提交 a1ba3f44 编写于 作者: Q qijun

format python code in python directory

上级 ef5e483c
......@@ -11,4 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -18,9 +18,8 @@ import collections
import functools
import itertools
logging.basicConfig(
format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
" %(message)s")
logging.basicConfig(format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
" %(message)s")
class SequenceType(object):
......@@ -132,8 +131,10 @@ class InputOrderWrapper(object):
def __call__(self, obj, filename):
for item in self.generator(obj, filename):
if isinstance(item, dict):
yield [item.get(input_name, None) for input_name in
self.input_order]
yield [
item.get(input_name, None)
for input_name in self.input_order
]
else:
yield item
......@@ -162,8 +163,8 @@ class CheckWrapper(object):
yield items
except AssertionError as e:
self.logger.warning(
"Item (%s) is not fit the input type with error %s"
% (repr(item), repr(e)))
"Item (%s) is not fit the input type with error %s" %
(repr(item), repr(e)))
if self.check_fail_continue:
continue
......@@ -202,13 +203,17 @@ class CheckWrapper(object):
callback(each)
def provider(input_types=None, should_shuffle=None, pool_size=-1,
def provider(input_types=None,
should_shuffle=None,
pool_size=-1,
min_pool_size=-1,
can_over_batch_size=True,
calc_batch_size=None,
cache=CacheType.NO_CACHE,
check=False, check_fail_continue=False,
init_hook=None, **kwargs):
check=False,
check_fail_continue=False,
init_hook=None,
**kwargs):
"""
Provider decorator. Use it to make a function into PyDataProvider2 object.
In this function, user only need to get each sample for some train/test
......@@ -318,9 +323,9 @@ def provider(input_types=None, should_shuffle=None, pool_size=-1,
"Could not recognize should_shuffle (%s), "
"just use default value of should_shuffle."
" Please set should_shuffle to bool value or "
"something in %s" % (
repr(self.should_shuffle),
repr(true_table + false_table)))
"something in %s" %
(repr(self.should_shuffle),
repr(true_table + false_table)))
self.should_shuffle = None
self.pool_size = pool_size
......@@ -351,8 +356,7 @@ def provider(input_types=None, should_shuffle=None, pool_size=-1,
self.generator = InputOrderWrapper(self.generator,
self.input_order)
if self.check:
self.generator = CheckWrapper(self.generator,
self.slots,
self.generator = CheckWrapper(self.generator, self.slots,
check_fail_continue,
self.logger)
......@@ -368,4 +372,3 @@ def deserialize_args(args):
:return:
"""
return cPickle.loads(args)
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module provide a wrapper(decorator) to wrap a data process method into a
PyDataProvider. Some examples are shown `here <data_provider/python_case.html>`_.
......@@ -47,6 +46,7 @@ except ImportError:
import io
class SlotType(object): # Just a hint for user.
pass
......@@ -83,6 +83,7 @@ class SparseNonValueSlot(SlotType):
- **SubSeq**: [[[int, int, ...], [int, ....], ...] , \
[[int, int, ...], [int, ....], ...] , ...]
"""
def __init__(self, dim):
"""
:param dim: slot dimension
......@@ -294,8 +295,9 @@ class GeneralPyDataProvider:
fn = "%s_%d" % (self.profile_filename, self.profile_count)
sortby = "cumulative"
with open(fn, "w") as f:
pstats.Stats(self.profiler, stream=f).sort_stats(
sortby).print_stats()
pstats.Stats(
self.profiler,
stream=f).sort_stats(sortby).print_stats()
self.logger.info("saving profile to file %s" % fn)
self.profile_count += 1
self.logger.info("resetting profile")
......@@ -453,9 +455,10 @@ class GeneralPyDataProvider:
seq_stream.flush()
subseq_stream.flush()
return "".join([self.int_packer.pack(current_batch_size),
data_bytes.getvalue(),
seq_bytes.getvalue(), subseq_bytes.getvalue()])
return "".join([
self.int_packer.pack(current_batch_size), data_bytes.getvalue(),
seq_bytes.getvalue(), subseq_bytes.getvalue()
])
finally:
data_stream.close()
......@@ -516,7 +519,7 @@ class GeneralPyDataProvider:
self.data_pool[idx])
idx -= 1
ret_list += self.data_pool[self.data_pool_idx: idx + 1]
ret_list += self.data_pool[self.data_pool_idx:idx + 1]
# for speed reason, just shift left index, not delete data actually.
self.data_pool_idx = idx + 1
......@@ -537,8 +540,8 @@ class GeneralPyDataProvider:
if self.max_pool_size == 0:
for i in xrange(min(self.file_count, len(self.generators))):
self.data_pool += list(self.generators[i])
self.generators = self.generators[
min(self.file_count, len(self.generators)):]
self.generators = self.generators[min(self.file_count,
len(self.generators)):]
self.max_pool_size = len(self.data_pool)
else:
while len(self.data_pool) < self.max_pool_size and len(
......@@ -562,9 +565,15 @@ def default_init_hook(cls, *args, **kwargs):
del cls, args, kwargs
def provider(slots=None, use_seq=False, should_shuffle=True, pool_size=1,
can_over_batch_size=True, calc_batch_size=lambda data: 1,
debug=False, init_hook=default_init_hook, profile_filename=None):
def provider(slots=None,
use_seq=False,
should_shuffle=True,
pool_size=1,
can_over_batch_size=True,
calc_batch_size=lambda data: 1,
debug=False,
init_hook=default_init_hook,
profile_filename=None):
"""
The decorator for PyDataProvider. User should use this to create Provider class.
User should only concern how to read sample from file.
......@@ -663,7 +672,7 @@ def provider(slots=None, use_seq=False, should_shuffle=True, pool_size=1,
def __init__(self, *file_list, **kwargs):
logging.basicConfig(
format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
" %(message)s")
" %(message)s")
self.logger = logging.getLogger("")
if debug:
......
......@@ -11,4 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -13,7 +13,6 @@
# limitations under the License.
from __future__ import print_function
'''
The following functions are available in the config file:
......@@ -101,50 +100,45 @@ except Exception as e:
raise
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s',
)
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
print=logger.info
print = logger.info
# from layer type name to layer class
g_layer_type_map = {}
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
g_default_momentum = None,
g_default_decay_rate = None,
g_default_initial_mean = 0.,
g_default_initial_std = 0.01,
g_default_num_batches_regularization = None,
g_default_initial_strategy = 0,
g_default_initial_smart = False,
g_default_gradient_clipping_threshold = None,
g_default_device = None,
g_default_update_hooks = None,
g_default_compact_func = None,
g_config = TrainerConfig(),
g_layer_map = {},
g_parameter_map = {},
g_extended_config_funcs = {},
g_default_momentum=None,
g_default_decay_rate=None,
g_default_initial_mean=0.,
g_default_initial_std=0.01,
g_default_num_batches_regularization=None,
g_default_initial_strategy=0,
g_default_initial_smart=False,
g_default_gradient_clipping_threshold=None,
g_default_device=None,
g_default_update_hooks=None,
g_default_compact_func=None,
g_config=TrainerConfig(),
g_layer_map={},
g_parameter_map={},
g_extended_config_funcs={},
# store command args of paddle_trainer
g_command_config_args = {},
g_command_config_args={},
# Used for PyDataProvider to avoid duplicate module name
g_py_module_name_list = [],
g_current_submodel = None,
g_root_submodel = None,
g_submodel_map = {},
g_submodel_stack = [],
g_add_submodel_suffix = False,
):
g_py_module_name_list=[],
g_current_submodel=None,
g_root_submodel=None,
g_submodel_map={},
g_submodel_stack=[],
g_add_submodel_suffix=False, ):
for k, v in locals().iteritems():
globals()[k] = copy.deepcopy(v)
......@@ -161,43 +155,54 @@ def config_assert(b, msg):
if not b:
logger.fatal(msg)
g_config_funcs = {}
# decorator for indicating a function which can be used in config file
def config_func(func):
g_config_funcs[func.func_name] = func
return func
# decorator for indicating a class which can be used in config file
def config_class(cls):
g_config_funcs[cls.__name__] = cls
return cls
# decorator for indicating a class for a layer type
def config_layer(layer_type):
def wrap(cls):
g_config_funcs[cls.__name__] = cls
g_layer_type_map[layer_type] = cls
return cls
return wrap
def gen_parameter_name(layer_name, input_index):
return '_%s.w%d' % (layer_name, input_index)
def gen_bias_parameter_name(layer_name):
return '_%s.wbias' % layer_name
def default(x, default_value):
return default_value if x is None else x
class Cfg(object):
def add_keys(self, locals):
for k, v in locals.iteritems():
if not k.startswith('_'):
self.__setattr__(k, v)
# functions available in config file
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
......@@ -216,6 +221,7 @@ def Inputs(*args):
if g_current_submodel is g_root_submodel:
g_config.model_config.input_layer_names.append(name)
@config_func
def HasInputsSet():
return len(g_current_submodel.input_layer_names) != 0
......@@ -244,7 +250,7 @@ def SubModelBegin(name):
global g_current_submodel, g_root_submodel, g_submodel_stack
g_submodel_stack.append(g_current_submodel)
name = MakeLayerNameInParentSubmodel(name) #rename in nested submodel
name = MakeLayerNameInParentSubmodel(name) #rename in nested submodel
config_assert(name not in g_submodel_map,
'Duplicated submodel name: %s' % name)
......@@ -254,36 +260,42 @@ def SubModelBegin(name):
g_submodel_map[name] = sub_model
g_current_submodel = sub_model
@config_func
def SubModelEnd(name = None):
def SubModelEnd(name=None):
global g_current_submodel, g_root_submodel, g_submodel_stack
config_assert(g_current_submodel is not g_root_submodel, "submodel not begin")
config_assert(g_current_submodel is not g_root_submodel,
"submodel not begin")
if name is not None:
config_assert(g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
"submodel name error")
config_assert(
g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
"submodel name error")
g_current_submodel = g_submodel_stack.pop()
def MakeLayerNameInParentSubmodel(name):
suffix = ""
if len(g_submodel_stack) > 1:
suffix = "@" + g_submodel_stack[-1].name
return name + suffix
def GetLayerBaseName(name):
return name.split('@')[0]
def MakeLayerNameInSubmodel(name, submodel_name = None):
def MakeLayerNameInSubmodel(name, submodel_name=None):
global g_current_submodel
global g_add_submodel_suffix
if (submodel_name is None
and not g_add_submodel_suffix
and not g_current_submodel.is_recurrent_layer_group):
if (submodel_name is None and not g_add_submodel_suffix and
not g_current_submodel.is_recurrent_layer_group):
return name
if submodel_name is None:
submodel_name = g_current_submodel.name
return name + "@" + submodel_name
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
......@@ -332,8 +344,10 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
if in_links_count == 0:
in_links_has_subseq = has_subseq
else:
config_assert(in_links_has_subseq == has_subseq,
"The sequence type of in_links should be the same in RecurrentLayerGroup")
config_assert(
in_links_has_subseq == has_subseq,
"The sequence type of in_links should be the same in RecurrentLayerGroup"
)
in_links_count += 1
layer_name = MakeLayerNameInParentSubmodel(name)
layer = g_layer_map[layer_name]
......@@ -347,6 +361,7 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
pair.link_name = MakeLayerNameInSubmodel(name)
pair.has_subseq = has_subseq
@config_func
def RecurrentLayerGroupSetOutLink(link):
if isinstance(link, basestring):
......@@ -363,8 +378,7 @@ def RecurrentLayerGroupSetOutLink(link):
def RecurrentLayerGroupSetGenerator(generator=None):
generator.eos_layer_name = MakeLayerNameInSubmodel(
generator.eos_layer_name)
generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
g_current_submodel.generator.CopyFrom(generator)
......@@ -375,21 +389,18 @@ def RecurrentLayerGroupBegin(name,
generator=None,
target_inlinkname="",
seq_reversed=False):
RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links,
seq_reversed,
RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
target_inlinkname)
for link in out_links:
RecurrentLayerGroupSetOutLink(link)
if generator is not None:
RecurrentLayerGroupSetGenerator(generator)
config_assert(len(in_links) == 0,
"no in_links should be passed to generator")
config_assert(len(out_links) >= 1,
"one or more than one out_links should be passed to generator")
config_assert(
len(in_links) == 0, "no in_links should be passed to generator")
config_assert(
len(out_links) >= 1,
"one or more than one out_links should be passed to generator")
@config_func
......@@ -397,9 +408,10 @@ def RecurrentLayerGroupEnd(name):
global g_current_submodel
config_assert(g_current_submodel.is_recurrent_layer_group,
"RecurrentLayerGroup not begin")
for pair in g_current_submodel.memories: #check exist
for pair in g_current_submodel.memories: #check exist
layer = g_layer_map[pair.layer_name]
config_assert(layer is not None, "memory declare wrong name:%s" % pair.layer_name)
config_assert(layer is not None, "memory declare wrong name:%s" %
pair.layer_name)
memory_link = g_layer_map[pair.link_name]
config_assert(layer.size == memory_link.size,
"memory declare wrong size:%d" % memory_link.size)
