From a4106278e9aaaf07725f0feec0d654d93b04fad8 Mon Sep 17 00:00:00 2001 From: Qiao Longfei Date: Mon, 13 Nov 2017 17:13:10 +0800 Subject: [PATCH] BeamSearchDecodeOp (#5498) * init trieconcat_op * add basic implementation * add test * add more test * update unit test * add PackAllSteps test * fix PackAllSteps * all test passed * clean code * remove state inside helper * rename prob to score * optimize RemoveFromEnd * use deconstructor to delete BeamNode recursively * optimize interface * add comment to interface * optimizer data structure * use template to define the type of score * use template parameter for BeamHelper * change father to parent * rename TrieConcat to BeamSearchOutConcat * use LoDTensorArray * rename BeamSearchOutConcat to BeamSearchDecode * refine code * remain all candidate sentence in beam_search_decode_op, do not consider endid * use unique_ptr * fix compare bug * fix lod compile problem --- paddle/operators/CMakeLists.txt | 1 + paddle/operators/beam_search_decode_op.cc | 110 +++++++ paddle/operators/beam_search_decode_op.h | 280 ++++++++++++++++++ .../operators/beam_search_decode_op_test.cc | 221 ++++++++++++++ paddle/operators/sequence_concat_op.cc | 2 +- 5 files changed, 613 insertions(+), 1 deletion(-) create mode 100644 paddle/operators/beam_search_decode_op.cc create mode 100644 paddle/operators/beam_search_decode_op.h create mode 100644 paddle/operators/beam_search_decode_op_test.cc diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 29ce44c233..709f7de2e4 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -214,6 +214,7 @@ set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) +cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) cc_test(dynamic_recurrent_op_test SRCS dynamic_recurrent_op_test.cc rnn/recurrent_op_utils.cc diff --git a/paddle/operators/beam_search_decode_op.cc b/paddle/operators/beam_search_decode_op.cc new file mode 100644 index 0000000000..1ba4dfcdab --- /dev/null +++ b/paddle/operators/beam_search_decode_op.cc @@ -0,0 +1,110 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/beam_search_decode_op.h" + +namespace paddle { +namespace operators { + +class BeamSearchDecodeOp : public framework::OperatorBase { + public: + BeamSearchDecodeOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override { + framework::ExecutionContext ctx(*this, scope, dev_ctx); + const LoDTensorArray* ids = ctx.Input("Ids"); + const LoDTensorArray* scores = ctx.Input("Scores"); + const size_t step_num = ids->size(); + PADDLE_ENFORCE_GT(step_num, 0UL, + "beam search steps should be larger than 0"); + const size_t source_num = ids->at(0).lod().at(0).size() - 1; + PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0"); + + for (size_t i = 0; i < step_num; ++i) { + PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL, + "Level of LodTensor should be 2"); + } + + // prepare output + LoDTensor* sentenceIds = ctx.Output("SentenceIds"); + LoDTensor* sentenceScores = ctx.Output("SentenceScores"); + + BeamSearchDecoder beam_search_decoder; + beam_search_decoder.PackAllSteps(*ids, *scores, sentenceIds, + sentenceScores); + } +}; + +class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + BeamSearchDecodeOpProtoMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Ids", + "(LodTensorArray)" + "score of the candidate words in each step"); + AddInput("Scores", + "(LodTensorArray)" + "score of the candidate words in each step"); + AddOutput("SentenceIds", + "(LodTensor)" + "All possible result sentences of word ids"); + AddOutput("SentenceScores", + "(LodTensor)" + "All possible result sentences of word scores"); + AddComment(R"DOC( +Pack the result of Beam search op into SentenceIds and SentenceScores. +)DOC"); + } +}; + +class BeamSearchDecodeInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("Ids"), + "BeamSearchDecodeOp must has input Ids"); + PADDLE_ENFORCE(context->HasInput("Scores"), + "BeamSearchDecodeOp must has input Scores"); + PADDLE_ENFORCE(context->HasOutput("SentenceIds"), + "BeamSearchDecodeOp must has output