (ptr == nullptr) {
ptr.reset(new ProgramDescBind(prog));
}
return *ptr;
}
ProgramDescBind(const ProgramDescBind &o) = delete;
ProgramDescBind &operator=(const ProgramDescBind &o) = delete;
BlockDescBind *AppendBlock(const BlockDescBind &parent) {
auto *b = prog_->add_blocks();
b->set_parent_idx(parent.ID());
b->set_idx(prog_->blocks_size() - 1);
blocks_.emplace_back(new BlockDescBind(this, b));
return blocks_.back().get();
}
BlockDescBind *Block(size_t idx) { return blocks_[idx].get(); }
std::string DebugString() { return Proto()->DebugString(); }
size_t Size() const { return blocks_.size(); }
ProgramDesc *Proto() {
for (auto &block : blocks_) {
block->Sync();
}
return prog_;
}
private:
explicit ProgramDescBind(ProgramDesc *prog) : prog_(prog) {
for (auto &block : *prog->mutable_blocks()) {
blocks_.emplace_back(new BlockDescBind(this, &block));
}
}
// Not owned
ProgramDesc *prog_;
std::vector<std::unique_ptr<BlockDescBind>> blocks_;
};
BlockDescBind *BlockDescBind::ParentBlock() const {
if (this->desc_->parent_idx() == -1) {
return nullptr;
}
return prog_->Block(static_cast<size_t>(this->desc_->parent_idx()));
}
void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) {
BlockDesc *desc = block.RawPtr();
this->attrs_[name] = desc;
}
// Bind Methods
void BindProgramDesc(py::module &m) {
py::class_<ProgramDescBind>(m, "ProgramDesc", "")
.def_static("instance",
[]() -> ProgramDescBind * {
return &ProgramDescBind::Instance(&GetProgramDesc());
},
py::return_value_policy::reference)
.def_static("__create_program_desc__",
[]() -> ProgramDescBind * {
// Only used for unit-test
auto *prog_desc = new ProgramDesc;
auto *block = prog_desc->mutable_blocks()->Add();
block->set_idx(0);
block->set_parent_idx(-1);
return &ProgramDescBind::Instance(prog_desc);
},
py::return_value_policy::reference)
.def("append_block",
&ProgramDescBind::AppendBlock,
py::return_value_policy::reference)
.def("block", &ProgramDescBind::Block, py::return_value_policy::reference)
.def("__str__", &ProgramDescBind::DebugString)
.def("num_blocks", &ProgramDescBind::Size);
}
void BindBlockDesc(py::module &m) {
py::class_<BlockDescBind>(m, "BlockDesc", "")
.def_property_readonly("id", &BlockDescBind::ID)
.def_property_readonly("parent", &BlockDescBind::Parent)
.def("append_op",
&BlockDescBind::AppendOp,
py::return_value_policy::reference)
.def("prepend_op",
&BlockDescBind::PrependOp,
py::return_value_policy::reference)
.def(
"new_var", &BlockDescBind::NewVar, py::return_value_policy::reference)
.def("var", &BlockDescBind::Var, py::return_value_policy::reference)
.def("all_vars",
&BlockDescBind::AllVars,
py::return_value_policy::reference)
.def("all_ops",
&BlockDescBind::AllOps,
py::return_value_policy::reference);
}
void BindVarDsec(py::module &m) {
py::enum_<framework::DataType>(m, "DataType", "")
.value("BOOL", DataType::BOOL)
.value("INT16", DataType::INT16)
.value("INT32", DataType::INT32)
.value("INT64", DataType::INT64)
.value("FP16", DataType::FP16)
.value("FP32", DataType::FP32)
.value("FP64", DataType::FP64);
py::class_<VarDescBind>(m, "VarDesc", "")
.def("name", &VarDescBind::Name, py::return_value_policy::reference)
.def("set_shape", &VarDescBind::SetShape)
.def("set_data_type", &VarDescBind::SetDataType)
.def("shape", &VarDescBind::Shape, py::return_value_policy::reference)
.def("data_type", &VarDescBind::DataType);
}
void BindOpDesc(py::module &m) {
py::enum_<framework::AttrType>(m, "AttrType", "")
.value("INT", AttrType::INT)
.value("INTS", AttrType::INTS)
.value("FLOAT", AttrType::FLOAT)
.value("FLOATS", AttrType::FLOATS)