......@@ -418,12 +430,14 @@ def RecurrentLayerGroupEnd(name):
else:
GatherAgentLayer(name=agent_name, size=layer.size)
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
g_config.model_config.type = name
@config_class
class Bias(Cfg):
def __init__(
......@@ -441,10 +455,10 @@ class Bias(Cfg):
sparse_remote_update=None,
gradient_clipping_threshold=None,
is_static=None,
is_shared=None,
):
is_shared=None, ):
self.add_keys(locals())
# Define one input for a layer
@config_class
class Input(Cfg):
......@@ -477,19 +491,20 @@ class Input(Cfg):
is_static=None,
is_shared=None,
update_hooks=None,
input_layer_argument=None,
):
input_layer_argument=None, ):
self.add_keys(locals())
self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)
# Define a projection for iexed layer
@config_class
class Projection(Input):
type = None # subclass should set it correctly
type = None # subclass should set it correctly
def __init__(
self,
input_layer_name,
size = 0, # projection output size
size=0, # projection output size
parameter_name=None,
learning_rate=None,
momentum=None,
......@@ -509,8 +524,7 @@ class Projection(Input):
is_static=None,
is_shared=None,
update_hooks=None,
input_layer_argument=None,
):
input_layer_argument=None, ):
self.add_keys(locals())
self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)
......@@ -524,8 +538,10 @@ class Projection(Input):
# to indicate using the size from Layer config
def calc_output_size(self, input_layer_config):
return self.size
def calc_parameter_size(self, input_size, output_size):
raise NotimplementedError
def calc_parameter_dims(self, input_size, output_size):
raise NotimplementedError
......@@ -536,31 +552,32 @@ class IdentityProjection(Projection):
def calc_output_size(self, input_layer_config):
return input_layer_config.size
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
type = 'identity_offset'
def __init__(
self,
input_layer_name,
offset,
**xargs):
super(IdentityOffsetProjection, self).__init__(
input_layer_name, **xargs)
def __init__(self, input_layer_name, offset, **xargs):
super(IdentityOffsetProjection, self).__init__(input_layer_name,
**xargs)
self.proj_conf.offset = offset
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
......@@ -568,49 +585,53 @@ class DotMulProjection(Projection):
def calc_output_size(self, input_layer_config):
return input_layer_config.size
def calc_parameter_size(self, input_size, output_size):
return output_size
def calc_parameter_dims(self, input_size, output_size):
return [1, output_size]
@config_class
class TableProjection(Projection):
type = 'table'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [input_size, output_size]
@config_class
class FullMatrixProjection(Projection):
type = 'fc'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [input_size, output_size]
@config_class
class TransposedFullMatrixProjection(Projection):
type = 'trans_fc'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [output_size, input_size]
@config_class
class ContextProjection(Projection):
type = 'context'
def __init__(
self,
input_layer_name,
context_start,
context_length,
trainable_padding,
**xargs):
def __init__(self, input_layer_name, context_start, context_length,
trainable_padding, **xargs):
super(ContextProjection, self).__init__(input_layer_name, **xargs)
self.proj_conf.context_start = context_start
self.proj_conf.context_length = context_length
......@@ -638,23 +659,21 @@ class ContextProjection(Projection):
class ConvProjection(Projection):
type = 'conv'
def __init__(
self,
input_layer_name,
num_filters=None,
conv_conf=None,
**xargs):
def __init__(self,
input_layer_name,
num_filters=None,
conv_conf=None,
**xargs):
super(ConvProjection, self).__init__(input_layer_name, **xargs)
if num_filters is not None:
self.proj_conf.num_filters = num_filters
parse_conv(conv_conf,
input_layer_name,
self.proj_conf.conv_conf,
parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
num_filters)
# TODO: support rectangle input
self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x ** 2) * num_filters
self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x**
2) * num_filters
def calc_output_size(self, input_layer_config):
return self.proj_conf.output_size
......@@ -672,14 +691,15 @@ class ConvProjection(Projection):
def calc_parameter_dims(self, input_size, output_size):
return None
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
type = None # subclass should set it correctly
type = None # subclass should set it correctly
def __init__(
self,
input_layer_names,
):
input_layer_names, ):
self.add_keys(locals())
self.operator_conf = OperatorConfig()
self.operator_conf.type = self.type
......@@ -690,16 +710,13 @@ class Operator(Cfg):
def calc_output_size(self, input_sizes):
return 0
@config_class
class DotMulOperator(Operator):
type = 'dot_mul'
def __init__(
self,
input_layer_names,
scale=None,
**xargs):
super(DotMulOperator, self).__init__(
input_layer_names, **xargs)
def __init__(self, input_layer_names, scale=None, **xargs):
super(DotMulOperator, self).__init__(input_layer_names, **xargs)
if scale is not None:
self.operator_conf.dotmul_scale = scale
......@@ -715,26 +732,24 @@ class DotMulOperator(Operator):
return input_sizes[0]
@config_class
class ConvOperator(Operator):
type = 'conv'
def __init__(
self,
input_layer_names,
num_filters=None,
conv_conf=None,
**xargs):
super(ConvOperator, self).__init__(
input_layer_names, **xargs)
def __init__(self,
input_layer_names,
num_filters=None,
conv_conf=None,
**xargs):
super(ConvOperator, self).__init__(input_layer_names, **xargs)
if num_filters is not None:
self.operator_conf.num_filters = num_filters
parse_conv(conv_conf,
MakeLayerNameInSubmodel(input_layer_names[0]),
self.operator_conf.conv_conf,
num_filters)
self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x ** 2) * num_filters
self.operator_conf.conv_conf, num_filters)
self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x
**2) * num_filters
config_assert(len(input_layer_names) == 2, "Conv is binary operator")
......@@ -745,119 +760,106 @@ class ConvOperator(Operator):
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
def __init__(
self,
filter_size,
channels,
padding = None,
stride = None,
groups = None,
filter_channels = None,
output_x = None,
img_size = None,
caffe_mode = True,
filter_size_y = None,
padding_y = None,
stride_y = None):
def __init__(self,
filter_size,
channels,
padding=None,
stride=None,
groups=None,
filter_channels=None,
output_x=None,
img_size=None,
caffe_mode=True,
filter_size_y=None,
padding_y=None,
stride_y=None):
self.add_keys(locals())
if filter_size_y is None:
self.filter_size_y = filter_size
self.filter_size_y = filter_size
if padding_y is None:
self.padding_y = padding
self.padding_y = padding
if stride_y is None:
self.stride_y = stride
self.stride_y = stride
if output_x is not None:
config_assert(output_x <= 0)
config_assert(output_x <= 0)
# please refer to the comments in proto/ModelConfig.proto
@config_class
class BilinearInterp(Cfg):
def __init__(
self,
out_size_x = None,
out_size_y = None,
num_channels = None):
def __init__(self, out_size_x=None, out_size_y=None, num_channels=None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Pool(Cfg):
def __init__(
self,
pool_type,
channels,
size_x,
size_y = None,
img_width = None,
start = None,
stride = None,
stride_y = None,
padding = None,
padding_y = None):
def __init__(self,
pool_type,
channels,
size_x,
size_y=None,
img_width=None,
start=None,
stride=None,
stride_y=None,
padding=None,
padding_y=None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class SpatialPyramidPool(Cfg):
def __init__(
self,
pool_type,
pyramid_height,
channels,
img_width = None):
def __init__(self, pool_type, pyramid_height, channels, img_width=None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Norm(Cfg):
def __init__(
self,
norm_type,
channels,
size,
scale,
pow,
output_x = None,
img_size = None,
blocked = None):
def __init__(self,
norm_type,
channels,
size,
scale,
pow,
output_x=None,
img_size=None,
blocked=None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Image(Cfg):
def __init__(
self,
channels,
img_size = None):
def __init__(self, channels, img_size=None):
self.add_keys(locals())
@config_class
class BlockExpand(Cfg):
def __init__(
self,
channels,
padding_x = 0,
padding_y = 0,
stride_x = 0,
stride_y = 0,
block_x = 0,
block_y = 0,
img_size_x = 0,
img_size_y = 0,
output_x = 0,
output_y = 0):
def __init__(self,
channels,
padding_x=0,
padding_y=0,
stride_x=0,
stride_y=0,
block_x=0,
block_y=0,
img_size_x=0,
img_size_y=0,
output_x=0,
output_y=0):
self.add_keys(locals())
@config_class
class MaxOut(Cfg):
def __init__(
self,
channels,
groups,
img_size_x = 0,
img_size_y = 0):
def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
self.add_keys(locals())
def DataBase(async_load_data=False,
constant_slots=None,
data_ratio=1,
......@@ -871,23 +873,23 @@ def DataBase(async_load_data=False,
if constant_slots:
data_config.constant_slots.extend(constant_slots)
data_config.data_ratio=data_ratio
data_config.is_main_data=is_main_data
data_config.data_ratio = data_ratio
data_config.is_main_data = is_main_data
usage_ratio=default(usage_ratio, settings_deprecated["usage_ratio"])
usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
config_assert(usage_ratio >= 0 and usage_ratio <= 1,
"The range of usage_ratio is [0, 1]")
data_config.usage_ratio = usage_ratio
return data_config
@config_func
def SimpleData(
files=None,
feat_dim=None,
context_len=None,
buffer_capacity=None,
**xargs):
def SimpleData(files=None,
feat_dim=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = 'simple'
data_config.files = files
......@@ -898,31 +900,36 @@ def SimpleData(
data_config.buffer_capacity = buffer_capacity
return data_config
@config_func
def PyData(
files=None,
type=None,
file_group_queue_capacity=None,
load_data_module=None,
load_data_object=None,
load_data_args="",
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
def PyData(files=None,
type=None,
file_group_queue_capacity=None,
load_data_module=None,
load_data_object=None,
load_data_args="",
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = 'py'
if load_data_module in g_py_module_name_list:
def get_path(module):
m = __import__(load_data_module)
return os.path.split(os.path.realpath(m.__file__))[0]
# python C-api is not thread safe, one module can only be import once,
# so here we nedd to copy the module with different names if it has to be
# imported several times.
module_new_name = "%s_copy_%d" % (load_data_module, len(g_py_module_name_list))
module_new_name = "%s_copy_%d" % (load_data_module,
len(g_py_module_name_list))
g_py_module_name_list.append(module_new_name)
module_path = "%s/%s.py" % (get_path(load_data_module), load_data_module)
new_module_path = "%s/%s.py" % (get_path(load_data_module), module_new_name)
module_path = "%s/%s.py" % (get_path(load_data_module),
load_data_module)
new_module_path = "%s/%s.py" % (get_path(load_data_module),
module_new_name)
if os.path.isfile(module_path) == False:
raise Exception("File %s is not exist." % module_path)
shutil.copy2(module_path, new_module_path)
......@@ -947,15 +954,15 @@ def PyData(
data_config.constant_slots.extend(constant_slots)
return data_config
@config_func
def ProtoData(
files=None,
type=None,
file_group_queue_capacity=None,
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
def ProtoData(files=None,
type=None,
file_group_queue_capacity=None,
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
if type is None:
data_config.type = 'proto'
......@@ -976,25 +983,24 @@ def ProtoData(
data_config.constant_slots.extend(constant_slots)
return data_config
#real data for training is actually provided by "sub_data" data providers.
@config_func
def MultiData(
sub_data=[]
):
def MultiData(sub_data=[]):
data_config = DataConfig()
data_config.type = 'multi'
data_config.sub_data_configs.extend(sub_data)
return data_config
@config_func
def Data(
type,
files=None,
feat_dim=None,
slot_dims=None,
context_len=None,
buffer_capacity=None,
**xargs):
def Data(type,
files=None,
feat_dim=None,
slot_dims=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = type
......@@ -1030,15 +1036,19 @@ def TestData(data_config, async_load_data=None):
" Data definition")
g_config.test_data_config.async_load_data = async_load_data
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
bilinear_conf.out_size_x = bilinear.out_size_x;
bilinear_conf.out_size_y = bilinear.out_size_y;
bilinear_conf.num_channels = bilinear.num_channels;
bilinear_conf.out_size_x = bilinear.out_size_x
bilinear_conf.out_size_y = bilinear.out_size_y
bilinear_conf.num_channels = bilinear.num_channels
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
output = (2 * padding + img_size - filter_size) / float(stride)
if caffe_mode:
......@@ -1046,81 +1056,89 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
else:
return 1 + int(math.ceil(output))
'''
calcualte image_size based on output_size for convolution.
