Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
aacd16db
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aacd16db
编写于
10月 28, 2019
作者:
A
Aurelius84
提交者:
Tao Luo
10月 28, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pyramid_hash_op (#20698)
上级
98103d30
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
827 addition
and
5 deletion
+827
-5
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+8
-4
paddle/fluid/operators/math/bloomfilter.h
paddle/fluid/operators/math/bloomfilter.h
+197
-0
paddle/fluid/operators/pyramid_hash_op.cc
paddle/fluid/operators/pyramid_hash_op.cc
+445
-0
paddle/fluid/operators/search_compute.h
paddle/fluid/operators/search_compute.h
+16
-1
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+97
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_pyramid_hash_op.py
python/paddle/fluid/tests/unittests/test_pyramid_hash_op.py
+61
-0
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
aacd16db
...
...
@@ -48,14 +48,17 @@ if (WITH_DISTRIBUTE)
SET
(
OP_PREFETCH_DEPS
${
OP_PREFETCH_DEPS
}
parameter_prefetch
)
endif
()
SET
(
OP_
ONLY_MKL
""
)
SET
(
OP_
MKL_DEPS
""
)
if
(
NOT WITH_MKL OR NOT WITH_AVX
)
SET
(
OP_ONLY_MKL
${
OP_ONLY_MKL
}
match_matrix_tensor_op
)
SET
(
OP_ONLY_MKL
${
OP_ONLY_MKL
}
var_conv_2d_op
)
SET
(
OP_MKL_DEPS
${
OP_MKL_DEPS
}
match_matrix_tensor_op
)
SET
(
OP_MKL_DEPS
${
OP_MKL_DEPS
}
var_conv_2d_op
)
endif
()
if
(
WITH_COVERAGE OR NOT WITH_AVX OR WIN32
)
SET
(
OP_MKL_DEPS
${
OP_MKL_DEPS
}
pyramid_hash_op
)
endif
()
register_operators
(
EXCLUDES py_func_op warpctc_op dgc_op conv_fusion_op
sync_batch_norm_op multihead_matmul_op
${
OP_
ONLY_MKL
}
DEPS
${
OP_HEADER_DEPS
}
${
OP_PREFETCH_DEPS
}
)
sync_batch_norm_op multihead_matmul_op
${
OP_
MKL_DEPS
}
DEPS
${
OP_HEADER_DEPS
}
${
OP_PREFETCH_DEPS
}
)
if
(
WITH_GPU
)
# warpctc_op needs cudnn 7 above
...
...
@@ -87,6 +90,7 @@ if (WITH_DGC)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dgc
)
endif
()
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dynload_warpctc
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler sample_prob tree2col
)
...
...
paddle/fluid/operators/math/bloomfilter.h
0 → 100644
浏览文件 @
aacd16db
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#define BLOOMFILTER_MAGIC_NUM_NEW 17070416
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
namespace
paddle
{
namespace
operators
{
namespace
math
{
#pragma pack(4)
struct
bloomfilter
{
uint64_t
magic_num
;
uint64_t
m
;
uint64_t
k
;
uint64_t
count
;
unsigned
char
bit_vector
[
1
];
};
int
bloomfilter_get
(
const
struct
bloomfilter
*
bloomfilter
,
const
void
*
key
,
size_t
len
);
int
bloomfilter_check
(
struct
bloomfilter
*
filter
);
#define bit_get(v, n) ((v)[(n) >> 3] & (0x1 << (0x7 - ((n)&0x7))))
#define ROTL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#define BIG_CONSTANT(x) (x##LLU)
uint64_t
fmix64
(
uint64_t
k
)
{
k
^=
k
>>
33
;
k
*=
BIG_CONSTANT
(
0xff51afd7ed558ccd
);
k
^=
k
>>
33
;
k
*=
BIG_CONSTANT
(
0xc4ceb9fe1a85ec53
);
k
^=
k
>>
33
;
return
k
;
}
void
murmurhash3_x64_128
(
const
void
*
key
,
const
int
len
,
const
uint32_t
seed
,
void
*
out
)
{
const
uint8_t
*
data
=
(
const
uint8_t
*
)
key
;
const
int
nblocks
=
len
/
16
;
uint64_t
h1
=
seed
;
uint64_t
h2
=
seed
;
int
i
=
0
;
const
uint64_t
c1
=
BIG_CONSTANT
(
0x87c37b91114253d5
);
const
uint64_t
c2
=
BIG_CONSTANT
(
0x4cf5ad432745937f
);
//----------
// body
const
uint64_t
*
blocks
=
(
const
uint64_t
*
)(
data
);
uint64_t
k1
;
uint64_t
k2
;
for
(
i
=
0
;
i
<
nblocks
;
i
++
)
{
k1
=
blocks
[
i
*
2
+
0
];
k2
=
blocks
[
i
*
2
+
1
];
k1
*=
c1
;
k1
=
ROTL64
(
k1
,
31
);
k1
*=
c2
;
h1
^=
k1
;
h1
=
ROTL64
(
h1
,
27
);
h1
+=
h2
;
h1
=
h1
*
5
+
0x52dce729
;
k2
*=
c2
;
k2
=
ROTL64
(
k2
,
33
);
k2
*=
c1
;
h2
^=
k2
;
h2
=
ROTL64
(
h2
,
31
);
h2
+=
h1
;
h2
=
h2
*
5
+
0x38495ab5
;
}
//----------
// tail
const
uint8_t
*
tail
=
(
const
uint8_t
*
)(
data
+
nblocks
*
16
);
uint64_t
nk1
=
0
;
uint64_t
nk2
=
0
;
// no break here!!!
