Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a6574658
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a6574658
编写于
10月 21, 2022
作者:
K
Kevin吴嘉文
提交者:
GitHub
10月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix numpy issue in codeblock examples (#47042)
上级
9be2b721
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
67 addition
and
42 deletion
+67
-42
python/paddle/distributed/fleet/fleet.py
python/paddle/distributed/fleet/fleet.py
+0
-1
python/paddle/regularizer.py
python/paddle/regularizer.py
+1
-1
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+66
-40
未找到文件。
python/paddle/distributed/fleet/fleet.py
浏览文件 @
a6574658
...
...
@@ -1074,7 +1074,6 @@ class Fleet(object):
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()
...
...
python/paddle/regularizer.py
浏览文件 @
a6574658
...
...
@@ -43,7 +43,7 @@ class L1Decay(fluid.regularizer.L1Decay):
# Example1: set Regularizer in optimizer
import paddle
from paddle.regularizer import L1Decay
import numpy as np
linear = paddle.nn.Linear(10, 10)
inp = paddle.rand(shape=[10, 10], dtype="float32")
out = linear(inp)
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
a6574658
...
...
@@ -2128,21 +2128,33 @@ def unique_consecutive(x,
x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
output = paddle.unique_consecutive(x) #
np_output = output.numpy() # [1 2 3 1 2]
print(output)
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 3, 1, 2])
_, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
np_counts = inverse.numpy() # [2 2 1 2 1]
print(inverse)
# Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 0, 1, 1, 2, 3, 3, 4])
print(counts)
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [2, 2, 1, 2, 1])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
output = paddle.unique_consecutive(x, axis=0) #
np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]
print(output)
# Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[2, 1, 3],
# [3, 0, 1],
# [2, 1, 3]])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
output = paddle.unique_consecutive(x, axis=0) #
np_output = output.numpy()
# [[2 1 3]
# [3 0 1]
# [2 1 3]]
print(output)
# Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[2, 1, 3],
# [3, 0, 1],
# [2, 1, 3]])
"""
if
axis
is
None
:
...
...
@@ -2247,18 +2259,27 @@ def unique(x,
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
np_indices = indices.numpy() # [3 0 1 4]
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
np_counts = counts.numpy() # [1 1 3 1]
print(indices)
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [3, 0, 1, 4])
print(inverse)
# Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 2, 0, 3, 2])
print(counts)
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 1, 3, 1])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
print(unique)
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 1, 2, 3])
unique = paddle.unique(x, axis=0)
np_unique = unique.numpy()
# [[2 1 3]
# [3 0 1]]
print(unique)
# Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[2, 1, 3],
# [3, 0, 1]])
"""
if
axis
is
None
:
axis
=
[]
...
...
@@ -2848,12 +2869,10 @@ def scatter_nd(index, updates, shape, name=None):
.. code-block:: python
import paddle
import numpy as np
index
_data = np.array
([[1, 1],
index
= paddle.to_tensor
([[1, 1],
[0, 1],
[1, 3]]).astype(np.int64)
index = paddle.to_tensor(index_data)
[1, 3]], dtype="int64")
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
shape = [3, 5, 9, 10]
...
...
@@ -2925,19 +2944,22 @@ def tile(x, repeat_times, name=None):
data = paddle.to_tensor([1, 2, 3], dtype='int32')
out = paddle.tile(data, repeat_times=[2, 1])
np_out = out.numpy()
# [[1, 2, 3]
# [1, 2, 3]]
print(out)
# Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3],
# [1, 2, 3]])
out = paddle.tile(data, repeat_times=(2, 2))
np_out = out.numpy()
# [[1, 2, 3, 1, 2, 3]
# [1, 2, 3, 1, 2, 3]]
print(out)
# Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3, 1, 2, 3],
# [1, 2, 3, 1, 2, 3]])
repeat_times = paddle.to_tensor([1, 2], dtype='int32')
out = paddle.tile(data, repeat_times=repeat_times)
np_out = out.numpy()
# [[1, 2, 3, 1, 2, 3]]
print(out)
# Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3, 1, 2, 3]])
"""
if
in_dygraph_mode
():
if
isinstance
(
repeat_times
,
core
.
eager
.
Tensor
):
...
...
@@ -3030,8 +3052,10 @@ def expand_as(x, y, name=None):
data_x = paddle.to_tensor([1, 2, 3], 'int32')
data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
out = paddle.expand_as(data_x, data_y)
np_out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
print(out)
# Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3],
# [1, 2, 3]])
"""
if
in_dygraph_mode
():
return
_C_ops
.
expand_as
(
x
,
None
,
y
.
shape
)
...
...
@@ -3987,10 +4011,11 @@ def as_complex(x, name=None):
import paddle
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
y = paddle.as_complex(x)
print(y
.numpy()
)
print(y)
# [[ 0. +1.j 2. +3.j 4. +5.j]
# [ 6. +7.j 8. +9.j 10.+11.j]]
# Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
# [[1j , (2+3j) , (4+5j) ],
# [(6+7j) , (8+9j) , (10+11j)]])
"""
if
in_dygraph_mode
():
return
_C_ops
.
as_complex
(
x
)
...
...
@@ -4033,15 +4058,16 @@ def as_real(x, name=None):
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
y = paddle.as_complex(x)
z = paddle.as_real(y)
print(z
.numpy()
)
print(z)
# [[[ 0. 1.]
# [ 2. 3.]
# [ 4. 5.]]
# Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[[0. , 1. ],
# [2. , 3. ],
# [4. , 5. ]],
#
[[ 6. 7.]
#
[ 8. 9.]
#
[10. 11.]]]
#
[[6. , 7. ],
#
[8. , 9. ],
#
[10., 11.]]])
"""
if
in_dygraph_mode
():
return
_C_ops
.
as_real
(
x
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录