It is the reverse function of cnn_output_size
'''
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
if caffe_mode:
img_size = (output_size - 1) * stride + filter_size - 2 * padding
else:
img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1
img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1
return img_size
def parse_pool(pool, input_layer_name, pool_conf):
pool_conf.pool_type = pool.pool_type
config_assert(pool.pool_type in ['max-projection', 'avg-projection',
'cudnn-max-pool', 'cudnn-avg-pool'],
"pool-type %s is not in "
config_assert(pool.pool_type in [
'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
], "pool-type %s is not in "
"['max-projection', 'avg-projection', "
"'cudnn-max-pool', 'cudnn-avg-pool']"
% pool.pool_type)
"'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
pool_conf.channels = pool.channels
pool_conf.size_x = pool.size_x
pool_conf.stride = pool.stride
pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
pool_conf.stride_y = default(pool.stride_y, pool_conf.stride);
pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
img_pixels = g_layer_map[input_layer_name].size / pool.channels
# the img_width may be removed,
# and it can be calculated automatically later.
pool_conf.img_size = default(pool.img_width, int(img_pixels ** 0.5))
pool_conf.img_size = default(pool.img_width, int(img_pixels**0.5))
pool_conf.img_size_y = img_pixels / pool_conf.img_size
config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
"Incorrect input image size %d for input image pixels %d"
% (pool_conf.img_size, img_pixels))
"Incorrect input image size %d for input image pixels %d" %
(pool_conf.img_size, img_pixels))
config_assert(not pool.start, "start is deprecated in pooling.")
if pool.padding is not None:
pool_conf.padding = pool.padding
pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
pool_conf.padding, pool_conf.stride, False)
pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
pool_conf.padding_y, pool_conf.stride_y, False)
pool_conf.output_x = cnn_output_size(
pool_conf.img_size, pool_conf.size_x, pool_conf.padding,
pool_conf.stride, False)
pool_conf.output_y = cnn_output_size(
pool_conf.img_size_y, pool_conf.size_y, pool_conf.padding_y,
pool_conf.stride_y, False)
def parse_spp(spp, input_layer_name, spp_conf):
spp_conf.pool_type = spp.pool_type
config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
"pool-type %s is not in " "['max-projection', 'avg-projection']"
% spp.pool_type)
"pool-type %s is not in "
"['max-projection', 'avg-projection']" % spp.pool_type)
spp_conf.pyramid_height = spp.pyramid_height
spp_conf.channels = spp.channels
img_pixels = g_layer_map[input_layer_name].size / spp_conf.channels
spp_conf.img_size = default(spp.img_width, int(img_pixels ** 0.5))
spp_conf.img_size = default(spp.img_width, int(img_pixels**0.5))
spp_conf.img_size_y = img_pixels / spp_conf.img_size
config_assert(spp_conf.img_size * spp_conf.img_size_y == img_pixels,
"Incorrect input image size %d for input image pixels %d"
% (spp_conf.img_size, img_pixels))
"Incorrect input image size %d for input image pixels %d" %
(spp_conf.img_size, img_pixels))
def parse_image(image, input_layer_name, image_conf):
image_conf.channels = image.channels
image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
image_conf.img_size = int(image_pixels ** 0.5)
config_assert((image_conf.img_size ** 2) == image_pixels,
"Incorrect input image size %d for input image pixels %d"
% (image_conf.img_size, image_pixels))
image_conf.img_size = int(image_pixels**0.5)
config_assert((image_conf.img_size**2) == image_pixels,
"Incorrect input image size %d for input image pixels %d" %
(image_conf.img_size, image_pixels))
def parse_norm(norm, input_layer_name, norm_conf):
norm_conf.norm_type = norm.norm_type
config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
"norm-type %s is not in [rnorm, 'cmrnorm-projection']"
% norm.norm_type)
"norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
norm.norm_type)
norm_conf.channels = norm.channels
norm_conf.size = norm.size
norm_conf.scale = norm.scale
......@@ -1128,20 +1146,23 @@ def parse_norm(norm, input_layer_name, norm_conf):
norm_conf.blocked = norm.blocked
img_pixels = g_layer_map[input_layer_name].size / norm.channels
norm_conf.img_size = int(img_pixels ** 0.5)
config_assert((norm_conf.img_size ** 2) == img_pixels,
"Incorrect input image size %d for input image pixels %d"
% (norm_conf.img_size, img_pixels))
norm_conf.img_size = int(img_pixels**0.5)
config_assert((norm_conf.img_size**2) == img_pixels,
"Incorrect input image size %d for input image pixels %d" %
(norm_conf.img_size, img_pixels))
norm_conf.output_x = norm_conf.img_size
if norm.norm_type in ['cmrnorm-projection']:
norm_conf.scale /= norm.size
else:
norm_conf.scale /= norm.size ** 2
norm_conf.scale /= norm.size**2
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
conv_conf.filter_size = conv.filter_size
conv_conf.filter_size_y = conv.filter_size_y
......@@ -1152,36 +1173,37 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
conv_conf.stride_y = conv.stride_y
conv_conf.groups = conv.groups
conv_conf.caffe_mode = conv.caffe_mode
if not trans:
conv_conf.filter_channels = conv.channels / conv.groups
img_pixels = g_layer_map[input_layer_name].size / conv.channels
print('channels=%d size=%d'%(conv.channels,
g_layer_map[input_layer_name].size))
conv_conf.img_size = int(img_pixels ** 0.5)
config_assert((conv_conf.img_size ** 2) == img_pixels,
("Input layer %s: Incorrect input image size %d for input "
+ "image pixels %d")
% (input_layer_name, conv_conf.img_size, img_pixels))
print('channels=%d size=%d' % (conv.channels,
g_layer_map[input_layer_name].size))
conv_conf.img_size = int(img_pixels**0.5)
config_assert((conv_conf.img_size**2) == img_pixels, (
"Input layer %s: Incorrect input image size %d for input " +
"image pixels %d") %
(input_layer_name, conv_conf.img_size, img_pixels))
conv_conf.output_x = cnn_output_size(
conv_conf.img_size, conv_conf.filter_size,
conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode)
conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
conv_conf.stride, conv_conf.caffe_mode)
else:
conv_conf.filter_channels = num_filters / conv.groups
outputSize = g_layer_map[input_layer_name].size / conv.channels
print('channels=%d size=%d'%(conv.channels,
g_layer_map[input_layer_name].size))
conv_conf.output_x = int(outputSize ** 0.5)
config_assert((conv_conf.output_x ** 2) == outputSize,
("Input layer %s: Incorrect input image size %d for input "
+ "image pixels %d")
% (input_layer_name, conv_conf.output_x, outputSize))
print('channels=%d size=%d' % (conv.channels,
g_layer_map[input_layer_name].size))
conv_conf.output_x = int(outputSize**0.5)
config_assert((conv_conf.output_x**2) == outputSize, (
"Input layer %s: Incorrect input image size %d for input " +
"image pixels %d") %
(input_layer_name, conv_conf.output_x, outputSize))
conv_conf.img_size = cnn_image_size(
conv_conf.output_x, conv_conf.filter_size,
conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode)
conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
conv_conf.stride, conv_conf.caffe_mode)
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
block_expand_conf.channels = block_expand.channels
......@@ -1207,27 +1229,28 @@ def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
block_expand.img_size_y, block_expand.block_y,
block_expand.padding_y, block_expand.stride_y, False)
def parse_maxout(maxout, input_layer_name, maxout_conf):
maxout_conf.channels = maxout.channels
maxout_conf.groups = maxout.groups
maxout_conf.img_size_x = maxout.img_size_x
maxout_conf.img_size_y = maxout.img_size_y
# Define an evaluator
@config_func
def Evaluator(
name,
type,
inputs,
chunk_scheme = None,
num_chunk_types = None,
classification_threshold = None,
positive_label = None,
dict_file = None,
result_file = None,
num_results = None,
delimited = None,
):
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None, ):
evaluator = g_config.model_config.evaluators.add()
evaluator.type = type
evaluator.name = MakeLayerNameInSubmodel(name)
......@@ -1256,19 +1279,20 @@ def Evaluator(
if delimited is not None:
evaluator.delimited = delimited
class LayerBase(object):
def __init__(
self,
name,
type,
size, # size can be 0. In this case, subclass should set it.
size, # size can be 0. In this case, subclass should set it.
inputs,
device=None,
active_type="",
drop_rate=0.,
coeff=None):
config_assert('@' not in name,
"layer name: %s contain special character @" % name)
"layer name: %s contain special character @" % name)
global g_current_submodel
name = MakeLayerNameInSubmodel(name)
......@@ -1307,8 +1331,8 @@ class LayerBase(object):
if type_of(input) == str:
input_layer_name = input
input_config = Input(
input_layer_name = input,
parameter_name = gen_parameter_name(name, input_index))
input_layer_name=input,
parameter_name=gen_parameter_name(name, input_index))
input_layer_name = input_config.input_layer_name
elif isinstance(input, Input):
input_layer_name = input.input_layer_name
......@@ -1317,16 +1341,15 @@ class LayerBase(object):
input_config.parameter_name = \
gen_parameter_name(name, input_index)
elif isinstance(input, Operator):
self.operators.append(input);
self.operators.append(input)
input.operator_conf.input_indices.append(input_index)
input_config = Input(input.input_layer_names[0])
input_layer_name = input_config.input_layer_name
else:
raise ValueError(
'Wrong type for inputs: %s' % type_of(input))
raise ValueError('Wrong type for inputs: %s' % type_of(input))
config_assert(input_layer_name in g_layer_map,
"Unknown input layer '%s' for layer %s"
% (input_layer_name, name))
"Unknown input layer '%s' for layer %s" %
(input_layer_name, name))
self.inputs[input_index] = input_config
layer_input = self.config.inputs.add()
layer_input.input_layer_name = input_config.input_layer_name
......@@ -1338,26 +1361,26 @@ class LayerBase(object):
g_current_submodel.layer_names.append(self.config.name)
def get_input_layer(self, input_index):
return g_layer_map[self.config.inputs[input_index].input_layer_name]
# will return the bias created if not *for_self*
def create_bias_parameter(
self,
bias, # True/False or BiasCfg
bias, # True/False or BiasCfg
size,
dims = None,
for_self = True, # whether create bias for layer self
):
dims=None,
for_self=True, # whether create bias for layer self
):
if size == 0:
return
if dims is None:
dims = [1, size]
config_assert(type_of(bias) == bool or type_of(bias) == Bias,
'Incorrect type for bias: %s' % type_of(bias))
config_assert(
type_of(bias) == bool or type_of(bias) == Bias,
'Incorrect type for bias: %s' % type_of(bias))
if type_of(bias) == bool:
if bias:
......@@ -1372,7 +1395,8 @@ class LayerBase(object):
Parameter(
bias.parameter_name,
size,
self.config.device if self.config.HasField('device') else None,
self.config.device
if self.config.HasField('device') else None,
dims,
bias.learning_rate,
bias.momentum,
......@@ -1384,22 +1408,21 @@ class LayerBase(object):
initial_smart=bias.initial_smart,
num_batches_regularization=bias.num_batches_regularization,
sparse_remote_update=bias.sparse_remote_update,
gradient_clipping_threshold=bias.gradient_clipping_threshold,
gradient_clipping_threshold=bias.
gradient_clipping_threshold,
is_static=bias.is_static,
is_shared=bias.is_shared,
)
is_shared=bias.is_shared, )
if for_self:
self.config.bias_parameter_name = bias.parameter_name
else:
return bias.parameter_name
def create_input_parameter(
self,
input_index,
size,
dims=None,
sparse = None,
format = None):
def create_input_parameter(self,
input_index,
size,
dims=None,
sparse=None,
format=None):
if dims is None:
# TODO(yuyang18): print warning and callstack here!
dims = list()
......@@ -1414,12 +1437,12 @@ class LayerBase(object):
if input_config.parameter_name in g_parameter_map:
para = g_parameter_map[input_config.parameter_name]
config_assert(size == para.size, ('Shared parameter "%s" does not '
+ 'have same size: %s vs. %s')
config_assert(size == para.size, (
'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
% (input_config.parameter_name, para.size, size))
config_assert(dims == para.dims, ('Shared parameter "%s" does not '
+ 'have same dims: %s vs. %s')
config_assert(dims == para.dims, (
'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
% (input_config.parameter_name, para.dims, dims))
return
......@@ -1439,13 +1462,13 @@ class LayerBase(object):
num_batches_regularization=input_config.num_batches_regularization,
sparse_remote_update=input_config.sparse_remote_update,
sparse_update=input_config.sparse_update,
gradient_clipping_threshold=input_config.gradient_clipping_threshold,
gradient_clipping_threshold=input_config.