switch
(
len
&
15
)
{
case
15
:
nk2
^=
((
uint64_t
)
tail
[
14
])
<<
48
;
case
14
:
nk2
^=
((
uint64_t
)
tail
[
13
])
<<
40
;
case
13
:
nk2
^=
((
uint64_t
)
tail
[
12
])
<<
32
;
case
12
:
nk2
^=
((
uint64_t
)
tail
[
11
])
<<
24
;
case
11
:
nk2
^=
((
uint64_t
)
tail
[
10
])
<<
16
;
case
10
:
nk2
^=
((
uint64_t
)
tail
[
9
])
<<
8
;
case
9
:
nk2
^=
((
uint64_t
)
tail
[
8
])
<<
0
;
nk2
*=
c2
;
nk2
=
ROTL64
(
nk2
,
33
);
nk2
*=
c1
;
h2
^=
nk2
;
case
8
:
nk1
^=
((
uint64_t
)
tail
[
7
])
<<
56
;
case
7
:
nk1
^=
((
uint64_t
)
tail
[
6
])
<<
48
;
case
6
:
nk1
^=
((
uint64_t
)
tail
[
5
])
<<
40
;
case
5
:
nk1
^=
((
uint64_t
)
tail
[
4
])
<<
32
;
case
4
:
nk1
^=
((
uint64_t
)
tail
[
3
])
<<
24
;
case
3
:
nk1
^=
((
uint64_t
)
tail
[
2
])
<<
16
;
case
2
:
nk1
^=
((
uint64_t
)
tail
[
1
])
<<
8
;
case
1
:
nk1
^=
((
uint64_t
)
tail
[
0
])
<<
0
;
nk1
*=
c1
;
nk1
=
ROTL64
(
nk1
,
31
);
nk1
*=
c2
;
h1
^=
nk1
;
}
//----------
// finalization
h1
^=
len
;
h2
^=
len
;
h1
+=
h2
;
h2
+=
h1
;
h1
=
fmix64
(
h1
);
h2
=
fmix64
(
h2
);
h1
+=
h2
;
h2
+=
h1
;
// ((uint64_t *)out)[0] = h1;
reinterpret_cast
<
uint64_t
*>
(
out
)[
0
]
=
h1
;
// ((uint64_t *)out)[1] = h2;
reinterpret_cast
<
uint64_t
*>
(
out
)[
1
]
=
h2
;
}
int
bloomfilter_check
(
struct
bloomfilter
*
filter
)
{
if
(
filter
->
magic_num
==
BLOOMFILTER_MAGIC_NUM_NEW
)
{
return
1
;
}
else
{
fprintf
(
stderr
,
"error magic_num %ld
\n
"
,
filter
->
magic_num
);
return
0
;
}
}
int
bloomfilter_get
(
const
struct
bloomfilter
*
bloomfilter
,
const
void
*
key
,
size_t
len
)
{
uint32_t
i
;
uint64_t
result
[
2
];
for
(
i
=
0
;
i
<
bloomfilter
->
k
;
i
++
)
{
murmurhash3_x64_128
(
key
,
len
,
i
,
&
result
);
result
[
0
]
%=
bloomfilter
->
m
;
result
[
1
]
%=
bloomfilter
->
m
;
if
(
!
