diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 85972687b588fa90e21c294d47b5998b687f9e2f..8f3e88a67c3a08ce5afe456d0891c5e1fe9500bf 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -14984,32 +14984,30 @@ def gather_tree(ids, parents): [9 0]]] Args: - ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]` + ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]` and data type :attr:`int32` or :attr:`int64`. It contains the selected ids of all time steps. - parents(Variable): A Tensor with the same shape and data type as :attr:`ids`, + parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`, It contains the parents corresponding to selected ids when searching among beams. Returns: - Variable: A Tensor with the same shape and data type as :attr:`ids`. \ + A Tensor with the same shape and data type as :attr:`ids`. \ It contains the full sequences. The sequences are collected from \ :attr:`ids` by backtracing according to :attr:`parents`. Examples: .. code-block:: python - import paddle.fluid as fluid + import paddle + + ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]]) + + parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]]) + + final_sequences = paddle.nn.functional.gather_tree(ids, parents) + # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]] - ids = fluid.layers.data(name='ids', - shape=[5, 2, 2], - dtype='int64', - append_batch_size=False) - parents = fluid.layers.data(name='parents', - shape=[5, 2, 2], - dtype='int64', - append_batch_size=False) - final_sequences = fluid.layers.gather_tree(ids, parents) """ if in_dygraph_mode(): return core.ops.gather_tree(ids, parents)