gradient_clipping_threshold,
sparse=sparse,
format=format,
is_static=input_config.is_static,
is_shared=input_config.is_shared,
update_hooks=input_config.update_hooks
)
update_hooks=input_config.update_hooks)
def set_layer_size(self, size):
if self.config.size == 0:
......@@ -1455,27 +1478,18 @@ class LayerBase(object):
'Different inputs result in' +
'different layer size at layer %s' % self.config.name)
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
def __init__(
self,
name,
inputs,
softmax_selfnorm_alpha=0.1,
**xargs):
super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(name,
'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha
@config_layer('fc')
class FCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
**xargs):
def __init__(self, name, size, inputs, bias=True, **xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
......@@ -1489,22 +1503,23 @@ class FCLayer(LayerBase):
else:
sparse = None
self.create_input_parameter(input_index, psize, dims, sparse, format)
self.create_input_parameter(input_index, psize, dims, sparse,
format)
self.create_bias_parameter(bias, self.config.size)
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
selective_fc_pass_generation=False,
has_selected_colums=True,
selective_fc_full_mul_ratio=0.02,
selective_fc_parallel_plain_mul_thread_num=None,
**xargs):
def __init__(self,
name,
size,
inputs,
bias=True,
selective_fc_pass_generation=False,
has_selected_colums=True,
selective_fc_full_mul_ratio=0.02,
selective_fc_parallel_plain_mul_thread_num=None,
**xargs):
super(SelectiveFCLayer, self).__init__(
name, 'selective_fc', size, inputs=inputs, **xargs)
# user MUST know if selctive fc is used in training,
......@@ -1525,8 +1540,8 @@ class SelectiveFCLayer(LayerBase):
input_num = len(self.inputs)
if has_selected_colums:
config_assert(input_num >= 2,
("if indices of selected columns are not specified, "
"selective_fc Layer has at least two inputs"))
("if indices of selected columns are not specified, "
"selective_fc Layer has at least two inputs"))
input_num -= 1
for input_index in xrange(input_num):
......@@ -1539,26 +1554,23 @@ class SelectiveFCLayer(LayerBase):
if sparse:
psize = self.inputs[input_index].nnz
self.create_input_parameter(
input_index, psize, dims, sparse, format)
self.create_input_parameter(input_index, psize, dims, sparse,
format)
self.create_bias_parameter(bias, self.config.size)
@config_layer('print')
class PrintLayer(LayerBase):
def __init__(
self,
name,
inputs):
def __init__(self, name, inputs):
super(PrintLayer, self).__init__(name, 'print', 0, inputs)
@config_layer('data')
class DataLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(DataLayer, self).__init__(name, 'data' , size, inputs=[], device=device)
def __init__(self, name, size, device=None):
super(DataLayer, self).__init__(
name, 'data', size, inputs=[], device=device)
'''
DataNormLayer: A layer for data normalization
......@@ -1586,14 +1598,11 @@ Note:
min-max: y = (x-min)/(max-min)
decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
@config_layer('data_norm')
class DataNormLayer(LayerBase):
def __init__(
self,
name,
inputs,
data_norm_strategy="z-score",
device=None):
def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
super(DataNormLayer, self).__init__(
name, 'data_norm', 0, inputs=inputs, device=device)
self.config.data_norm_strategy = data_norm_strategy
......@@ -1605,15 +1614,12 @@ class DataNormLayer(LayerBase):
self.inputs[0].is_static = True
self.create_input_parameter(0, para_size, para_dims)
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
layer_type = 'prelu'
def __init__(
self,
name,
inputs,
partial_sum = 1,
**args):
def __init__(self, name, inputs, partial_sum=1, **args):
super(ParameterReluLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **args)
config_assert(len(self.inputs) == 1)
......@@ -1622,17 +1628,18 @@ class ParameterReluLayer(LayerBase):
self.set_layer_size(input_layer.size)
self.create_input_parameter(0, input_layer.size / partial_sum)
@config_layer('conv')
class ConvLayerBase(LayerBase):
layer_type = 'conv'
def __init__(
self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
def __init__(self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
super(ConvLayerBase, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
......@@ -1649,7 +1656,7 @@ class ConvLayerBase(LayerBase):
config_assert(use_gpu, "cudnn_conv only support GPU")
if (use_gpu == 1 and self.layer_type != "exconv" and
(parallel_nn == 0 or self.config.device > -1)):
(parallel_nn == 0 or self.config.device > -1)):
self.layer_type = "cudnn_conv"
else:
self.layer_type = "exconv"
......@@ -1661,17 +1668,14 @@ class ConvLayerBase(LayerBase):
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_conv(
self.inputs[input_index].conv,
input_layer.name,
self.config.inputs[input_index].conv_conf,
num_filters)
parse_conv(self.inputs[input_index].conv, input_layer.name,
self.config.inputs[input_index].conv_conf, num_filters)
conv_conf = self.config.inputs[input_index].conv_conf
psize = self.calc_parameter_size(conv_conf)
print("output size for %s is %d " % (name, conv_conf.output_x))
self.create_input_parameter(input_index, psize)
self.set_layer_size(
(conv_conf.output_x ** 2) * self.config.num_filters)
(conv_conf.output_x**2) * self.config.num_filters)
psize = self.config.size
if shared_biases:
......@@ -1682,10 +1686,12 @@ class ConvLayerBase(LayerBase):
return self.config.num_filters * conv_conf.filter_channels \
* (conv_conf.filter_size * conv_conf.filter_size_y)
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
layer_type = 'exconv'
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'cudnn_conv'
......@@ -1694,14 +1700,14 @@ class ConvLayer(ConvLayerBase):
@config_layer('convt')
class ConvTransLayerBase(LayerBase):
layer_type = 'convt'
def __init__(
self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
def __init__(self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
super(ConvTransLayerBase, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
......@@ -1732,7 +1738,7 @@ class ConvTransLayerBase(LayerBase):
print("output size for %s is %d " % (name, conv_conf.output_x))
self.create_input_parameter(input_index, psize)
self.set_layer_size(
(conv_conf.img_size ** 2) * self.config.num_filters)
(conv_conf.img_size**2) * self.config.num_filters)
psize = self.config.size
if shared_biases:
......@@ -1743,85 +1749,76 @@ class ConvTransLayerBase(LayerBase):
return conv_conf.channels * conv_conf.filter_channels \
* (conv_conf.filter_size * conv_conf.filter_size_y)
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
layer_type = 'exconvt'
@config_layer('norm')
class NormLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(NormLayer, self).__init__(
name, 'norm', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_norm(
self.inputs[input_index].norm,
input_layer.name,
self.config.inputs[input_index].norm_conf)
parse_norm(self.inputs[input_index].norm, input_layer.name,
self.config.inputs[input_index].norm_conf)
norm_conf = self.config.inputs[input_index].norm_conf
self.set_layer_size((norm_conf.output_x ** 2) * norm_conf.channels)
self.set_layer_size((norm_conf.output_x**2) * norm_conf.channels)
@config_layer('pool')
class PoolLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(PoolLayer, self).__init__(
name, 'pool', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_pool(
self.inputs[input_index].pool,
input_layer.name,
self.config.inputs[input_index].pool_conf)
parse_pool(self.inputs[input_index].pool, input_layer.name,
self.config.inputs[input_index].pool_conf)
pool_conf = self.config.inputs[input_index].pool_conf
print("output size for %s is %d*%d " % (
name, pool_conf.output_y, pool_conf.output_x))
self.set_layer_size((pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)
print("output size for %s is %d*%d " % (name, pool_conf.output_y,
pool_conf.output_x))
self.set_layer_size(
(pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(SpatialPyramidPoolLayer, self).__init__(name, 'spp', 0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(SpatialPyramidPoolLayer, self).__init__(
name, 'spp', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_spp(
self.inputs[input_index].spp,
input_layer.name,
self.config.inputs[input_index].spp_conf)
parse_spp(self.inputs[input_index].spp, input_layer.name,
self.config.inputs[input_index].spp_conf)
spp_conf = self.config.inputs[input_index].spp_conf
output_size = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
print("output size for %s is %d " % (name, output_size))
self.set_layer_size(output_size * spp_conf.channels)
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
layer_type = 'batch_norm'
def __init__(
self,
name,
inputs,
active_type="linear",
bias=True,
device=None,
use_global_stats=True,
moving_average_fraction=0.9,
batch_norm_type=None,
**xargs):
def __init__(self,
name,
inputs,
active_type="linear",
bias=True,
device=None,
use_global_stats=True,
moving_average_fraction=0.9,
batch_norm_type=None,
**xargs):
if inputs is None:
inputs = []
elif not isinstance(inputs, list):
inputs = [inputs]
config_assert(len(inputs) == 1,
"BatchNormLayer must have one and only one input")
config_assert(
len(inputs) == 1, "BatchNormLayer must have one and only one input")
# Create Input for moving mean and std,
# in batch normalization layer.
# These paras no need to update, so set is_static is true.
......@@ -1830,12 +1827,13 @@ class BatchNormLayer(LayerBase):
use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
is_shared = True if not use_gpu else False
for i in xrange(2):
inputs.append(Input(inputs[0].input_layer_name,
initial_std=0.0,
initial_mean=0.0,
is_static=True,
is_shared=is_shared,
))
inputs.append(
Input(
inputs[0].input_layer_name,
initial_std=0.0,
initial_mean=0.0,
is_static=True,
is_shared=is_shared, ))
parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
......@@ -1845,21 +1843,25 @@ class BatchNormLayer(LayerBase):
((not parallel_nn) or self.config.device > -1) and \
cudnn_version >= 4007
self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
super(BatchNormLayer, self).__init__(name, self.layer_type, 0,
active_type=active_type,
inputs=inputs, device=device, **xargs)
super(BatchNormLayer, self).__init__(
name,
self.layer_type,
0,
active_type=active_type,
inputs=inputs,
device=device,
**xargs)
if use_global_stats is not None:
self.config.use_global_stats = use_global_stats
if moving_average_fraction is not None:
self.config.moving_average_fraction = moving_average_fraction
input_layer= self.get_input_layer(0)
parse_image(self.inputs[0].image,
input_layer.name,
input_layer = self.get_input_layer(0)
parse_image(self.inputs[0].image, input_layer.name,
self.config.inputs[0].image_conf)
image_conf = self.config.inputs[0].image_conf
self.set_layer_size((image_conf.img_size ** 2) * image_conf.channels)
self.set_layer_size((image_conf.img_size**2) * image_conf.channels)
psize = self.calc_parameter_size(image_conf)
dims = [1, psize]
......@@ -1872,75 +1874,74 @@ class BatchNormLayer(LayerBase):
def calc_parameter_size(self, image_conf):
return image_conf.channels
@config_layer('trans')
class TransLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(TransLayer, self).__init__(name, 'trans', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'TransLayer must have one and only one input')
def __init__(self, name, inputs, device=None):
super(TransLayer, self).__init__(
name, 'trans', 0, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 1,
'TransLayer must have one and only one input')
self.set_layer_size(self.get_input_layer(0).size)
@config_layer('resize')
class ResizeLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
super(ResizeLayer, self).__init__(name, 'resize', size=size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'ResizeLayer must have one and only one input')
def __init__(self, name, size, inputs, device=None):
super(ResizeLayer, self).__init__(
name, 'resize', size=size, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 1,
'ResizeLayer must have one and only one input')
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(BlockExpandLayer, self).__init__(name, 'blockexpand', 0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(BlockExpandLayer, self).__init__(
name, 'blockexpand', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_block_expand(self.inputs[input_index].block_expand,
input_layer.name,
parse_block_expand(
self.inputs[input_index].block_expand, input_layer.name,
self.config.inputs[input_index].block_expand_conf)
block_expand_conf = self.config.inputs[input_index].block_expand_conf
self.set_layer_size(block_expand_conf.block_x * block_expand_conf.block_y
* block_expand_conf.channels)
block_expand_conf = self.config.inputs[
input_index].block_expand_conf
self.set_layer_size(block_expand_conf.block_x *
block_expand_conf.block_y *
block_expand_conf.channels)
@config_layer('maxout')
class MaxOutLayer(LayerBase):
def __init__(
self,
name,
inputs,
**xargs):
super(MaxOutLayer, self).__init__(name, 'maxout', 0, inputs=inputs, **xargs)
def __init__(self, name, inputs, **xargs):
super(MaxOutLayer, self).__init__(
name, 'maxout', 0, inputs=inputs, **xargs)
input_layer = self.get_input_layer(0)
parse_maxout(self.inputs[0].maxout,
input_layer.name,
parse_maxout(self.inputs[0].maxout, input_layer.name,
self.config.inputs[0].maxout_conf)
maxout_conf = self.config.inputs[0].maxout_conf
self.set_layer_size(g_layer_map[input_layer.name].size / maxout_conf.groups)
self.set_layer_size(g_layer_map[input_layer.name].size /
maxout_conf.groups)
# key: cost type
# value: cost class
g_cost_map = {}
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
def init(cls, name, inputs, device=None, coeff=1.):
super(type(cls), cls).__init__(name, cost_type, 1, inputs, device=device, coeff=coeff)
super(type(cls), cls).__init__(
name, cost_type, 1, inputs, device=device, coeff=coeff)
cls = type(class_name, (LayerBase,), dict(__init__=init))
cls = type(class_name, (LayerBase, ), dict(__init__=init))
global g_cost_map
g_cost_map[cost_type] = cls
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
......@@ -1951,19 +1952,15 @@ define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
define_cost('SumCost', 'sum_cost')
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
def __init__(
self,
name,
num_classes,
inputs,
device=None,
bias=True):
def __init__(self, name, num_classes, inputs, device=None, bias=True):
super(HierarchicalSigmoidLayer, self).__init__(
name, 'hsigmoid', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) >= 2,
'HierarchicalSigmoidLayer must have at least 2 inputs')
config_assert(
len(self.inputs) >= 2,
'HierarchicalSigmoidLayer must have at least 2 inputs')
self.config.num_classes = num_classes
for input_index in xrange(len(self.inputs) - 1):
input_layer = self.get_input_layer(input_index)
......@@ -1972,6 +1969,7 @@ class HierarchicalSigmoidLayer(LayerBase):
self.create_input_parameter(input_index, psize, dims)
self.create_bias_parameter(bias, num_classes - 1)
'''
lambdaCost for lambdaRank LTR approach
......@@ -1996,59 +1994,57 @@ Usage:
max_sort_size can be greater than the size of a list, in which
case the algorithm will sort the entire list to get gradient.