bit_get
(
bloomfilter
->
bit_vector
,
result
[
0
]))
{
return
0
;
}
if
(
!
bit_get
(
bloomfilter
->
bit_vector
,
result
[
1
]))
{
return
0
;
}
}
return
1
;
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/pyramid_hash_op.cc
0 → 100644
浏览文件 @
aacd16db
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <xxhash.h>
#include <algorithm>
#include <cmath>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/search_compute.h"
extern
"C"
{
#include "math/bloomfilter.h"
// void* memcpy1(void* dst, void* src, uint32_t length);
}
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
class
PyramidHashOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"X (Tensor, MUST be Tensor<!!!_int32_!!!>) Input variable which "
"should contain lod information."
);
AddInput
(
"W"
,
"W (Tensor)"
);
AddInput
(
"WhiteList"
,
"WhiteList (Tensor)"
);
AddInput
(
"BlackList"
,
"BlackList (Tensor)"
);
AddAttr
<
int
>
(
"num_emb"
,
"num_emb"
).
SetDefault
(
0
).
EqualGreaterThan
(
0
);
AddAttr
<
int
>
(
"space_len"
,
"space_len"
).
SetDefault
(
0
).
EqualGreaterThan
(
0
);
AddAttr
<
int
>
(
"pyramid_layer"
,
"pyramid_layer (must be >= 2)"
)
.
SetDefault
(
2
)
.
EqualGreaterThan
(
2
);
AddAttr
<
int
>
(
"rand_len"
,
"rand_len"
).
SetDefault
(
0
).
EqualGreaterThan
(
0
);
AddAttr
<
float
>
(
"drop_out_percent"
,
"drop_out_percent"
)
.
SetDefault
(
0
)
.
EqualGreaterThan
(
0
);
AddAttr
<
int
>
(
"is_training"
,
"is_training"
)
.
SetDefault
(
0
)
.
EqualGreaterThan
(
0
);
AddAttr
<
bool
>
(
"use_filter"
,
"use_filter"
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"white_list_len"
,
"white_list_len"
)
.
SetDefault
(
0
)
.
EqualGreaterThan
(
0
);
AddAttr
<
int
>
(
"black_list_len"
,
"black_list_len"
)
.
SetDefault
(
0
)
.
EqualGreaterThan
(
0
);
AddAttr
<
int
>
(
"seed"
,
"seed"
).
SetDefault
(
0
).
EqualGreaterThan
(
0
);
AddAttr
<
float
>
(
"lr"
,
"learning rate"
).
SetDefault
(
0.0
).
EqualGreaterThan
(
0.0
);
AddOutput
(
"Out"
,
"Out (Tensor, default Tensor<float>) Output variable"
);
AddOutput
(
"DropPos"
,
"Out (Tensor, Tensor<int>) Output variable"
);
AddOutput
(
"X_Temp_Out"
,
"Out (Tensor, Tensor<int>) Output variable"
)
.
AsIntermediate
();
AddComment
(
R"DOC(
PyramidHash
NOTE: only support 'float32' data type now.
)DOC"
);
}
};
class
PyramidHashOP
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"X(Input) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"W"
),
true
,
"W(Input) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Out(Output) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"DropPos"
),
true
,
"DropPos(TMP Output) should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"The rank of X(Input) should be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"W"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"W should be 2-D tensor"
);
int
space_len
=
ctx
->
Attrs
().
Get
<
int
>
(
"space_len"
);
int
rand_len
=
ctx
->
Attrs
().
Get
<
int
>
(
"rand_len"
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
space_len
+
rand_len
,
"w_dims[0] should be equal to (space_len + rand_len)"
);
PADDLE_ENFORCE_EQ
(
w_dims
[
1
],
1
,
"w_dims[1] should be equal to 1"
);
int
num_emb
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_emb"
);
PADDLE_ENFORCE_EQ
(
num_emb
%
rand_len
,
0
,
"random length should mod embedding size"
);
int
white_list_len
=
ctx
->
Attrs
().
