From a61e7d0f48607f770ce8521d2c60a72723a24d85 Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Tue, 15 Jan 2019 21:10:48 +0800 Subject: [PATCH] dy gan mostly working test=develop --- python/paddle/fluid/imperative/layers.py | 9 +- python/paddle/fluid/imperative/nn.py | 31 ++++-- .../tests/unittests/test_imperative_gan.py | 105 ++++++++++++------ 3 files changed, 101 insertions(+), 44 deletions(-) diff --git a/python/paddle/fluid/imperative/layers.py b/python/paddle/fluid/imperative/layers.py index f0fec03dba..ed67dda637 100644 --- a/python/paddle/fluid/imperative/layers.py +++ b/python/paddle/fluid/imperative/layers.py @@ -27,18 +27,21 @@ class Layer(core.Layer): """Layers composed of operators.""" def __init__(self, dtype=core.VarDesc.VarType.FP32, name=None): - self._once_built = False + self._built = False self._dtype = dtype + def parameters(self): + return [] + def _build_once(self, inputs): pass def __call__(self, *inputs): - if not self._once_built: + if not self._built: self._build_once(*inputs) - self._once_built = True outputs = self.forward(*inputs) + self._built = True return outputs def forward(self, *inputs): diff --git a/python/paddle/fluid/imperative/nn.py b/python/paddle/fluid/imperative/nn.py index eeca337084..337a463041 100644 --- a/python/paddle/fluid/imperative/nn.py +++ b/python/paddle/fluid/imperative/nn.py @@ -220,11 +220,14 @@ class FC(layers.Layer): self._dtype = dtype from ..layer_helper import LayerHelper self._helper = LayerHelper( - 'FC', - param_attr=param_attr, - bias_attr=bias_attr, - act=act, - name=name) + 'FC', param_attr=param_attr, act=act, name=name) + self._bias_attr = bias_attr + + def parameters(self): + if self._bias_attr: + return [self._w, self._b] + else: + return [self._w] def _build_once(self, input): input_shape = input.shape @@ -255,8 +258,20 @@ class FC(layers.Layer): inputs={"X": [tmp]}, outputs={"Out": out}, attrs={"use_mkldnn": False}) + if not self._bias_attr: + return out + # add bias - pre_activation = self._helper.append_bias_op( - out, dim_start=self._num_flatten_dims) + size = list(out.shape[1:]) + if not self._built: + self._b = self._layer.create_parameter( + attr=self._bias_attr, shape=size, dtype=out.dtype, is_bias=True) + bias_out = self.create_variable_for_type_inference(dtype=out.dtype) + self.append_op( + type='elementwise_add', + inputs={'X': [out], + 'Y': [self._b]}, + outputs={'Out': [bias_out]}, + attrs={'axis': 1}) # add activation - return self._helper.append_activation(pre_activation) + return self._helper.append_activation(bias_out) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_gan.py b/python/paddle/fluid/tests/unittests/test_imperative_gan.py index 9748e0a377..af2a2f45aa 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_gan.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_gan.py @@ -23,6 +23,7 @@ import paddle.fluid as fluid from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC from test_imperative_base import new_program_scope +from paddle.fluid.imperative.base import to_variable class Discriminator(fluid.imperative.Layer): @@ -31,6 +32,9 @@ class Discriminator(fluid.imperative.Layer): self._fc1 = FC(size=32, act='elu', name="d_fc1") self._fc2 = FC(size=1, name="d_fc2") + def parameters(self): + return self._fc1.parameters() + self._fc2.parameters() + def forward(self, inputs): x = self._fc1(inputs) return self._fc2(x) @@ -43,6 +47,10 @@ class Generator(fluid.imperative.Layer): self._fc2 = FC(size=64, act='elu', name="g_fc2") self._fc3 = FC(size=1, name="g_fc3") + def parameters(self): + return self._fc1.parameters() + self._fc2.parameters( + ) + self._fc3.parameters() + def forward(self, inputs): x = self._fc1(inputs) x = self._fc2(x) @@ -56,12 +64,15 @@ class TestImperativeMnist(unittest.TestCase): startup = fluid.Program() startup.random_seed = seed discriminate_p = fluid.Program() + generate_p = fluid.Program() + discriminate_p.random_seed = seed + generate_p.random_seed = seed + scope = fluid.core.Scope() exe = fluid.Executor(fluid.CPUPlace()) + sys.stderr.write('1111\n') with new_program_scope( main=discriminate_p, startup=startup, scope=scope): - fluid.default_main_program().random_seed = seed - discriminator = Discriminator() generator = Generator() @@ -70,64 +81,92 @@ class TestImperativeMnist(unittest.TestCase): noise = fluid.layers.data( name="noise", shape=[2, 2], append_batch_size=False) - label = fluid.layers.data( - name='label', - shape=[2, 1], - dtype='float32', - append_batch_size=False) - d_real = discriminator(img) d_loss_real = fluid.layers.reduce_mean( fluid.layers.sigmoid_cross_entropy_with_logits( - x=d_real, label=label)) + x=d_real, + label=fluid.layers.fill_constant( + shape=[2, 1], dtype='float32', value=1.0))) d_fake = discriminator(generator(noise)) d_loss_fake = fluid.layers.reduce_mean( fluid.layers.sigmoid_cross_entropy_with_logits( - x=d_fake, label=label)) + x=d_fake, + label=fluid.layers.fill_constant( + shape=[2, 1], dtype='float32', value=0.0))) d_loss = d_loss_real + d_loss_fake sgd = SGDOptimizer(learning_rate=1e-3) sgd.minimize(d_loss) - generate_p = fluid.Program() with new_program_scope(main=generate_p, startup=startup, scope=scope): - fluid.default_main_program().random_seed = seed - discriminator = Discriminator() generator = Generator() noise = fluid.layers.data( name="noise", shape=[2, 2], append_batch_size=False) - label = fluid.layers.data( - name='label', - shape=[2, 1], - dtype='float32', - append_batch_size=False) d_fake = discriminator(generator(noise)) g_loss = fluid.layers.reduce_mean( fluid.layers.sigmoid_cross_entropy_with_logits( - x=d_fake, label=label)) + x=d_fake, + label=fluid.layers.fill_constant( + shape=[2, 1], dtype='float32', value=1.0))) sgd = SGDOptimizer(learning_rate=1e-3) sgd.minimize(g_loss) - img = np.ones([2, 1], np.float32) - label = np.ones([2, 1], np.float32) - noise = np.ones([2, 2], np.float32) - exe.run(startup) - d_loss_val = exe.run(discriminate_p, - feed={'img': img, - 'noise': noise, - 'label': label}, - fetch_list=[d_loss])[0] - g_loss_val = exe.run(generate_p, - feed={'noise': noise, - 'label': label}, - fetch_list=[g_loss])[0] - sys.stderr.write('d_loss %s, g_loss: %s\n' % (d_loss_val, g_loss_val)) + with fluid.scope_guard(scope): + img = np.ones([2, 1], np.float32) + noise = np.ones([2, 2], np.float32) + exe.run(startup) + d_loss_val = exe.run(discriminate_p, + feed={'img': img, + 'noise': noise}, + fetch_list=[d_loss])[0] + g_loss_val = exe.run(generate_p, + feed={'noise': noise}, + fetch_list=[g_loss])[0] + sys.stderr.write('d_loss %s, g_loss: %s\n' % + (d_loss_val, g_loss_val)) + + static_params = dict() + for param in discriminate_p.global_block().all_parameters(): + sys.stderr.write('%s\n' % param.name) + static_params[param.name] = np.array( + scope.find_var(param.name).get_tensor()) + + dy_params = dict() + with fluid.imperative.guard(): + fluid.default_startup_program().random_seed = seed + fluid.default_main_program().random_seed = seed + + discriminator = Discriminator() + generator = Generator() + sgd = SGDOptimizer(learning_rate=1e-3) + + d_real = discriminator(to_variable(np.ones([2, 1], np.float32))) + d_loss_real = fluid.layers.reduce_mean( + fluid.layers.sigmoid_cross_entropy_with_logits( + x=d_real, label=to_variable(np.ones([2, 1], np.float32)))) + + d_fake = discriminator( + generator(to_variable(np.ones([2, 2], np.float32)))) + d_loss_fake = fluid.layers.reduce_mean( + fluid.layers.sigmoid_cross_entropy_with_logits( + x=d_fake, label=to_variable(np.zeros([2, 1], np.float32)))) + + d_loss = d_loss_real + d_loss_fake + sys.stderr.write('dy_d_loss: %s\n' % d_loss._numpy()) + d_loss._backward() + sgd.minimize(d_loss) + for p in discriminator.parameters(): + dy_params[p.name] = p._numpy() + + for k, v in six.iteritems(dy_params): + sys.stderr.write('dy_param_loss: %s: %s\n' % (k, np.sum(v))) + sys.stderr.write('static_param_loss: %s: %s\n' % (k, np.sum(v))) if __name__ == '__main__': -- GitLab