'''
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
def __init__(
self,
name,
inputs,
NDCG_num = 5,
max_sort_size = -1,
device=None):
def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
super(LambdaCost, self).__init__(
name, 'lambda_cost', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'lambdaCost must have 2 inputs')
config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
self.config.NDCG_num = NDCG_num
if max_sort_size != -1:
config_assert(NDCG_num <= max_sort_size,
'NDCG_num must be less than or equal to max_sort_size')
config_assert(
NDCG_num <= max_sort_size,
'NDCG_num must be less than or equal to max_sort_size')
self.config.max_sort_size = max_sort_size
@config_layer('nce')
class NCELayer(LayerBase):
def __init__(
self,
name,
num_classes,
inputs,
num_neg_samples=10,
neg_sampling_dist=None,
bias=True,
**xargs):
def __init__(self,
name,
num_classes,
inputs,
num_neg_samples=10,
neg_sampling_dist=None,
bias=True,
**xargs):
super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
config_assert(len(self.inputs) >= 2,
'NCELayer must have at least 2 inputs')
config_assert(
len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
self.config.num_classes = num_classes
if neg_sampling_dist is not None:
config_assert(len(neg_sampling_dist) == num_classes,
'len(neg_sampling_dist)(%s) is not same as num_classes (%s)'
% (len(neg_sampling_dist), num_classes))
config_assert(
len(neg_sampling_dist) == num_classes,
'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
(len(neg_sampling_dist), num_classes))
s = sum(neg_sampling_dist)
config_assert(abs(s - 1) < 1e-5,
'The sum of neg_sampling_dist (%s) is not 1' % s)
config_assert(
abs(s - 1) < 1e-5,
'The sum of neg_sampling_dist (%s) is not 1' % s)
self.config.neg_sampling_dist.extend(neg_sampling_dist)
self.config.num_neg_samples = num_neg_samples
num_real_inputs = len(self.inputs) - 1
input_layer = self.get_input_layer(num_real_inputs)
input_layer = self.get_input_layer(num_real_inputs)
config_assert(input_layer.type == 'data',
'Expecting the last input layer of an nce layer to be '
'a data layer')
if (num_real_inputs > 1 and input_layer.size == 1
and self.get_input_layer(num_real_inputs - 1).type == 'data'):
if (num_real_inputs > 1 and input_layer.size == 1 and
self.get_input_layer(num_real_inputs - 1).type == 'data'):
# This input layer is assumed to be a sample weight layer
num_real_inputs -= 1
......@@ -2062,105 +2058,82 @@ class NCELayer(LayerBase):
@config_layer('addto')
class AddToLayer(LayerBase):
def __init__(
self,
name,
inputs,
bias=True,
**xargs):
def __init__(self, name, inputs, bias=True, **xargs):
super(AddToLayer, self).__init__(
name, 'addto', 0, inputs=inputs, **xargs)
config_assert(len(inputs) > 0,
'inputs cannot be empty for AddToLayer')
config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('agent')
class AgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(AgentLayer, self).__init__(name, 'agent', size, inputs=[], device=device)
def __init__(self, name, size, device=None):
super(AgentLayer, self).__init__(
name, 'agent', size, inputs=[], device=device)
@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
def __init__(self, name, size, device=None):
super(SequenceAgentLayer, self).__init__(
name, 'sequence_agent', size, inputs=[], device=device)
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
def __init__(self, name, size, device=None):
super(GatherAgentLayer, self).__init__(
name, 'gather_agent', size, inputs=[], device=device)
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
def __init__(self, name, size, device=None):
super(ScatterAgentLayer, self).__init__(
name, 'scatter_agent', size, inputs=[], device=device)
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
def __init__(self, name, size, device=None):
super(SequenceGatherAgentLayer, self).__init__(
name, 'sequence_gather_agent', size, inputs=[], device=device)
name, 'sequence_gather_agent', size, inputs=[], device=device)
@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
def __init__(self, name, size, device=None):
super(SequenceScatterAgentLayer, self).__init__(
name, 'sequence_scatter_agent', size, inputs=[], device=device)
name, 'sequence_scatter_agent', size, inputs=[], device=device)
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
def __init__(
self,
name,
inputs,
size,
device=None):
super(MultiplexLayer, self).__init__(name, 'multiplex', size, inputs=inputs, device=device)
config_assert(len(inputs) > 2,
'MultiplexLayer should have more than 2 inputs.')
def __init__(self, name, inputs, size, device=None):
super(MultiplexLayer, self).__init__(
name, 'multiplex', size, inputs=inputs, device=device)
config_assert(
len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
for i in range(1, len(inputs)):
config_assert(self.get_input_layer(i).size == size,
"All the input layers except the first one should"
"have the same size as the MultiplexLayer.")
config_assert(
self.get_input_layer(i).size == size,
"All the input layers except the first one should"
"have the same size as the MultiplexLayer.")
@config_func
def Link(name,
has_subseq=False,
):
def Link(
name,
has_subseq=False, ):
link_config = LinkConfig()
link_config.link_name = name
link_config.has_subseq = has_subseq
return link_config
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
......@@ -2175,43 +2148,46 @@ def Link(name,
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
def Memory(name,
size,
is_sequence=False,
boot_layer=None,
boot_bias=False,
boot_bias_active_type="",
boot_with_const_id=None,
):
def Memory(
name,
size,
is_sequence=False,
boot_layer=None,
boot_bias=False,
boot_bias_active_type="",
boot_with_const_id=None, ):
agent_name = name + "+delay1"
if is_sequence:
agent_layer = SequenceAgentLayer(agent_name, size)
else:
agent_layer = AgentLayer(agent_name, size)
config_assert(g_current_submodel.is_recurrent_layer_group,
'Memory should be used in recurrent layer group only')
'Memory should be used in recurrent layer group only')
memory = g_current_submodel.memories.add()
memory.layer_name = MakeLayerNameInSubmodel(name)
memory.link_name = MakeLayerNameInSubmodel(agent_name)
memory.is_sequence = is_sequence
options = sum((boot_layer is not None,
bool(boot_bias),
options = sum((boot_layer is not None, bool(boot_bias),
boot_with_const_id is not None))
config_assert(options <= 1,
'take one option at most from boot_layer, boot_bias, or boot_with_const_id')
config_assert(
options <= 1,
'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
)
if boot_layer is not None:
boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
config_assert(boot_layer in g_layer_map,
'boot_layer "%s" does not correspond to a layer name' % boot_layer)
'boot_layer "%s" does not correspond to a layer name' %
boot_layer)
memory.boot_layer_name = boot_layer
elif boot_bias:
memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
boot_bias, size, for_self = False)
boot_bias, size, for_self=False)
memory.boot_bias_active_type = boot_bias_active_type
elif boot_with_const_id is not None:
memory.boot_with_const_id = boot_with_const_id
return agent_name
# Generator for recurrent layer group, to use it:
# 1. define a id layer as output of layer group
# 2. define a memory of this id layer, and assign a boot id(begin of sequence)
......@@ -2223,11 +2199,10 @@ def Memory(name,
@config_func
def Generator(
max_num_frames,
eos_layer_name = "eos_check",
num_results_per_sample = 1,
beam_size = 1,
log_prob = None,
):
eos_layer_name="eos_check",
num_results_per_sample=1,
beam_size=1,
log_prob=None, ):
generator_config = GeneratorConfig()
generator_config.max_num_frames = max_num_frames
generator_config.eos_layer_name = eos_layer_name
......@@ -2237,60 +2212,55 @@ def Generator(
generator_config.log_prob = log_prob
return generator_config
@config_layer('expand')
class ExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
trans_type='non-seq',
device=None,
bias=False):
super(ExpandLayer, self).__init__(
name, 'expand', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'ExpandLayer takes 2 and only 2 inputs')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(self.get_input_layer(0).size)
self.create_bias_parameter(bias, self.config.size)
def __init__(self,
name,
inputs,
trans_type='non-seq',
device=None,
bias=False):
super(ExpandLayer, self).__init__(
name, 'expand', 0, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(self.get_input_layer(0).size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None,
num_filters=None,
bias=False):
super(FeatMapExpandLayer, self).__init__(
name, 'featmap_expand', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'ExpandLayer takes 1 and only 1 inputs')
if num_filters is not None:
def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
super(FeatMapExpandLayer, self).__init__(
name, 'featmap_expand', 0, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
if num_filters is not None:
self.config.num_filters = num_filters
else:
else:
logger.fatal("FeatMapExpandLayer must specify num_filters.")
self.set_layer_size(self.get_input_layer(0).size * num_filters)
self.set_layer_size(self.get_input_layer(0).size * num_filters)
@config_layer('max')
class MaxLayer(LayerBase):
def __init__(
self,
name,
inputs,
trans_type='non-seq',
active_type='linear',
device=None,
bias=False,
output_max_index=None):
super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, device=device)
def __init__(self,
name,
inputs,
trans_type='non-seq',
active_type='linear',
device=None,
bias=False,
output_max_index=None):
super(MaxLayer, self).__init__(
name, 'max', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
self.config.trans_type = trans_type
self.config.active_type = active_type
self.config.trans_type = trans_type
self.config.active_type = active_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
......@@ -2301,12 +2271,7 @@ class MaxLayer(LayerBase):
@config_layer('maxid')
class MaxIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
beam_size=None,
device=None):
def __init__(self, name, inputs, beam_size=None, device=None):
super(MaxIdLayer, self).__init__(
name, 'maxid', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
......@@ -2324,37 +2289,39 @@ class MaxIdLayer(LayerBase):
@config_layer('eos_id')
class EosIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
eos_id,
device=None):
def __init__(self, name, inputs, eos_id, device=None):
super(EosIdLayer, self).__init__(
name, 'eos_id', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
self.set_layer_size(2) # boolean output
self.set_layer_size(2) # boolean output
self.config.eos_id = eos_id
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
trans_type='non-seq',
device=None,
bias=False):
super(SequenceLastInstanceLayer, self).__init__(name, 'seqlastins',
0, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
self.config.trans_type = trans_type
def __init__(self,
name,
inputs,
active_type='linear',
trans_type='non-seq',
device=None,
bias=False):
super(SequenceLastInstanceLayer, self).__init__(
name,
'seqlastins',
0,
inputs=inputs,
device=device,
active_type=active_type)
config_assert(
len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
def __init__(
......@@ -2364,167 +2331,163 @@ class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
active_type='linear',
trans_type='non-seq',
device=None,
bias=False,
):
super(SequenceFirstInstanceLayer, self).__init__(name,
inputs=inputs, active_type=active_type, device=device, bias=bias)
self.config.trans_type = trans_type
bias=False, ):
super(SequenceFirstInstanceLayer, self).__init__(
name,
inputs=inputs,
active_type=active_type,
device=device,
bias=bias)
self.config.trans_type = trans_type
self.config.select_first = True
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceConcatLayer, self).__init__(name, 'seqconcat',
0, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
def __init__(self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceConcatLayer, self).__init__(
name,
'seqconcat',
0,
inputs=inputs,
device=device,
active_type=active_type)
config_assert(
len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
def __init__(
self,
name,
def __init__(self,
name,
size,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceReshapeLayer, self).__init__(
name,
'seqreshape',
size,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceReshapeLayer, self).__init__(name, 'seqreshape',
size, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
inputs=inputs,
device=device,
active_type=active_type)
config_assert(
len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
self.set_layer_size(size)
self.create_bias_parameter(bias, size)
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SubSequenceLayer, self).__init__(name, 'subseq',
0, inputs=inputs, device=device, active_type=active_type)
def __init__(self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SubSequenceLayer, self).__init__(
name,
'subseq',
0,
inputs=inputs,
device=device,
active_type=active_type)
config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
input_layer0 = self.get_input_layer(0)
size = input_layer0.size
self.set_layer_size(size)
self.create_bias_parameter(bias, size)
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(OuterProdLayer, self).__init__(name, 'out_prod',
0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(OuterProdLayer, self).__init__(
name, 'out_prod', 0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer0.size * input_layer1.size)
@config_layer('power')
class PowerLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(PowerLayer, self).__init__(name, 'power',
0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(PowerLayer, self).__init__(
name, 'power', 0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer1.size)
input_layer0 = self.get_input_layer(0)
config_assert(1==input_layer0.size,
'The left input is the exponent and should be of size 1')
config_assert(1 == input_layer0.size,
'The left input is the exponent and should be of size 1')
@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
def __init__(
self,
name,
inputs,
slope=1.0,
intercept=0.0,
device=None):
super(SlopeInterceptLayer, self).__init__(name, 'slope_intercept',
0, inputs=inputs, device=device)
def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
super(SlopeInterceptLayer, self).__init__(
name, 'slope_intercept', 0, inputs=inputs, device=device)
self.config.slope = slope
self.config.intercept = intercept
config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('scaling')
class ScalingLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(ScalingLayer, self).__init__(name, 'scaling',
0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(ScalingLayer, self).__init__(
name, 'scaling', 0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer1.size)
input_layer0 = self.get_input_layer(0)
config_assert(1==input_layer0.size,
'The left input should be of size 1')
config_assert(1 == input_layer0.size,
'The left input should be of size 1')
@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(ConvShiftLayer, self).__init__(name, 'conv_shift',
0, inputs=inputs, device=device)
def __init__(self, name, inputs, device=None):
super(ConvShiftLayer, self).__init__(
name, 'conv_shift', 0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
def __init__(self, name, size, inputs, device=None):
super(ConvexCombinationLayer, self).__init__(
name, 'convex_comb', size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'ConvexCombinationLayer must have 2 inputs')
name, 'convex_comb', size, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for ConvexCombinationLayer')
self.set_layer_size(size)
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
def __init__(self, name, inputs, device=None):
super(InterpolationLayer, self).__init__(
name, 'interpolation', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 3,
'InterpolationLayer must have 3 inputs')
config_assert(
len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
input_layer2 = self.get_input_layer(2)
......@@ -2533,64 +2496,51 @@ class InterpolationLayer(LayerBase):
config_assert(input_layer1.size == input_layer2.size,
'the two vector inputs should be of the same size')
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
def __init__(
self,
name,
inputs,
**xargs):
def __init__(self, name, inputs, **xargs):
super(BilinearInterpLayer, self).__init__(
name, 'bilinear_interp', 0, inputs=inputs, **xargs)
input_layer = self.get_input_layer(0)
parse_bilinear(self.inputs[0].bilinear_interp,
input_layer.name,
self.config.inputs[0].bilinear_interp_conf);
parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name,
self.config.inputs[0].bilinear_interp_conf)
conf = self.inputs[0].bilinear_interp
self.set_layer_size(conf.out_size_x * conf.out_size_y * conf.num_channels)
self.set_layer_size(conf.out_size_x * conf.out_size_y *
conf.num_channels)
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
def __init__(self, name, inputs, device=None):
super(SumToOneNormLayer, self).__init__(
name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'SumToOneNormLayer must have 1 input')
name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
config_assert(
len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
cos_scale=1.0,
device=None):
def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
super(CosSimVecMatLayer, self).__init__(
name, 'cos_vm', size, inputs=inputs, device=device)
name, 'cos_vm', size, inputs=inputs, device=device)
self.config.cos_scale = cos_scale
config_assert(len(self.inputs) == 2,
'CosSimVecMatLayer must have 2 inputs')
config_assert(
len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for CosSimVecMatLayer')
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
def __init__(self, name, inputs, device=None):
super(SamplingIdLayer, self).__init__(
name, 'sampling_id', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
config_assert(
len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
......@@ -2603,33 +2553,33 @@ class SamplingIdLayer(LayerBase):
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
def __init__(
self,
name,
inputs,
average_strategy='average',
trans_type='non-seq',
active_type='linear',
device=None,
bias=False):
super(AverageLayer, self).__init__(name, 'average', 0, inputs=inputs,
device=device, active_type=active_type)
def __init__(self,
name,
inputs,
average_strategy='average',
trans_type='non-seq',
active_type='linear',
device=None,
bias=False):
super(AverageLayer, self).__init__(
name,
'average',
0,
inputs=inputs,
device=device,
active_type=active_type)
self.config.average_strategy = average_strategy
self.config.trans_type = trans_type
self.config.trans_type = trans_type
config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('cos')
class CosSimLayer(LayerBase):
def __init__(
self,
name,
inputs,
cos_scale=5,
device=None):
def __init__(self, name, inputs, cos_scale=5, device=None):
super(CosSimLayer, self).__init__(
name, 'cos', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
......@@ -2641,18 +2591,13 @@ class CosSimLayer(LayerBase):
@config_layer('tensor')
class TensorLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None,
bias=True,
**xargs):
super(TensorLayer, self).__init__(name, 'tensor', size, inputs=inputs, device=device, **xargs)
def __init__(self, name, size, inputs, device=None, bias=True, **xargs):
super(TensorLayer, self).__init__(
name, 'tensor', size, inputs=inputs, device=device, **xargs)
config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
config_assert(size > 0, 'size must be positive')
config_assert(inputs[1].parameter_name == None, 'second parameter should be None.')