Get
<
int
>
(
"white_list_len"
);
if
(
white_list_len
>
0
)
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"WhiteList"
),
true
,
"WhiteList(Input) should not be null when white_list_len > 0"
);
auto
wl_dims
=
ctx
->
GetInputDim
(
"WhiteList"
);
PADDLE_ENFORCE_EQ
(
wl_dims
.
size
(),
2
,
"WhiteList should be 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
wl_dims
[
0
],
white_list_len
,
"wl_dims[0] should be equal to white_list_len"
);
PADDLE_ENFORCE_EQ
(
wl_dims
[
1
],
1
,
"wl_dims[1] should be equal to 1"
);
}
int
black_list_len
=
ctx
->
Attrs
().
Get
<
int
>
(
"black_list_len"
);
if
(
black_list_len
>
0
)
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"BlackList"
),
true
,
"BlackList(Input) should not be null when black_list_len > 0"
);
auto
bl_dims
=
ctx
->
GetInputDim
(
"BlackList"
);
PADDLE_ENFORCE_EQ
(
bl_dims
.
size
(),
2
,
"BlackList should be 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
bl_dims
[
0
],
black_list_len
,
"bl_dims[0] should be equal to black_list_len"
);
PADDLE_ENFORCE_EQ
(
bl_dims
[
1
],
1
,
"bl_dims[1] should be equal to 1"
);
}
if
(
ctx
->
IsRuntime
())
{
// something to do in runtime.
}
else
{
// compile time
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
-
1
,
num_emb
}));
ctx
->
SetOutputDim
(
"X_Temp_Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"W"
),
ctx
.
GetPlace
());
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUPyramidHashOPKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
bool
should_use_term
(
math
::
bloomfilter
*
_filter
,
math
::
bloomfilter
*
_black_filter
,
const
T
*
word_repr
,
int
len
)
const
{
return
(
!
_filter
||
1
==
math
::
bloomfilter_get
(
_filter
,
word_repr
,
len
*
sizeof
(
T
)))
&&
(
!
_black_filter
||
0
==
math
::
bloomfilter_get
(
_black_filter
,
word_repr
,
len
*
sizeof
(
T
)));
}
void
hash_embedding_ff
(
const
T
*
hash_id
,
int
len
,
T
*
top_pos
,
const
T
*
weights
,
int
_num_emb
,
int
_rand_len
,
int
_space_len
)
const
{
for
(
unsigned
int
j
=
0
;
j
!=
_num_emb
;
j
+=
_rand_len
)
{
unsigned
int
pos
=
XXH32
(
hash_id
,
len
*
sizeof
(
T
),
j
)
%
_space_len
;
memcpy
(
top_pos
+
j
,
const_cast
<
float
*>
(
weights
+
pos
),
_rand_len
*
sizeof
(
T
));
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
bottom
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
_blobs_0
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
*
_blobs_1
=
ctx
.
Input
<
Tensor
>
(
"WhiteList"
);
auto
*
_blobs_2
=
ctx
.
Input
<
Tensor
>
(
"BlackList"
);
auto
*
top
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
drop_pos
=
ctx
.
Output
<
LoDTensor
>
(
"DropPos"
);
int
_num_emb
=
ctx
.
Attr
<
int
>
(
"num_emb"
);
bool
use_filter
=
ctx
.
Attr
<
bool
>
(
"use_filter"
);
int
white_list_len
=
ctx
.
Attr
<
int
>
(
"white_list_len"
);
int
black_list_len
=
ctx
.
Attr
<
int
>
(
"black_list_len"
);
int
_pyramid_layer
=
ctx
.
Attr
<
int
>
(
"pyramid_layer"
);
int
_is_training
=
ctx
.
Attr
<
int
>
(
"is_training"
);
int
seed
=
ctx
.
Attr
<
int
>
(
"seed"
);
unsigned
int
_seed
=
(
unsigned
int
)
seed
;
int
_rand_len
=
ctx
.
Attr
<
int
>
(
"rand_len"
);
int
_space_len
=
ctx
.
Attr
<
int
>
(
"space_len"
);
float
_drop_out_percent
=
ctx
.
Attr
<
float
>
(
"drop_out_percent"
);
const
auto
&
offset
=
bottom
->
lod
()[
0
];
const
auto
*
bottom_data_ori
=
bottom
->
data
<
int32_t
>
();
auto
*
buff
=
ctx
.