.value("STRING", AttrType::STRING)
.value("STRINGS", AttrType::STRINGS)
.value("BOOL", AttrType::BOOLEAN)
.value("BOOLS", AttrType::BOOLEANS)
.value("BLOCK", AttrType::BLOCK);
py::class_<OpDescBind> op_desc(m, "OpDesc", "");
op_desc.def("type", &OpDescBind::Type)
.def("set_type", &OpDescBind::SetType)
.def("input", &OpDescBind::Input)
.def("input_names", &OpDescBind::InputNames)
.def("set_input", &OpDescBind::SetInput)
.def("output", &OpDescBind::Output)
.def("output_names", &OpDescBind::OutputNames)
.def("set_output", &OpDescBind::SetOutput)
.def("__str__", &OpDescBind::DebugString)
.def("__repr__", &OpDescBind::DebugString)
.def("has_attr", &OpDescBind::HasAttr)
.def("attr_type", &OpDescBind::GetAttrType)
.def("attr_names", &OpDescBind::AttrNames)
.def("set_attr", &OpDescBind::SetAttr)
.def("attr", &OpDescBind::GetAttr)
.def("set_block_attr", &OpDescBind::SetBlockAttr)
.def("get_block_attr", &OpDescBind::GetBlockAttr);
}
} // namespace pybind
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include <fstream>
#include <vector>
#include "paddle/framework/op_registry.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace py = pybind11;
namespace paddle {
namespace pybind {
void BindProgramDesc(py::module& m);
void BindBlockDesc(py::module& m);
void BindVarDsec(py::module& m);
void BindOpDesc(py::module& m);
} // namespace pybind
} // namespace paddle
...@@ -12,13 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,13 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <Python.h> #include "paddle/pybind/protobuf.h"
#include <fstream>
#include <vector>
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/cond_op.h" #include "paddle/operators/cond_op.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h" #include "paddle/operators/recurrent_op.h"
...@@ -27,11 +24,6 @@ limitations under the License. */ ...@@ -27,11 +24,6 @@ limitations under the License. */
#include "paddle/pybind/pybind.h" #include "paddle/pybind/pybind.h"
#include "paddle/pybind/tensor_py.h" #include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h" #include "paddle/string/to_string.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace pybind {
...@@ -320,6 +312,11 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -320,6 +312,11 @@ All parameter, weight, gradient are variables in Paddle.
m.def("is_compile_gpu", IsCompileGPU); m.def("is_compile_gpu", IsCompileGPU);
BindProgramDesc(m);
BindBlockDesc(m);
BindVarDsec(m);
BindOpDesc(m);
return m.ptr(); return m.ptr();
} }
} // namespace pybind } // namespace pybind
......
...@@ -5,22 +5,31 @@ from op_test import OpTest ...@@ -5,22 +5,31 @@ from op_test import OpTest
def modified_huber_loss_forward(val): def modified_huber_loss_forward(val):
if val < -1: if val < -1:
return -4 * val return -4. * val
elif val < 1: elif val < 1:
return (1 - val) * (1 - val) return (1. - val) * (1. - val)
else: else:
return 0 return 0.
class TestModifiedHuberLossOp(OpTest): class TestModifiedHuberLossOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = 'modified_huber_loss' self.op_type = 'modified_huber_loss'
samples_num = 32 samples_num = 32
self.inputs = {
'X': np.random.uniform(-1, 1., (samples_num, 1)).astype('float32'), x_np = np.random.uniform(-2., 2., (samples_num, 1)).astype('float32')
'Y': np.random.choice([0, 1], samples_num).reshape((samples_num, 1)) y_np = np.random.choice([0, 1], samples_num).reshape(
} (samples_num, 1)).astype('float32')
product_res = self.inputs['X'] * (2 * self.inputs['Y'] - 1) product_res = x_np * (2. * y_np - 1.)