config_assert(inputs[1].parameter_name == None,
'second parameter should be None.')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
psize = size * input_layer0.size * input_layer1.size
......@@ -2663,14 +2608,13 @@ class TensorLayer(LayerBase):
@config_layer('mixed')
class MixedLayer(LayerBase):
def __init__(
self,
name,
inputs,
size=0,
bias=True,
error_clipping_threshold=None,
**xargs):
def __init__(self,
name,
inputs,
size=0,
bias=True,
error_clipping_threshold=None,
**xargs):
config_assert(inputs, 'inputs cannot be empty')
super(MixedLayer, self).__init__(
name, 'mixed', size, inputs=inputs, **xargs)
......@@ -2695,24 +2639,28 @@ class MixedLayer(LayerBase):
else:
sz = operator.calc_output_size(operator_conf.input_sizes)
if sz != 0:
config_assert(sz == self.config.size,
"different inputs have different size: %s vs. %s" %
(sz, self.config.size))
config_assert(
sz == self.config.size,
"different inputs have different size: %s vs. %s" %
(sz, self.config.size))
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if input_index not in operator_input_index:
config_assert(isinstance(input, Projection), "input should be projection or operation")
config_assert(
isinstance(input, Projection),
"input should be projection or operation")
if self.config.size == 0 and isinstance(input, Projection):
size = input.calc_output_size(input_layer)
if size != 0:
self.set_layer_size(size)
elif isinstance(input, Projection):
sz = input.calc_output_size(input_layer)
if sz != 0:
config_assert(sz == self.config.size,
"different inputs have different size: %s vs. %s" %
(sz, self.config.size))
sz = input.calc_output_size(input_layer)
if sz != 0:
config_assert(
sz == self.config.size,
"different inputs have different size: %s vs. %s" %
(sz, self.config.size))
config_assert(size != 0, "size is not set")
for input_index in xrange(len(self.inputs)):
......@@ -2724,7 +2672,8 @@ class MixedLayer(LayerBase):
input_config = self.config.inputs[input_index]
input_config.proj_conf.CopyFrom(input.proj_conf)
input_config.proj_conf.name = gen_parameter_name(name, input_index)
input_config.proj_conf.name = gen_parameter_name(name,
input_index)
psize = input.calc_parameter_size(input_layer.size, size)
dims = input.calc_parameter_dims(input_layer.size, size)
self.create_input_parameter(input_index, psize, dims)
......@@ -2750,21 +2699,16 @@ class MixedLayer(LayerBase):
if error_clipping_threshold is not None:
self.config.error_clipping_threshold = error_clipping_threshold
# like MixedLayer, but no bias parameter
@config_func
def ExpressionLayer(name,
inputs,
**xargs):
def ExpressionLayer(name, inputs, **xargs):
MixedLayer(name, inputs, bias=False, **xargs)
@config_layer('concat')
class ConcatenateLayer(LayerBase):
def __init__(
self,
name,
inputs,
bias=False,
**xargs):
def __init__(self, name, inputs, bias=False, **xargs):
config_assert(inputs, 'inputs cannot be empty')
config_assert(not bias, 'ConcatenateLayer cannot support bias.')
super(ConcatenateLayer, self).__init__(
......@@ -2773,30 +2717,27 @@ class ConcatenateLayer(LayerBase):
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if self.config.size == 0:
if self.config.size == 0:
size += input_layer.size
self.set_layer_size(size)
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
def __init__(
self,
name,
inputs,
bias=False,
**xargs):
def __init__(self, name, inputs, bias=False, **xargs):
config_assert(inputs, 'inputs cannot be empty')
super(ConcatenateLayer2, self).__init__(
name, 'concat2', 0, inputs=inputs, **xargs)
if isinstance(self.inputs[0], ConvProjection):
for input_index in xrange(len(self.inputs) - 1):
input = self.inputs[input_index + 1]
config_assert(isinstance(input, ConvProjection),
"The first input of ConcatenateLayer2 is ConvProjection, "
"the other inputs should also be ConvProjection.")
for input_index in xrange(len(self.inputs) - 1):
input = self.inputs[input_index + 1]
config_assert(
isinstance(input, ConvProjection),
"The first input of ConcatenateLayer2 is ConvProjection, "
"the other inputs should also be ConvProjection.")
size = 0
for input_index in xrange(len(self.inputs)):
......@@ -2818,9 +2759,9 @@ class ConcatenateLayer2(LayerBase):
input_config.proj_conf.CopyFrom(input.proj_conf)
input_config.proj_conf.name = gen_parameter_name(name, input_index)
psize = input.calc_parameter_size(input.proj_conf.input_size,
input.proj_conf.output_size)
input.proj_conf.output_size)
dims = input.calc_parameter_dims(input.proj_conf.input_size,
input.proj_conf.output_size)
input.proj_conf.output_size)
self.create_input_parameter(input_index, psize, dims)
psize = self.config.size
......@@ -2834,16 +2775,12 @@ class ConcatenateLayer2(LayerBase):
self.config.bias_size = psize
self.create_bias_parameter(bias, psize)
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
bias=True,
**xargs):
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **xargs)
def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **
xargs)
config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
size = input_layer.size
......@@ -2853,17 +2790,17 @@ class RecurrentLayer(LayerBase):
self.create_input_parameter(0, size * size, dims)
self.create_bias_parameter(bias, self.config.size)
@config_layer('lstmemory')
class LstmLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
def __init__(self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
input_layer = self.get_input_layer(0)
......@@ -2872,117 +2809,126 @@ class LstmLayer(LayerBase):
size = input_layer.size / 4
self.set_layer_size(size)
self.config.reversed = reversed
self.config.active_gate_type = active_gate_type
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
self.create_input_parameter(0, size * size * 4, [size, size, 4])
#bias includes 3 kinds of peephole, 4 + 3 = 7
self.create_bias_parameter(bias, size * 7)
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(LstmStepLayer, self).__init__(name, 'lstm_step',
size, inputs, **xargs)
def __init__(self,
name,
size,
inputs,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
**xargs)
config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
config_assert(input_layer0.size == 4 * size, 'input_layer0.size != 4 * layer.size')
config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
config_assert(input_layer0.size == 4 * size,
'input_layer0.size != 4 * layer.size')
config_assert(input_layer1.size == size,
'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
self.create_bias_parameter(bias, size * 3)
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
def __init__(
self,
name,
size,
inputs):
super(GetOutputLayer, self).__init__(name, 'get_output' , size, inputs)
config_assert(len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
def __init__(self, name, size, inputs):
super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
config_assert(
len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
inputs = self.inputs[0]
config_assert(inputs.input_layer_argument,
'input_layer_argument cannot be empty')
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
def __init__(
self,
name,
inputs,
directions=True,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **xargs)
def __init__(self,
name,
inputs,
directions=True,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **
xargs)
config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
input_layer = self.get_input_layer(0)
dim_num = len(directions)
#check input_layer.size is divided by (3+dim_num)
config_assert(input_layer.size % (3+dim_num) == 0, "size % (dim_num) should be 0!")
size = input_layer.size / (3+dim_num)
config_assert(input_layer.size %
(3 + dim_num) == 0, "size % (dim_num) should be 0!")
size = input_layer.size / (3 + dim_num)
self.set_layer_size(size)
self.config.active_gate_type = active_gate_type
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
for i in xrange(len(directions)):
self.config.directions.append(int(directions[i]))
self.create_input_parameter(0, size * size * (3+dim_num), [size, size, 3+dim_num])
self.create_input_parameter(0, size * size *
(3 + dim_num), [size, size, 3 + dim_num])
#bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
self.create_bias_parameter(bias, size * (5+2*dim_num))
self.create_bias_parameter(bias, size * (5 + 2 * dim_num))
@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
def __init__(self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
inputs, **xargs)
config_assert(
len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
#check input_layer.size is divided by 3
config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
size = input_layer.size / 3
self.set_layer_size(size)
self.config.reversed = reversed
self.config.active_gate_type = active_gate_type
self.config.active_gate_type = active_gate_type
self.create_input_parameter(0, size * size * 3, [size, size * 3])
self.create_bias_parameter(bias, size * 3)
@config_layer('gru_step')
class GruStepLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **xargs)
def __init__(self,
name,
size,
inputs,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **
xargs)
config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
config_assert(input_layer0.size == 3 * size, 'input_layer0.size != 3 * layer.size')
config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
config_assert(input_layer0.size == 3 * size,
'input_layer0.size != 3 * layer.size')
config_assert(input_layer1.size == size,
'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
self.create_input_parameter(0, size * size * 3, [size, size * 3])
self.create_bias_parameter(bias, size * 3)
'''
A layer for calculating the cost of sequential conditional random field model.
Example: CRFLayer(name="crf_cost", size=label_num,
......@@ -2990,20 +2936,18 @@ class GruStepLayer(LayerBase):
where "weight" is optional, one weight for each sequence
@param coeff: weight of the layer
'''
@config_layer('crf')
class CRFLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
coeff=1.0,
device=None):
def __init__(self, name, size, inputs, coeff=1.0, device=None):
super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
config_assert(2 <= len(self.inputs) <= 3, 'CRFLayer must have 2 or 3 inputs')
config_assert(2 <= len(self.inputs) <= 3,
'CRFLayer must have 2 or 3 inputs')
self.create_input_parameter(0, size * (size + 2), [size, size + 2])
self.config.coeff = coeff
'''
A layer for calculating the decoding sequence of sequential conditional
random field model.