Output
<
LoDTensor
>
(
"X_Temp_Out"
);
buff
->
Resize
(
framework
::
make_ddim
({
bottom
->
dims
()[
0
],
bottom
->
dims
()[
1
]}));
T
*
bottom_data
=
buff
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
bottom
->
dims
()[
0
];
i
++
)
{
bottom_data
[
i
]
=
bottom_data_ori
[
i
];
}
const
auto
*
weights
=
_blobs_0
->
data
<
T
>
();
std
::
vector
<
size_t
>
top_offset
;
top_offset
.
resize
(
offset
.
size
());
top_offset
[
0
]
=
0
;
math
::
bloomfilter
*
_filter
=
NULL
;
math
::
bloomfilter
*
_black_filter
=
NULL
;
if
(
use_filter
)
{
if
(
white_list_len
!=
0
)
{
_filter
=
(
math
::
bloomfilter
*
)
_blobs_1
->
data
<
T
>
();
PADDLE_ENFORCE_EQ
(
math
::
bloomfilter_check
(
_filter
),
1
,
"white filter not load"
);
}
if
(
black_list_len
!=
0
)
{
_black_filter
=
(
math
::
bloomfilter
*
)
_blobs_2
->
data
<
T
>
();
PADDLE_ENFORCE_EQ
(
math
::
bloomfilter_check
(
_black_filter
),
1
,
"black filter not load"
);
}
}
drop_pos
->
Resize
(
framework
::
make_ddim
(
{
bottom
->
dims
()[
0
]
*
bottom
->
dims
()[
1
]
*
_pyramid_layer
,
1
}));
std
::
vector
<
size_t
>
drop_pos_offset
;
drop_pos_offset
.
resize
(
offset
.
size
());
drop_pos_offset
[
0
]
=
0
;
int
*
iter
=
drop_pos
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
int
*
iter_end
=
iter
;
for
(
int
i
=
0
;
i
<
top_offset
.
size
()
-
1
;
++
i
)
{
int
w
=
offset
[
i
+
1
]
-
offset
[
i
];
int
nsentense_with_pyramid
=
0
;
if
(
w
<
2
)
{
nsentense_with_pyramid
=
0
;
}
else
{
for
(
int
ilayer
=
1
;
ilayer
<
_pyramid_layer
&&
ilayer
<
w
;
++
ilayer
)
{
for
(
int
l
=
0
;
l
<
w
-
ilayer
;
++
l
)
{
if
(
should_use_term
(
_filter
,
_black_filter
,
(
const
T
*
)(
bottom_data
+
offset
[
i
]
+
l
),
ilayer
+
1
))
{
if
(
_is_training
!=
0
)
{
unsigned
int
rand_val
=
rand_r
(
&
_seed
);
T
rate
=
static_cast
<
T
>
(
rand_val
)
/
(
RAND_MAX
);
*
(
iter_end
++
)
=
(
rate
<
_drop_out_percent
?
0
:
1
);
}
else
{
*
(
iter_end
++
)
=
1
;
}
}
else
{
*
(
iter_end
++
)
=
0
;
}
}
}
nsentense_with_pyramid
=
std
::
count
(
iter
,
iter_end
,
1
);
iter
=
iter_end
;
}
drop_pos_offset
[
i
+
1
]
=
drop_pos_offset
[
i
]
+
nsentense_with_pyramid
;
top_offset
[
i
+
1
]
=
top_offset
[
i
]
+
(
nsentense_with_pyramid
==
0
?
1
:
nsentense_with_pyramid
);
}
int
top_l
=
top_offset
[
top_offset
.
size
()
-
1
];
framework
::
LoD
top_lod
;
top_lod
.
push_back
(
top_offset
);
top
->
set_lod
(
top_lod
);
top
->
Resize
(
framework
::
make_ddim
({
top_l
,
_num_emb
}));
auto
*
top_data
=
top
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
LoD
drop_pos_lod
;
drop_pos_lod
.
push_back
(
drop_pos_offset
);
drop_pos
->
set_lod
(
drop_pos_lod
);
iter
=
drop_pos
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
int
top_counter
=
0
;
for
(
int
i
=
0
;
i
<
offset
.