# keep away from the junction of piecewise function
for pos, val in np.ndenumerate(product_res):
while abs(val - 1.) < 0.05:
x_np[pos] = np.random.uniform(-2., 2.)
y_np[pos] = np.random.choice([0, 1])
product_res[pos] = x_np[pos] * (2 * y_np[pos] - 1)
val = product_res[pos]
self.inputs = {'X': x_np, 'Y': y_np}
loss = np.vectorize(modified_huber_loss_forward)(product_res) loss = np.vectorize(modified_huber_loss_forward)(product_res)
self.outputs = { self.outputs = {
...@@ -32,7 +41,7 @@ class TestModifiedHuberLossOp(OpTest): ...@@ -32,7 +41,7 @@ class TestModifiedHuberLossOp(OpTest):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Out', max_relative_error=0.005) self.check_grad(['X'], 'Out', max_relative_error=0.01)
if __name__ == '__main__': if __name__ == '__main__':
......
import unittest
import paddle.v2.framework.core as core
class TestOpDesc(unittest.TestCase):
def test_op_desc(self):
prog = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
op = block.append_op()
self.assertIsNotNone(op)
op.set_type("test")
self.assertEqual("test", op.type())
op.set_input("X", ["a", "b", "c"])
self.assertEqual(["a", "b", "c"], op.input("X"))
self.assertEqual(["X"], op.input_names())
op.set_output("Out", ["z"])
self.assertEqual(['z'], op.output("Out"))
self.assertEqual(["Out"], op.output_names())
op.set_attr("int_attr", 1)
self.assertEqual(1, op.attr("int_attr"))
self.assertTrue(op.has_attr("int_attr"))
self.assertEqual(core.AttrType.INT, op.attr_type("int_attr"))
op.set_attr("float_attr", -1.32)
self.assertAlmostEqual(-1.32, op.attr("float_attr"), delta=1e-4)
self.assertTrue(op.has_attr("float_attr"))
op.set_attr("bool_attr", False)
self.assertFalse(op.attr("bool_attr"))
op.set_attr("string_attr", "abc")
self.assertEqual("abc", op.attr("string_attr"))
self.assertTrue(op.has_attr("string_attr"))
op.set_attr("ints_attr", [1, 2, 3])
self.assertEqual([1, 2, 3], op.attr("ints_attr"))
expected = [1.2, 2.3, 3.4]
op.set_attr("floats_attr", expected)
for e, a in zip(expected, op.attr("floats_attr")):
self.assertAlmostEqual(e, a, delta=1e-4)
op.set_attr("strings_attr", ["a", "b", "c"])
self.assertEqual(["a", "b", "c"], op.attr("strings_attr"))
op.set_attr("bools_attr", [True, False, True])
self.assertEqual([True, False, True], op.attr("bools_attr"))
self.assertEqual(8, len(op.attr_names()))
op.set_block_attr("block_attr", prog.block(0))
self.assertEqual(0, op.get_block_attr("block_attr"))
class TestProgramDesc(unittest.TestCase):
def test_instance(self):
program_desc = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(program_desc)
del program_desc
program_desc = core.ProgramDesc.instance()
self.assertIsNotNone(program_desc)
self.assertIsNotNone(program_desc.block(0))
del program_desc
def test_append_block(self):
prog_desc = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog_desc)
block_root = prog_desc.block(0)
self.assertIsNotNone(block_root)
self.assertEqual(block_root.id, 0)
block1 = prog_desc.append_block(block_root)
block2 = prog_desc.append_block(block1)
self.assertIsNotNone(block1)
self.assertEqual(block1.id, block2.parent)
self.assertEqual(block_root.id, block1.parent)
block3 = prog_desc.append_block(block_root)
self.assertEqual(block3.parent, block_root.id)
self.assertEqual(prog_desc.block(1).id, 1)
self.assertEqual(4, prog_desc.num_blocks())
class TestVarDesc(unittest.TestCase):
def test_shape(self):
program_desc = core.ProgramDesc.__create_program_desc__()
block = program_desc.block(0)
var = block.new_var('my_var')
src_shape = [3, 2, 10, 8]
var.set_shape(src_shape)
res_shape = var.shape()
self.assertEqual(src_shape, res_shape)
def test_data_type(self):
program_desc = core.ProgramDesc.__create_program_desc__()
block = program_desc.block(0)
var = block.new_var('my_var')
var.set_data_type(core.DataType.INT32)
self.assertEqual(core.DataType.INT32, var.data_type())
class TestBlockDesc(unittest.TestCase):
def test_add_var(self):
prog = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
var1 = block.new_var("var1")
var2 = block.new_var("var2")
var3 = block.new_var("var3")
all_vars = block.all_vars()
self.assertEqual(set(all_vars), set([var1, var2, var3]))
var2_re = block.var("var2")
self.assertEqual(var2_re, var2)
def test_add_op(self):
prog = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
op1 = block.append_op()
op2 = block.append_op()
op0 = block.prepend_op()
all_ops = block.all_ops()
self.assertEqual(all_ops, [op0, op1, op2])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册