SentenceIds"); + PADDLE_ENFORCE(context->HasOutput("SentenceScores"), + "BeamSearchDecodeOp must has output SentenceScores"); + } +}; + +class BeamSearchDecodeInferVarType : public framework::VarTypeInference { + public: + void operator()(const framework::OpDescBind& op_desc, + framework::BlockDescBind* block) const override { + for (auto& o : op_desc.Output("SentenceIds")) { + block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + } + for (auto& o : op_desc.Output("SentenceScores")) { + block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + } + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp, + paddle::operators::BeamSearchDecodeOpProtoMaker, + paddle::operators::BeamSearchDecodeInferShape, + paddle::operators::BeamSearchDecodeInferVarType, + paddle::framework::EmptyGradOpMaker); diff --git a/paddle/operators/beam_search_decode_op.h b/paddle/operators/beam_search_decode_op.h new file mode 100644 index 0000000000..0f007ec22f --- /dev/null +++ b/paddle/operators/beam_search_decode_op.h @@ -0,0 +1,280 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor_array.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +using LoDTensorArray = framework::LoDTensorArray; + +// all the lod have 2 levels. +// The First is source level, the second is sentence level. +// source level describe how many candidate words for this source. +// sentence level describe these candidates belong to which prefix +const size_t kSourceLevel = 0; +const size_t kSentenceLevel = 1; + +template +struct BeamNode { + BeamNode(int64_t word_id, T score) : word_id_(word_id), score_(score) {} + + ~BeamNode() { + if (parent_) { + parent_->DropKid(this); + if (parent_->kids_.size() == 0UL) { + delete parent_; + } + } + VLOG(3) << "Delete BeamNode root with word_id:" << this->word_id_; + } + + void AppendTo(BeamNode* parent) { + parent_ = parent; + parent->kids_.insert(this); + } + + void DropKid(BeamNode* kid) { kids_.erase(kid); } + + BeamNode* parent_ = nullptr; + std::unordered_set kids_; + int64_t word_id_; + T score_; +}; + +template +using BeamNodeVector = std::vector>>; + +template +struct Sentence { + std::vector word_ids; + std::vector scores; +}; + +template +using SentenceVector = std::vector>; + +template +struct BeamSearchDecoder { + /** + * make a BeamNode and all it's related prefix BeanNode into a Sentence. + */ + Sentence MakeSentence(const BeamNode* node) const; + + /** + * Param: + * cur_ids: LoDTensor of One step for word ID + * cur_scores: LoDTensor of One Step for word score + * prefixes_list: prefixes for each source sentence. + * sentence_vector_list: result sentence_vector for each source sentence. + * Return: + * a new prefixes list for each source of current step + */ + std::vector> PackTwoSteps( + const LoDTensor& cur_ids, const LoDTensor& cur_scores, + std::vector>& prefixes_list, + std::vector>* sentence_vector_list) const; + + /** + * convert the result sentence_vector for each source sentence into two + * LodTensor. + * One is all candidate sentences with word id, one is all candidate sentences + * with word score. + * Param: + * sentence_vector_list: sentence_vector for each source sentence. + * id_tensor: result LoDTensor for sentences of id. + * score_tensor: result LoDTensor for sentences of score. + */ + void ConvertSentenceVectorToLodTensor( + std::vector> sentence_vector_list, LoDTensor* id_tensor, + LoDTensor* score_tensor) const; + + /** + * Pack all steps of id/score LodTensor into sentence LoDTensor + * it's main logic is: + * ```python + * prefix + * result_sentence + * result_lod_tensor + * + * for (step in steps): + * prefix = PackTwoSteps(prefix, step, &result_sentence) + * ConvertSentenceVectorToLodTensor(result_sentence, &result_lod_tensor) + * ``` + */ + void PackAllSteps(const LoDTensorArray& step_ids, + const LoDTensorArray& step_scores, LoDTensor* id_tensor, + LoDTensor* score_tensor) const; +}; + +template +Sentence BeamSearchDecoder::MakeSentence(const BeamNode* node) const { + Sentence sentence; + while (node != nullptr) { + sentence.word_ids.emplace_back(node->word_id_); + sentence.scores.emplace_back(node->score_); + node = node->parent_; + } + + std::reverse(std::begin(sentence.word_ids), std::end(sentence.word_ids)); + std::reverse(std::begin(sentence.scores), std::end(sentence.scores)); + + return sentence; +} + +template +std::vector> BeamSearchDecoder::PackTwoSteps( + const LoDTensor& cur_ids, const LoDTensor& cur_scores, + std::vector>& prefixes_list, + std::vector>* sentence_vector_list) const { + std::vector> result; + + for (size_t src_idx = 0; src_idx < cur_ids.lod()[kSourceLevel].size() - 1; + ++src_idx) { + size_t src_start = cur_ids.lod().at(kSourceLevel)[src_idx]; + size_t src_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1]; + + BeamNodeVector beam_nodes; + + // if prefixes size is 0, it means this is the first step. In this step, + // all candidate id is the start of candidate sentences. + if (prefixes_list.empty()) { + PADDLE_ENFORCE_EQ(cur_ids.lod().at(kSourceLevel).back(), + cur_ids.lod().at(kSentenceLevel).back(), + "in the first step"); + for (size_t id_idx = src_start; id_idx < src_end; ++id_idx) { + beam_nodes.push_back(std::unique_ptr>(new BeamNode( + cur_ids.data()[id_idx], cur_scores.data()[id_idx]))); + } + } else { + BeamNodeVector& prefixes = prefixes_list[src_idx]; + SentenceVector& sentence_vector = (*sentence_vector_list)[src_idx]; + + PADDLE_ENFORCE_EQ(src_end - src_start, prefixes.size(), + "prefix and candidate set number should be the same"); + + auto candidate_offset = cur_ids.lod()[kSentenceLevel]; + for (size_t prefix_idx = 0; prefix_idx < prefixes.size(); ++prefix_idx) { + std::unique_ptr>& prefix = prefixes[prefix_idx]; + size_t candidate_start = candidate_offset[src_start + prefix_idx]; + size_t candidate_end = candidate_offset[src_start + prefix_idx + 1]; + if (candidate_start == candidate_end) { + VLOG(3) << "this sentence has no more candidate, " + "add to result sentence and rm it from beam tree"; + sentence_vector.push_back(MakeSentence(prefix.get())); + prefix.reset(); + } else { + for (size_t candidate_idx = candidate_start; + candidate_idx < candidate_end; ++candidate_idx) { + auto* candidate = + new BeamNode(cur_ids.data()[candidate_idx], + cur_scores.data()[candidate_idx]); + candidate->AppendTo(prefix.get()); + beam_nodes.push_back(std::unique_ptr>(candidate)); + } + prefix.release(); + } + } + } + result.push_back(std::move(beam_nodes)); + } + return result; +} + +template +void BeamSearchDecoder::ConvertSentenceVectorToLodTensor( + std::vector> sentence_vector_list, LoDTensor* id_tensor, + LoDTensor* score_tensor) const { + size_t src_num = sentence_vector_list.size(); + + PADDLE_ENFORCE_NE(src_num, 0, "src_num should not be 0"); + + std::vector source_level_lod = {0}; + std::vector sentence_level_lod = {0}; + std::vector id_data; + std::vector score_data; + + for (size_t src_idx = 0; src_idx < src_num; ++src_idx) { + for (Sentence& sentence : sentence_vector_list[src_idx]) { + id_data.insert(id_data.end(), sentence.word_ids.begin(), + sentence.word_ids.end()); + score_data.insert(score_data.end(), sentence.scores.begin(), + sentence.scores.end()); + sentence_level_lod.push_back(sentence_level_lod.back() + + sentence.word_ids.size()); + } + source_level_lod.push_back(source_level_lod.back() + + sentence_vector_list[src_idx].size()); + } + + auto cpu_place = new paddle::platform::CPUPlace(); + paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place); + + framework::LoD lod; + lod.push_back(source_level_lod); + lod.push_back(sentence_level_lod); + + id_tensor->set_lod(lod); + id_tensor->Resize({static_cast(id_data.size())}); + id_tensor->mutable_data(paddle::platform::CPUPlace()); + id_tensor->CopyFromVector(id_data, cpu_ctx); + + score_tensor->set_lod(lod); + score_tensor->Resize({static_cast(score_data.size())}); + score_tensor->mutable_data(paddle::platform::CPUPlace()); + score_tensor->CopyFromVector(score_data, cpu_ctx); +} + +template +void BeamSearchDecoder::PackAllSteps(const LoDTensorArray& step_ids, + const