size
()
-
1
;
++
i
)
{
int
w_drop
=
drop_pos_offset
[
i
+
1
]
-
drop_pos_offset
[
i
];
int
w
=
offset
[
i
+
1
]
-
offset
[
i
];
if
(
w_drop
==
0
)
{
if
(
w
>=
2
)
{
for
(
int
ilayer
=
1
;
ilayer
<
_pyramid_layer
&&
ilayer
<
w
;
++
ilayer
)
{
for
(
int
l
=
0
;
l
<
w
-
ilayer
;
++
l
)
{
iter
++
;
}
}
}
auto
*
top_pos
=
top_data
+
top_counter
++
*
_num_emb
;
memset
(
top_pos
,
0
,
_num_emb
*
sizeof
(
T
));
continue
;
}
if
(
w
>=
2
)
{
for
(
int
ilayer
=
1
;
ilayer
<
_pyramid_layer
&&
ilayer
<
w
;
++
ilayer
)
{
for
(
int
l
=
0
;
l
<
w
-
ilayer
;
++
l
)
{
if
(
*
(
iter
++
)
==
0
)
{
// do nothing
}
else
{
auto
*
top_pos
=
top_data
+
top_counter
++
*
_num_emb
;
hash_embedding_ff
((
const
T
*
)(
bottom_data
+
offset
[
i
]
+
l
),
ilayer
+
1
,
top_pos
,
weights
,
_num_emb
,
_rand_len
,
_space_len
);
}
}
}
}
}
if
(
iter
!=
iter_end
)
{
exit
(
1
);
}
if
(
_is_training
==
0
)
{
avx_axpy_noadd
(
top_data
,
top_data
,
top
->
dims
()[
0
]
*
top
->
dims
()[
1
],
_drop_out_percent
);
}
}
};
class
PyramidHashOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"W"
),
true
,
"Input(W) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"DropPos"
),
true
,
"Input(DropPos) should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
"Input(Out@GRAD) of PyramidHashGradOp should not be null."
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"W"
),
ctx
.
GetPlace
());
}
};
class
PyramidHashGradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"pyramid_hash_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"W"
,
Input
(
"W"
));
op_desc_ptr
->
SetInput
(
"DropPos"
,
Output
(
"DropPos"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op_desc_ptr
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUPyramidHashOPGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
hash_embedding_bp
(
const
T
*
hash_id
,
int
len
,
const
T
*
top_pos
,
T
*
weights
,
T
mlr
,
int
_num_emb
,
int
_rand_len
,
int
_space_len
)
const
{
for
(
unsigned
int
j
=
0
;
j
!=
_num_emb
;
j
+=
_rand_len
)
{
unsigned
int
pos
=
XXH32
(
hash_id
,
len
*
sizeof
(
T
),
j
)
%
_space_len
;
avx_axpy
(
top_pos
+
j
,
weights
+
pos
,
_rand_len
,
mlr
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
bottom
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
_blobs
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
*
drop_pos
=
ctx
.
Input
<
LoDTensor
>
(
"DropPos"
);
auto
*
top
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
int
_num_emb
=
ctx
.
Attr
<
int
>
(
"num_emb"
);
float
_lr
=
ctx
.
Attr
<
float
>
(
"lr"
);
int
_rand_len
=
ctx
.
Attr
<
int
>
(
"rand_len"
);
int
_space_len
=
ctx
.
Attr
<
int
>
(
"space_len"
);
int
_pyramid_layer
=
ctx
.
Attr
<
int
>
(
"pyramid_layer"
);
const
auto
*
bottom_data_ori
=
bottom
->
data
<
int32_t
>
();
Tensor
buff
;
buff
.
Resize
(
framework
::
make_ddim
({
bottom
->
dims
()[
0
],
bottom
->
dims
()[
1
]}));
T
*
bottom_data
=
buff
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
bottom
->
dims
()[
0
];
i
++
)
{
bottom_data
[
i
]
=
bottom_data_ori
[
i
];
}
int
_slot_len
=
bottom
->
dims
()[
0
];
if
(
_slot_len
==
bottom
->
lod
()[
0
].
size
()
-
1
&&
std
::
count
(
bottom_data
,
bottom_data
+
_slot_len
,
-
1
)
==
_slot_len
)
{
return
;
}
auto
&
offset
=
bottom
->
lod
()[
0
];
auto
&
drop_pos_offset
=
drop_pos
->
lod
()[
0
];
const
auto
*
top_diff
=
top
->
data
<
T
>
();
T
*
weights
=
const_cast
<
T
*>
(
_blobs
->
data
<
T
>
());
T
mlr
=
-
1.0
*
_lr
;
const
int
*
iter
=
drop_pos
->
data
<
int
>
();
int
top_counter
=
0
;
for
(
int
i
=
0
;
i
<
offset
.