......@@ -3012,14 +2956,11 @@ class CRFLayer(LayerBase):
this layer will also calculate error, output_.value[i] is 1 for incorrect
decoding or 0 for correct decoding
'''
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
def __init__(self, name, size, inputs, device=None):
super(CRFDecodingLayer, self).__init__(
name, 'crf_decoding', size, inputs, device=device)
config_assert(
......@@ -3027,47 +2968,35 @@ class CRFDecodingLayer(LayerBase):
'CRFDecodingLayer cannot have more than 2 inputs')
self.create_input_parameter(0, size * (size + 2), [size, size + 2])
@config_layer('ctc')
class CTCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
norm_by_times = False,
device=None):
def __init__(self, name, size, inputs, norm_by_times=False, device=None):
super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
self.config.norm_by_times = norm_by_times
config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
def __init__(
self,
name,
device=None):
def __init__(self, name, device=None):
super(RecurrentLayerGroup, self).__init__(
name, 'recurrent_layer_group', 0, inputs=[], device=device)
# Deprecated, use a new layer specific class instead
@config_func
def Layer(
name,
type,
**xargs):
def Layer(name, type, **xargs):
layers = {}
layers.update(g_cost_map)
layers.update(g_layer_type_map)
layer_func = layers.get(type)
config_assert(layer_func,
"layer type '%s' not supported." % type)
config_assert(layer_func, "layer type '%s' not supported." % type)
return layer_func(name, **xargs)
@config_func
def ParameterHook(
type,
**kwargs):
def ParameterHook(type, **kwargs):
if type == 'pruning':
mask_filename = kwargs.get('mask_filename', None)
assert mask_filename is not None
......@@ -3080,30 +3009,28 @@ def ParameterHook(
@config_func
def Parameter(
name,
size,
device,
dims,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
sparse_update=None,
gradient_clipping_threshold=None,
sparse=None,
format=None,
need_compact=None,
is_static=None,
is_shared=None,
update_hooks=None
):
def Parameter(name,
size,
device,
dims,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
sparse_update=None,
gradient_clipping_threshold=None,
sparse=None,
format=None,
need_compact=None,
is_static=None,
is_shared=None,
update_hooks=None):
config_assert(name not in g_parameter_map,
'Duplicated parameter name: ' + name)
......@@ -3134,8 +3061,8 @@ def Parameter(
para.initial_std = default(initial_std, g_default_initial_std)
para.initial_mean = default(initial_mean, g_default_initial_mean)
num_batches_regularization = default(
num_batches_regularization, g_default_num_batches_regularization)
num_batches_regularization = default(num_batches_regularization,
g_default_num_batches_regularization)
if num_batches_regularization is not None:
para.num_batches_regularization = int(num_batches_regularization)
......@@ -3145,18 +3072,21 @@ def Parameter(
g_config.opt_config.use_sparse_remote_updater = True
if sparse_update is not None:
para.sparse_update = sparse_update
gradient_clipping_threshold = default(
gradient_clipping_threshold, g_default_gradient_clipping_threshold)
gradient_clipping_threshold = default(gradient_clipping_threshold,
g_default_gradient_clipping_threshold)
if gradient_clipping_threshold is not None:
para.gradient_clipping_threshold = gradient_clipping_threshold
para.initial_strategy = default(initial_strategy, g_default_initial_strategy)
para.initial_strategy = default(initial_strategy,
g_default_initial_strategy)
para.initial_smart = default(initial_smart, g_default_initial_smart)
if para.initial_smart:
para.initial_mean = 0.
if len(para.dims) != 0:
para.initial_std = 1. / math.sqrt(para.dims[0])
else:
print("Use initial_smart, but dims not set. Initial_smart may not be used in this layer")
print(
"Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
)
traceback.print_exc()
para.initial_std = 1. / math.sqrt(para.size)
if g_default_compact_func is not None:
......@@ -3195,64 +3125,78 @@ def default_initial_std(val):
global g_default_initial_std
g_default_initial_std = val
@config_func
def default_initial_mean(val):
global g_default_initial_mean
g_default_initial_mean = val
@config_func
def default_initial_strategy(val):
global g_default_initial_strategy
g_default_initial_strategy = val
@config_func
def default_initial_smart(val):
global g_default_initial_smart
g_default_initial_smart = val
@config_func
def default_momentum(val):
global g_default_momentum
g_default_momentum = val
@config_func
def default_decay_rate(val):
global g_default_decay_rate
g_default_decay_rate = val
@config_func
def default_num_batches_regularization(val):
global g_default_num_batches_regularization
g_default_num_batches_regularization = val
@config_func
def default_gradient_clipping_threshold(val):
global g_default_gradient_clipping_threshold
g_default_gradient_clipping_threshold = val
@config_func
def default_device(val):
global g_default_device
g_default_device = val
@config_func
def default_update_hooks(val):
global g_default_update_hooks
g_default_update_hooks = val
@config_func
def default_compact_func(val):
global g_default_compact_func
g_default_compact_func = val
def make_importer(config_dir, config_args):
def Import(config_file, local_args={}):
if not config_file.startswith('/'):
config_file = config_dir + '/' + config_file
g_config.config_files.append(config_file)
execfile(config_file, make_config_environment(config_file, config_args), local_args)
execfile(config_file,
make_config_environment(config_file, config_args), local_args)
return Import
settings = dict(
batch_size=None,
mini_batch_size=None,
......@@ -3281,26 +3225,24 @@ settings = dict(
ada_rou=0.95,
delta_add_rate=1.0,
shrink_parameter_value=0,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-8,
)
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-8, )
settings_deprecated = dict(
usage_ratio=1.,
)
settings_deprecated = dict(usage_ratio=1., )
trainer_settings = dict(
save_dir="./output/model",
init_model_path=None,
start_pass=0,
)
start_pass=0, )
@config_func
def Settings(**args):
for k, v in args.iteritems():
if k == "usage_ratio":
logger.warning("Deprecated: define usage_ratio in DataConfig instead")
logger.warning(
"Deprecated: define usage_ratio in DataConfig instead")
if g_config.HasField("data_config"):
g_config.data_config.__setattr__(k, v)
settings_deprecated[k] = v
......@@ -3312,10 +3254,12 @@ def Settings(**args):
else:
logger.fatal('Unkown setting: %s' % k)
@config_func
def cluster_config(**args):
pass
@config_func
def EnableSubmodelSuffix(flag=True):
"""
......@@ -3325,10 +3269,12 @@ def EnableSubmodelSuffix(flag=True):
global g_add_submodel_suffix
g_add_submodel_suffix = flag
def make_config_environment(config_file, config_args):
def make_setter(k):
def setter(v):
logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
return setter
funcs = {}
......@@ -3344,13 +3290,13 @@ def make_config_environment(config_file, config_args):
funcs.update(
Import=make_importer(config_dir, config_args),
get_config_arg=make_get_config_arg(config_args),
)
get_config_arg=make_get_config_arg(config_args), )
funcs.update(g_extended_config_funcs)
return funcs
def make_get_config_arg(config_args):
def get_config_arg(name, type, default=None):
if type == bool:
......@@ -3367,6 +3313,7 @@ def make_get_config_arg(config_args):
return get_config_arg
def importlib(name):
__import__(name)
return sys.modules[name]
......@@ -3379,10 +3326,12 @@ def find_caller():
return s[0], s[1], s[2]
return "(unknown file)", 0, "(unknown function)"
def my_fatal(s):
logger.critical(s)
raise Exception()
def parse_config(config_file, config_arg_str):
'''
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
......@@ -3420,7 +3369,7 @@ def parse_config(config_file, config_arg_str):
for k, v in settings.iteritems():
if v is None:
continue
g_config.opt_config.__setattr__(k, v);
g_config.opt_config.__setattr__(k, v)
for k, v in trainer_settings.iteritems():
if v is None:
......@@ -3447,6 +3396,7 @@ def parse_config_and_serialize(config_file, config_arg_str):
traceback.print_exc()
raise
if __name__ == '__main__':
try:
config = parse_config(sys.argv[1], '')
......
......@@ -17,11 +17,10 @@ from paddle.proto.DataConfig_pb2 import DataConfig
g_config = None
def SimpleData(
files=None,
feat_dim=None,
context_len=None,
buffer_capacity=None):
def SimpleData(files=None,
feat_dim=None,
context_len=None,
buffer_capacity=None):
data_config = DataConfig()
data_config.type = 'simple'
......@@ -33,6 +32,7 @@ def SimpleData(
data_config.buffer_capacity = buffer_capacity
return data_config
def get_config_funcs(trainer_config):
global g_config
g_config = trainer_config
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# recurrent_units.py
# Version 2.0
#
......@@ -22,161 +22,175 @@
from paddle.trainer.config_parser import *
# long short term memory, can be used in recurrent machine
# *inputs* must be a list of Projections, for example:
# inputs = [FullMatrixProjection("input_layer_name")],
# *para_prefix* defines parameter names, if the *para_prefix* of
# two LstmRecurrentUnit is same, they share same parameters
# *out_memory* can be defined outside if it's used outside
def LstmRecurrentUnit(name, size,
active_type, state_active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
out_memory = None):
def LstmRecurrentUnit(name,
size,
active_type,
state_active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
out_memory=None):
if para_prefix is None:
if para_prefix is None:
para_prefix = name
if out_memory is None:
out_memory = Memory(name = name, size = size)
out_memory = Memory(name=name, size=size)
state_memory = Memory(name=name + "_" + "state", size=size)
state_memory = Memory(name = name + "_" + "state", size = size)
Layer(
name = name + "_" + "input_recurrent",
type = "mixed",
size = size * 4, #(input_s, input_gate, forget_gate, output_gate)
error_clipping_threshold = error_clipping_threshold,
bias = Bias(initial_std = 0,
parameter_name = para_prefix + "_input_recurrent.b"),
inputs = inputs + [
FullMatrixProjection(out_memory,
parameter_name = para_prefix + "_input_recurrent.w"),
],
)
name=name + "_" + "input_recurrent",
type="mixed",
size=size * 4, #(input_s, input_gate, forget_gate, output_gate)
error_clipping_threshold=error_clipping_threshold,
bias=Bias(
initial_std=0, parameter_name=para_prefix + "_input_recurrent.b"),
inputs=inputs + [
FullMatrixProjection(
out_memory, parameter_name=para_prefix + "_input_recurrent.w"),
], )
LstmStepLayer(
name = name,
size = size,
bias = Bias(parameter_name = para_prefix + "_check.b"),
inputs = [name + "_" + "input_recurrent", state_memory],
active_type = active_type,
active_gate_type = gate_active_type,
active_state_type = state_active_type,
)
name=name,
size=size,
bias=Bias(parameter_name=para_prefix + "_check.b"),
inputs=[name + "_" + "input_recurrent", state_memory],
active_type=active_type,
active_gate_type=gate_active_type,
active_state_type=state_active_type, )
GetOutputLayer(
name = name + "_" + "state",
size = size,
inputs = Input(name, input_layer_argument = "state"),
)
def LstmRecurrentUnitNaive(name, size,
active_type, state_active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
out_memory = None):
if para_prefix is None:
name=name + "_" + "state",
size=size,
inputs=Input(
name, input_layer_argument="state"), )
def LstmRecurrentUnitNaive(name,
size,
active_type,
state_active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
out_memory=None):
if para_prefix is None:
para_prefix = name
if out_memory is None:
out_memory = Memory(name = name, size = size)
out_memory = Memory(name=name, size=size)
state_memory = Memory(name=name + "_" + "state", size=size)
state_memory = Memory(name = name + "_" + "state", size = size)
Layer(
name = name + "_" + "input_recurrent",
type = "mixed",
size = size * 4, #(input_s, input_gate, forget_gate, output_gate)
error_clipping_threshold = error_clipping_threshold,
bias = Bias(initial_std = 0,
parameter_name = para_prefix + "_input_recurrent.b"),
inputs = inputs + [
FullMatrixProjection(out_memory,
parameter_name = para_prefix + "_input_recurrent.w"),
],
)
name=name + "_" + "input_recurrent",
type="mixed",
size=size * 4, #(input_s, input_gate, forget_gate, output_gate)
error_clipping_threshold=error_clipping_threshold,
bias=Bias(
initial_std=0, parameter_name=para_prefix + "_input_recurrent.b"),
inputs=inputs + [
FullMatrixProjection(
out_memory, parameter_name=para_prefix + "_input_recurrent.w"),
], )
ExpressionLayer(
name = name + "_" + "input_s",
size = size,
active_type = active_type,
inputs = [IdentityOffsetProjection(name + "_" + "input_recurrent", offset=0)],
)
name=name + "_" + "input_s",
size=size,
active_type=active_type,
inputs=[
IdentityOffsetProjection(
name + "_" + "input_recurrent", offset=0)
], )
ExpressionLayer(
name = name + "_" + "input_gate",
active_type = gate_active_type,
inputs = [IdentityOffsetProjection(name + "_" + "input_recurrent", offset=size),
DotMulProjection(state_memory,
parameter_name = para_prefix + "_input_check.w")],
)
name=name + "_" + "input_gate",
active_type=gate_active_type,
inputs=[
IdentityOffsetProjection(
name + "_" + "input_recurrent", offset=size), DotMulProjection(
state_memory, parameter_name=para_prefix + "_input_check.w")
], )
ExpressionLayer(
name = name + "_" + "forget_gate",
active_type = gate_active_type,
inputs = [IdentityOffsetProjection(name + "_" + "input_recurrent", offset=size*2),
DotMulProjection(state_memory,
parameter_name = para_prefix + "_forget_check.w")],
)
name=name + "_" + "forget_gate",
active_type=gate_active_type,
inputs=[
IdentityOffsetProjection(
name + "_" + "input_recurrent", offset=size * 2),
DotMulProjection(
state_memory, parameter_name=para_prefix + "_forget_check.w")
], )
ExpressionLayer(
name = name + "_" + "state",
inputs = [DotMulOperator([name + "_" + "input_s",
name + "_" + "input_gate"]),
DotMulOperator([state_memory,
name + "_" + "forget_gate"]),
],
)
name=name + "_" + "state",
inputs=[
DotMulOperator([name + "_" + "input_s", name + "_" + "input_gate"]),
DotMulOperator([state_memory, name + "_" + "forget_gate"]),
], )
ExpressionLayer(
name = name + "_" + "output_gate",
active_type = gate_active_type,
inputs = [IdentityOffsetProjection(name + "_" + "input_recurrent", offset=size*3),
DotMulProjection(name + "_" + "state",
parameter_name = para_prefix + "_output_check.w")],
)
name=name + "_" + "output_gate",
active_type=gate_active_type,
inputs=[
IdentityOffsetProjection(
name + "_" + "input_recurrent", offset=size * 3),
DotMulProjection(
name + "_" + "state",
parameter_name=para_prefix + "_output_check.w")
], )
ExpressionLayer(
name = name + "_" + "state_atv",
active_type = state_active_type,
inputs = IdentityProjection(name + "_" + "state"),
)
name=name + "_" + "state_atv",
active_type=state_active_type,
inputs=IdentityProjection(name + "_" + "state"), )
ExpressionLayer(
name = name,
inputs = DotMulOperator([name + "_" + "state_atv",
name + "_" + "output_gate"]),
)
name=name,
inputs=DotMulOperator(
[name + "_" + "state_atv", name + "_" + "output_gate"]), )