LoDTensorArray& step_scores, + LoDTensor* id_tensor, + LoDTensor* score_tensor) const { + PADDLE_ENFORCE(!step_ids.empty(), "step num should be larger than 0"); + PADDLE_ENFORCE_EQ(step_ids.size(), step_scores.size(), + "step_ids and step_scores should be the same"); + const size_t step_num = step_ids.size(); + const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1; + + PADDLE_ENFORCE_GT(src_num, 0UL, "source num should be larger than 0"); + + // previous prefixes for each step, + // the init length is 0, means this is the first step. + std::vector> beamnode_vector_list(0); + std::vector> sentence_vector_list(src_num); + + // pack all steps for one batch first, then another batch + for (size_t step_id = 0; step_id < step_num; ++step_id) { + beamnode_vector_list = + PackTwoSteps(step_ids.at(step_id), step_scores.at(step_id), + beamnode_vector_list, &sentence_vector_list); + } + // append last beam_node to result + for (size_t src_idx = 0; src_idx < src_num; ++src_idx) { + for (auto& beam_node : beamnode_vector_list.at(src_idx)) { + sentence_vector_list[src_idx].push_back(MakeSentence(beam_node.get())); + beam_node.reset(); + } + } + + ConvertSentenceVectorToLodTensor(sentence_vector_list, id_tensor, + score_tensor); +} + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/beam_search_decode_op_test.cc b/paddle/operators/beam_search_decode_op_test.cc new file mode 100644 index 0000000000..5ac23991f3 --- /dev/null +++ b/paddle/operators/beam_search_decode_op_test.cc @@ -0,0 +1,221 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/beam_search_decode_op.h" +#include "gtest/gtest.h" + +using CPUPlace = paddle::platform::CPUPlace; +using LoD = paddle::framework::LoD; +using LoDTensor = paddle::framework::LoDTensor; +using LoDTensorArray = paddle::framework::LoDTensorArray; + +template +using BeamNode = paddle::operators::BeamNode; +template +using BeamSearchDecoder = paddle::operators::BeamSearchDecoder; +template +using Sentence = paddle::operators::Sentence; +template +using BeamNodeVector = paddle::operators::BeamNodeVector; +template +using SentenceVector = paddle::operators::SentenceVector; + +namespace paddle { +namespace test { + +void GenerateExample(const std::vector& level_0, + const std::vector& level_1, + const std::vector& data, LoDTensorArray* ids, + LoDTensorArray* scores) { + PADDLE_ENFORCE_EQ(level_0.back(), level_1.size() - 1, + "source level is used to describe candidate set"); + PADDLE_ENFORCE_EQ(level_1.back(), data.size(), + "the lowest level is used to describe data" + ", so it's last element should be data length"); + + CPUPlace place; + + LoD lod; + lod.push_back(level_0); + lod.push_back(level_1); + + // Ids + LoDTensor tensor_id; + tensor_id.set_lod(lod); + tensor_id.Resize({static_cast(data.size())}); + // malloc memory + int64_t* id_ptr = tensor_id.mutable_data(place); + for (size_t i = 0; i < data.size(); ++i) { + id_ptr[i] = static_cast(data.at(i)); + } + + // Scores + LoDTensor tensor_score; + tensor_score.set_lod(lod); + tensor_score.Resize({static_cast(data.size())}); + // malloc memory + float* score_ptr = tensor_score.mutable_data(place); + for (size_t i = 0; i < data.size(); ++i) { + score_ptr[i] = static_cast(data.at(i)); + } + + ids->push_back(tensor_id); + scores->push_back(tensor_score); +} + +} // namespace test +} // namespace paddle + +TEST(BeamSearchDecodeOp, DeleteBeamNode) { + auto* root = new BeamNode(0, 0); + auto* b1 = new BeamNode(1, 1); + auto* b2 = new BeamNode(2, 2); + auto* b3 = new BeamNode(3, 3); + + b1->AppendTo(root); + b2->AppendTo(root); + b3->AppendTo(b1); + + delete b3; + delete b2; +} + +TEST(BeamSearchDecodeOp, MakeSentence) { + auto* root = new BeamNode(0, 0); + auto* b1 = new BeamNode(1, 1); + auto* end = new BeamNode(2, 2); + b1->AppendTo(root); + end->AppendTo(b1); + + BeamSearchDecoder helper; + Sentence sentence = helper.MakeSentence(end); + delete end; + + std::vector expect_ids = {0, 1, 2}; + ASSERT_EQ(sentence.word_ids, expect_ids); + + std::vector expect_scores = {0, 1, 