size
()
-
1
;
++
i
)
{
int
w
=
offset
[
i
+
1
]
-
offset
[
i
];
int
w_drop
=
drop_pos_offset
[
i
+
1
]
-
drop_pos_offset
[
i
];
if
(
w_drop
==
0
)
{
top_counter
++
;
}
if
(
w
>
1
)
{
for
(
int
ilayer
=
1
;
ilayer
<
_pyramid_layer
&&
ilayer
<
w
;
++
ilayer
)
{
for
(
int
l
=
0
;
l
<
w
-
ilayer
;
++
l
)
{
if
(
*
(
iter
++
)
==
0
)
{
// do nothing
}
else
{
const
T
*
top_pos
=
top_diff
+
top_counter
++
*
_num_emb
;
hash_embedding_bp
((
const
T
*
)(
bottom_data
+
offset
[
i
]
+
l
),
ilayer
+
1
,
top_pos
,
weights
,
mlr
,
_num_emb
,
_rand_len
,
_space_len
);
}
}
}
}
else
{
// do nothing
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plt
=
paddle
::
platform
;
namespace
frm
=
paddle
::
framework
;
REGISTER_OPERATOR
(
pyramid_hash
,
ops
::
PyramidHashOP
,
ops
::
PyramidHashOpMaker
,
ops
::
PyramidHashGradOpMaker
);
REGISTER_OPERATOR
(
pyramid_hash_grad
,
ops
::
PyramidHashOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pyramid_hash
,
ops
::
CPUPyramidHashOPKernel
<
plt
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
pyramid_hash_grad
,
ops
::
CPUPyramidHashOPGradKernel
<
plt
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/search_compute.h
浏览文件 @
aacd16db
...
...
@@ -21,7 +21,6 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/mklml.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -103,5 +102,21 @@ inline void avx_axpy(const T* x, T* y, size_t len, const T alpha) {
}
}
template
<
typename
T
>
inline
void
avx_axpy_noadd
(
const
T
*
x
,
T
*
y
,
size_t
len
,
const
T
alpha
)
{
unsigned
int
jjj
,
lll
;
jjj
=
lll
=
0
;
lll
=
len
&
~
AVX_CUT_LEN_MASK
;
__m256x
mm_alpha
=
_mm256_broadcast_sx
(
&
alpha
);
for
(
jjj
=
0
;
jjj
<
lll
;
jjj
+=
AVX_STEP_SIZE
)
{
_mm256_store_px
(
y
+
jjj
,
_mm256_mul_px
(
mm_alpha
,
_mm256_load_px
(
x
+
jjj
)));
}
for
(;
jjj
<
len
;
jjj
++
)
{
y
[
jjj
]
=
alpha
*
x
[
jjj
];
}
}
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
aacd16db
...
...
@@ -32,6 +32,7 @@ __all__ = [
'tree_conv'
,
'fused_embedding_seq_pool'
,
'multiclass_nms2'
,
'search_pyramid_hash'
,
]
...
...
@@ -625,3 +626,99 @@ def multiclass_nms2(bboxes,
if
return_index
:
return
output
,
index
return
output
def
search_pyramid_hash
(
input
,
num_emb
,
space_len
,
pyramid_layer
,
rand_len
,
drop_out_percent
,
is_training
,
use_filter
,
white_list_len
,
black_list_len
,
seed
,
lr
,
param_attr
=
None
,
param_attr_wl
=
None
,
param_attr_bl
=
None
,
name
=
None
,
dtype
=
'float32'
):
"""
**Pyramid hash embedding**
Args:
input (Variable): LoDTensor<int32> Variable contained the IDs' information.
num_emb (int): The embedding size of output.
space_len (int): The length of pyramid hash embedding space.
pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
rand_len (int): The minimum length of pyramid hash cell.
drop_out_percent (float): The probability of dropping out the input token randomly.
It should satisfy: [0., 1.]
is_training (bool): Whether in training or testing phrase.
use_filter(bool): If set True, the white filter and black filter should be given by
:attr:`param_attr_wl` and :attr:`param_attr_bl` .
white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
should be provided by param_attr_wl.
black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
should be provided by param_attr_bl.
seed(int): The number of random seed.
lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
in this layer.
param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
param_attr_wl(ParamAttr): Specified parameters of white filter.
param_attr_bl(ParamAttr): Specified parameters of black filter.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
dtype(str): The data type of output variable, float32.
Returns:
Variable: LoDTensor of pyramid hash embedding.
"""
helper
=
LayerHelper
(
'search_pyramid_hash'
,
**
locals
())
w_shape
=
[
space_len
+
rand_len
,
1
]
w
=
helper
.
create_parameter
(
attr
=
param_attr
,
shape
=
w_shape
,
dtype
=
dtype
,
is_bias
=
False
)
w
.
stop_gradient
=
True
input_vars
=
{
'X'
:
input
,
'W'
:
w
}
if
white_list_len
>
0
:
wl_shape
=
[
white_list_len
,
1
]
white_list
=
helper
.
create_parameter
(
attr
=
param_attr_wl
,
shape
=
wl_shape
,
dtype
=
dtype
,
is_bias
=
False
)
white_list
.
stop_gradient
=
True
input_vars
[
'WhiteList'
]
=
white_list
if
black_list_len
>=
0
:
bl_shape
=
[
black_list_len
,
1
]
black_list
=
helper
.
create_parameter
(
attr
=
param_attr_bl
,
shape
=
bl_shape
,
dtype
=
dtype
,
is_bias
=
False
)
black_list
.
stop_gradient
=
True
input_vars
[
'BlackList'
]
=
black_list
res
=
helper
.
create_variable_for_type_inference
(
dtype
)
drop_pos
=
helper
.
create_variable_for_type_inference
(
dtype
)
x_temp_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'pyramid_hash'
,
inputs
=
input_vars
,
outputs
=
{
"Out"
:
res
,
"X_Temp_Out"
:
x_temp_out
,
'DropPos'
:
drop_pos
},
attrs
=
{
'num_emb'
:
num_emb
,
'space_len'
:
space_len
,
'pyramid_layer'
:
pyramid_layer
,
'rand_len'
:
rand_len
,
'drop_out_percent'
:
drop_out_percent
,
'is_training'
:
is_training
,
'use_filter'
:
use_filter
,
'white_list_len'
:
white_list_len
,
'black_list_len'
:
black_list_len
,
'seed'
:
seed
,
'lr'
:
lr
,
})
return
res
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
aacd16db
...
...
@@ -74,6 +74,9 @@ if(NOT WITH_MKL OR NOT WITH_AVX)
list
(
REMOVE_ITEM TEST_OPS test_match_matrix_tensor_op
)
list
(
REMOVE_ITEM TEST_OPS test_var_conv_2d
)
endif
()
if
(
WITH_COVERAGE OR NOT WITH_AVX OR WIN32
)
list
(
REMOVE_ITEM TEST_OPS test_pyramid_hash_op
)
endif
()
if
(
WITH_GPU OR NOT WITH_MKLML
)
# matmul with multiple heads need MKL support
...
...
python/paddle/fluid/tests/unittests/test_pyramid_hash_op.py
0 → 100644
浏览文件 @
aacd16db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
class
TestPyramidHashOpApi
(
unittest
.
TestCase
):
def
test_api
(
self
):
num_voc
=
128
embed_dim
=
64
x_shape
,
x_lod
=
[
16
,
10
],
[[
3
,
5
,
2
,
6
]]
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_shape
,
dtype
=
'int32'
,
lod_level
=
1
)
hash_embd
=
fluid
.
contrib
.
search_pyramid_hash
(
input
=
x
,
num_emb
=
embed_dim
,
space_len
=
num_voc
*
embed_dim
,
pyramid_layer
=
4
,
rand_len
=
16
,
drop_out_percent
=
0.5
,
is_training
=
True
,
use_filter
=
False
,
white_list_len
=
6400
,
black_list_len
=
2800
,
seed
=
3
,
lr
=
0.002
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"PyramidHash_emb_0"
,
learning_rate
=
0
,
),
param_attr_wl
=
fluid
.
ParamAttr
(
name
=
"Filter"
,
learning_rate
=
0
,
),
param_attr_bl
=
None
,
name
=
None
,
)
place
=
fluid
.
CPUPlace
()
x_tensor
=
fluid
.
create_lod_tensor
(
np
.
random
.
randint
(
0
,
num_voc
,
x_shape
).
astype
(
'int32'
),
x_lod
,
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
ret
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
},
fetch_list
=
[
hash_embd
],
return_numpy
=
False
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录