2}; + ASSERT_EQ(sentence.scores, expect_scores); +} + +TEST(BeamSearchDecodeOp, PackTwoStepsFistStep) { + CPUPlace place; + + LoDTensorArray ids; + LoDTensorArray scores; + + paddle::test::GenerateExample( + std::vector{0, 2, 6}, std::vector{0, 1, 2, 3, 4, 5, 6}, + std::vector{1, 2, 3, 4, 5, 6}, &ids, &scores); + + std::vector> beamnode_vector_list; + std::vector> sentence_vector_list( + 2, SentenceVector()); + + BeamSearchDecoder helper; + beamnode_vector_list = helper.PackTwoSteps( + ids[0], scores[0], beamnode_vector_list, &sentence_vector_list); + ASSERT_EQ(beamnode_vector_list.size(), 2UL); + ASSERT_EQ(beamnode_vector_list[0].size(), 2UL); + ASSERT_EQ(beamnode_vector_list[1].size(), 4UL); +} + +TEST(BeamSearchDecodeOp, PackTwoSteps) { + CPUPlace place; + + // first source has three prefix + BeamNodeVector source0_prefixes; + source0_prefixes.push_back( + std::unique_ptr>(new BeamNode(1, 1))); + source0_prefixes.push_back( + std::unique_ptr>(new BeamNode(0, 0))); + source0_prefixes.push_back( + std::unique_ptr>(new BeamNode(3, 3))); + + // second source has two prefix + BeamNodeVector source1_prefixes; + source1_prefixes.push_back( + std::unique_ptr>(new BeamNode(4, 4))); + source1_prefixes.push_back( + std::unique_ptr>(new BeamNode(5, 5))); + + std::vector> beamnode_vector_list; + std::vector> sentence_vector_list( + 2, SentenceVector()); + + beamnode_vector_list.push_back(std::move(source0_prefixes)); + beamnode_vector_list.push_back(std::move(source1_prefixes)); + + // generate data for one step + LoDTensorArray ids; + LoDTensorArray scores; + + paddle::test::GenerateExample(std::vector{0, 3, 5}, + std::vector{0, 1, 1, 3, 4, 5}, + std::vector{0, 1, 2, 3, 4}, &ids, &scores); + + BeamSearchDecoder helper1; + beamnode_vector_list = helper1.PackTwoSteps( + ids[0], scores[0], beamnode_vector_list, &sentence_vector_list); + + ASSERT_EQ(sentence_vector_list[0].size(), 1UL); + ASSERT_EQ(sentence_vector_list[1].size(), 0UL); + ASSERT_EQ(beamnode_vector_list[0].size(), 3UL); + ASSERT_EQ(beamnode_vector_list[1].size(), 2UL); +} + +TEST(BeamSearchDecodeOp, PackAllSteps) { + CPUPlace place; + + // we will constuct a sample data with 3 steps and 2 source sentences + LoDTensorArray ids; + LoDTensorArray scores; + + paddle::test::GenerateExample( + std::vector{0, 3, 6}, std::vector{0, 1, 2, 3, 4, 5, 6}, + std::vector{1, 2, 3, 4, 5, 6}, &ids, &scores); + paddle::test::GenerateExample( + std::vector{0, 3, 6}, std::vector{0, 1, 1, 3, 5, 5, 6}, + std::vector{0, 1, 2, 3, 4, 5}, &ids, &scores); + paddle::test::GenerateExample(std::vector{0, 3, 6}, + std::vector{0, 0, 1, 2, 3, 4, 5}, + std::vector{0, 1, 2, 3, 4}, &ids, &scores); + + ASSERT_EQ(ids.size(), 3UL); + ASSERT_EQ(scores.size(), 3UL); + + BeamSearchDecoder helper; + + LoDTensor id_tensor; + LoDTensor score_tensor; + helper.PackAllSteps(ids, scores, &id_tensor, &score_tensor); + + LoD lod = id_tensor.lod(); + std::vector expect_source_lod = {0, 4, 8}; + EXPECT_EQ(lod[0], expect_source_lod); + std::vector expect_sentence_lod = {0, 1, 3, 6, 9, 10, 13, 16, 19}; + EXPECT_EQ(lod[1], expect_sentence_lod); + // 2| 1, 0| 3, 1, 0| 3, 2, 1| 5| 4, 3, 2| 4, 4, 3| 6, 5, 4 + std::vector expect_data = {2, 1, 0, 3, 1, 0, 3, 2, 1, 5, + 4, 3, 2, 4, 4, 3, 6, 5, 4}; + ASSERT_EQ(id_tensor.dims()[0], static_cast(expect_data.size())); + for (size_t i = 0; i < expect_data.size(); ++i) { + ASSERT_EQ(id_tensor.data()[i], + static_cast(expect_data[i])); + } + for (int64_t i = 0; i < id_tensor.dims()[0]; ++i) { + ASSERT_EQ(score_tensor.data()[i], + static_cast(id_tensor.data()[i])); + } +} diff --git a/paddle/operators/sequence_concat_op.cc b/paddle/operators/sequence_concat_op.cc index db737bed7a..d1de0b4447 100644 --- a/paddle/operators/sequence_concat_op.cc +++ b/paddle/operators/sequence_concat_op.cc @@ -47,7 +47,7 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", - "(vector) Input is a vector of LoDTensor, " + "(LodTensorArray) Input is a vector of LoDTensor, " "each of which is a variable-length sequence or nested sequence.") .AsDuplicable(); AddOutput("Out", -- GitLab