# like LstmRecurrentUnit, but it's a layer group.
# it is equivalent to LstmLayer
def LstmRecurrentLayerGroup(name, size,
active_type, state_active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
seq_reversed = False):
def LstmRecurrentLayerGroup(name,
size,
active_type,
state_active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
seq_reversed=False):
input_layer_name = name + "_" + "transform_input"
Layer(
name = input_layer_name,
type = "mixed",
size = size * 4,
active_type = "",
bias = False,
inputs = inputs,
)
RecurrentLayerGroupBegin(name + "_layer_group",
in_links = [input_layer_name],
out_links = [name],
seq_reversed = seq_reversed)
name=input_layer_name,
type="mixed",
size=size * 4,
active_type="",
bias=False,
inputs=inputs, )
RecurrentLayerGroupBegin(
name + "_layer_group",
in_links=[input_layer_name],
out_links=[name],
seq_reversed=seq_reversed)
LstmRecurrentUnit(
name = name,
size = size,
active_type = active_type,
state_active_type = state_active_type,
gate_active_type = gate_active_type,
inputs = [IdentityProjection(input_layer_name)],
para_prefix = para_prefix,
error_clipping_threshold = error_clipping_threshold,
)
name=name,
size=size,
active_type=active_type,
state_active_type=state_active_type,
gate_active_type=gate_active_type,
inputs=[IdentityProjection(input_layer_name)],
para_prefix=para_prefix,
error_clipping_threshold=error_clipping_threshold, )
RecurrentLayerGroupEnd(name + "_layer_group")
# gated recurrent unit, can be used in recurrent machine
# *inputs* should be a list of Projections, for example:
# inputs = [FullMatrixProjection("input_layer_name")],
......@@ -184,142 +198,157 @@ def LstmRecurrentLayerGroup(name, size,
# two GatedRecurrentUnit is same, they share same parameters
# *out_memory* can be defined outside if it's used outside
def GatedRecurrentUnit(name, size,
active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
out_memory = None):
if type_of(inputs) == str: #only used by GatedRecurrentLayerGroup
def GatedRecurrentUnit(name,
size,
active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
out_memory=None):
if type_of(inputs) == str: #only used by GatedRecurrentLayerGroup
input_layer_name = inputs
else:
input_layer_name = name + "_" + "transform_input"
Layer(
name = input_layer_name,
type = "mixed",
size = size * 3,
active_type = "",
bias = False,
inputs = inputs,
)
if para_prefix is None:
name=input_layer_name,
type="mixed",
size=size * 3,
active_type="",
bias=False,
inputs=inputs, )
if para_prefix is None:
para_prefix = name
if out_memory is None:
out_memory = Memory(name = name, size = size)
out_memory = Memory(name=name, size=size)
GruStepLayer(
name = name,
size = size,
bias = Bias(parameter_name = para_prefix + "_gate.b"),
inputs = [input_layer_name,
Input(out_memory, parameter_name = para_prefix + "_gate.w")],
active_type = active_type,
active_gate_type = gate_active_type,
)
def GatedRecurrentUnitNaive(name, size,
active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
out_memory = None):
if type_of(inputs) == str: #only used by GatedRecurrentLayerGroup
name=name,
size=size,
bias=Bias(parameter_name=para_prefix + "_gate.b"),
inputs=[
input_layer_name, Input(
out_memory, parameter_name=para_prefix + "_gate.w")
],
active_type=active_type,
active_gate_type=gate_active_type, )
def GatedRecurrentUnitNaive(name,
size,
active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
out_memory=None):
if type_of(inputs) == str: #only used by GatedRecurrentLayerGroup
input_layer_name = inputs
else:
input_layer_name = name + "_" + "transform_input"
Layer(
name = input_layer_name,
type = "mixed",
size = size * 3,
active_type = "",
bias = False,
inputs = inputs,
)
if para_prefix is None:
name=input_layer_name,
type="mixed",
size=size * 3,
active_type="",
bias=False,
inputs=inputs, )
if para_prefix is None:
para_prefix = name
if out_memory is None:
out_memory = Memory(name = name, size = size)
out_memory = Memory(name=name, size=size)
Layer(
name = name + "_" + "update_gate",
type = "mixed",
size = size,
active_type = gate_active_type,
error_clipping_threshold = error_clipping_threshold,
bias = Bias(initial_std = 0, parameter_name = para_prefix + "_update_gate.b"),
inputs = [IdentityOffsetProjection(input_layer_name, offset=0),
FullMatrixProjection(out_memory,
parameter_name = para_prefix + "_update_gate.w")],
)
name=name + "_" + "update_gate",
type="mixed",
size=size,
active_type=gate_active_type,
error_clipping_threshold=error_clipping_threshold,
bias=Bias(
initial_std=0, parameter_name=para_prefix + "_update_gate.b"),
inputs=[
IdentityOffsetProjection(
input_layer_name, offset=0), FullMatrixProjection(
out_memory, parameter_name=para_prefix + "_update_gate.w")
], )
Layer(
name = name + "_" + "reset_gate",
type = "mixed",
size = size,
active_type = gate_active_type,
error_clipping_threshold = error_clipping_threshold,
bias = Bias(initial_std = 0, parameter_name = para_prefix + "_reset_gate.b"),
inputs = [IdentityOffsetProjection(input_layer_name, offset=size),
FullMatrixProjection(out_memory,
parameter_name = para_prefix + "_reset_gate.w")],
)
name=name + "_" + "reset_gate",
type="mixed",
size=size,
active_type=gate_active_type,
error_clipping_threshold=error_clipping_threshold,
bias=Bias(
initial_std=0, parameter_name=para_prefix + "_reset_gate.b"),
inputs=[
IdentityOffsetProjection(
input_layer_name, offset=size), FullMatrixProjection(
out_memory, parameter_name=para_prefix + "_reset_gate.w")
], )
ExpressionLayer(
name = name + "_" + "reset_output",
inputs = DotMulOperator([out_memory, name + "_" + "reset_gate"]),
)
name=name + "_" + "reset_output",
inputs=DotMulOperator([out_memory, name + "_" + "reset_gate"]), )
Layer(
name = name + "_" + "output_candidate",
type = "mixed",
size = size,
active_type = active_type,
error_clipping_threshold = error_clipping_threshold,
bias = Bias(initial_std = 0, parameter_name = para_prefix + "_output_candidate.b"),
inputs = [IdentityOffsetProjection(input_layer_name, offset=size*2),
FullMatrixProjection(name + "_" + "reset_output",
parameter_name = para_prefix + "_output_candidate.w")],
)
ExpressionLayer( #element-wise interpolation
name = name,
inputs = [IdentityProjection(out_memory),
DotMulOperator([out_memory,
name + "_" + "update_gate"], scale=-1.0),
DotMulOperator([name + "_" + "output_candidate",
name + "_" + "update_gate"]),
],
)
name=name + "_" + "output_candidate",
type="mixed",
size=size,
active_type=active_type,
error_clipping_threshold=error_clipping_threshold,
bias=Bias(
initial_std=0, parameter_name=para_prefix + "_output_candidate.b"),
inputs=[
IdentityOffsetProjection(
input_layer_name, offset=size * 2), FullMatrixProjection(
name + "_" + "reset_output",
parameter_name=para_prefix + "_output_candidate.w")
], )
ExpressionLayer( #element-wise interpolation
name=name,
inputs=[
IdentityProjection(out_memory),
DotMulOperator(
[out_memory, name + "_" + "update_gate"], scale=-1.0),
DotMulOperator(
[name + "_" + "output_candidate", name + "_" + "update_gate"]),
], )
# like GatedRecurrentUnit, but it's a layer group.
# it is equivalent to GatedRecurrentLayer.
def GatedRecurrentLayerGroup(name, size,
active_type, gate_active_type,
inputs, para_prefix = None,
error_clipping_threshold = 0,
seq_reversed = False):
def GatedRecurrentLayerGroup(name,
size,
active_type,
gate_active_type,
inputs,
para_prefix=None,
error_clipping_threshold=0,
seq_reversed=False):
input_layer_name = name + "_" + "transform_input"
Layer(
name = input_layer_name,
type = "mixed",
size = size * 3,
active_type = "",
bias = False,
inputs = inputs,
)
RecurrentLayerGroupBegin(name + "_layer_group",
in_links = [input_layer_name],
out_links = [name],
seq_reversed = seq_reversed)
name=input_layer_name,
type="mixed",
size=size * 3,
active_type="",
bias=False,
inputs=inputs, )
RecurrentLayerGroupBegin(
name + "_layer_group",
in_links=[input_layer_name],
out_links=[name],
seq_reversed=seq_reversed)
GatedRecurrentUnit(
name = name,
size = size,
active_type = active_type,
gate_active_type = gate_active_type,
inputs = input_layer_name, #transform outside
para_prefix = para_prefix,
error_clipping_threshold = error_clipping_threshold,
)
name=name,
size=size,
active_type=active_type,
gate_active_type=gate_active_type,
inputs=input_layer_name, #transform outside
para_prefix=para_prefix,
error_clipping_threshold=error_clipping_threshold, )
RecurrentLayerGroupEnd(name + "_layer_group")
......@@ -12,13 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ["TanhActivation", "SigmoidActivation",
"SoftmaxActivation", "IdentityActivation", "LinearActivation",
'SequenceSoftmaxActivation', 'ExpActivation',
"ReluActivation", "BReluActivation", "SoftReluActivation",
"STanhActivation",
"AbsActivation", "SquareActivation",
"BaseActivation"]
__all__ = [
"TanhActivation", "SigmoidActivation", "SoftmaxActivation",
"IdentityActivation", "LinearActivation", 'SequenceSoftmaxActivation',
'ExpActivation', "ReluActivation", "BReluActivation", "SoftReluActivation",
"STanhActivation", "AbsActivation", "SquareActivation", "BaseActivation"
]
class BaseActivation(object):
......@@ -51,7 +50,8 @@ class TanhActivation(BaseActivation):
f(z)=tanh(z)=\\frac{e^z-e^{-z}}{e^z+e^{-z}}
"""
def __init__(self): BaseActivation.__init__(self, 'tanh', True)
def __init__(self):
BaseActivation.__init__(self, 'tanh', True)
class SigmoidActivation(BaseActivation):
......@@ -63,7 +63,8 @@ class SigmoidActivation(BaseActivation):
f(z) = \\frac{1}{1+exp(-z)}
"""
def __init__(self): BaseActivation.__init__(self, 'sigmoid', True)
def __init__(self):
BaseActivation.__init__(self, 'sigmoid', True)
class SoftmaxActivation(BaseActivation):
......@@ -104,7 +105,8 @@ class IdentityActivation(BaseActivation):
Just do nothing for output both forward/backward.
"""
def __init__(self): BaseActivation.__init__(self, '', False)
def __init__(self):
BaseActivation.__init__(self, '', False)
LinearActivation = IdentityActivation
......@@ -124,7 +126,8 @@ class ReluActivation(BaseActivation):
0 &\\quad\\mathrm{otherwize}
"""
def __init__(self): BaseActivation.__init__(self, 'relu', True)
def __init__(self):
BaseActivation.__init__(self, 'relu', True)
class BReluActivation(BaseActivation):
......@@ -141,7 +144,8 @@ class BReluActivation(BaseActivation):
0 &\\quad \\mathrm{otherwise}
"""
def __init__(self): BaseActivation.__init__(self, 'brelu', False)
def __init__(self):
BaseActivation.__init__(self, 'brelu', False)
class SoftReluActivation(BaseActivation):
......@@ -149,7 +153,9 @@ class SoftReluActivation(BaseActivation):
SoftRelu Activation.
"""
def __init__(self): BaseActivation.__init__(self, 'softrelu', False)
def __init__(self):
BaseActivation.__init__(self, 'softrelu', False)
class STanhActivation(BaseActivation):
"""
......@@ -160,7 +166,8 @@ class STanhActivation(BaseActivation):
f(z) = 1.7159 * tanh(2/3*z)
"""
def __init__(self): BaseActivation.__init__(self, 'stanh', False)
def __init__(self):
BaseActivation.__init__(self, 'stanh', False)
class AbsActivation(BaseActivation):
......@@ -178,7 +185,8 @@ class AbsActivation(BaseActivation):
0 &\\quad if \\quad z = 0
"""
def __init__(self): BaseActivation.__init__(self, 'abs', False)
def __init__(self):
BaseActivation.__init__(self, 'abs', False)
class SquareActivation(BaseActivation):
......@@ -189,7 +197,9 @@ class SquareActivation(BaseActivation):
f(z) = z^2.
"""
def __init__(self): BaseActivation.__init__(self, 'square', False)
def __init__(self):
BaseActivation.__init__(self, 'square', False)
class ExpActivation(BaseActivation):
"""
......@@ -198,7 +208,10 @@ class ExpActivation(BaseActivation):
.. math::
f(z) = e^z.
"""
def __init__(self): BaseActivation.__init__(self, 'exponential', False)
def __init__(self):
BaseActivation.__init__(self, 'exponential', False)
class LogActivation(BaseActivation):
"""
......@@ -207,4 +220,6 @@ class LogActivation(BaseActivation):
.. math::
f(z) = log(z)
"""
def __init__(self): BaseActivation.__init__(self, 'log', False)
def __init__(self):
BaseActivation.__init__(self, 'log', False)
......@@ -13,8 +13,9 @@
# limitations under the License.
from paddle.trainer.config_parser import *
__all__ = ['ParamAttr', 'ExtraAttr', 'ParameterAttribute',
'ExtraLayerAttribute']
__all__ = [
'ParamAttr', 'ExtraAttr', 'ParameterAttribute', 'ExtraLayerAttribute'
]
def convert_and_compare(x, Type):
......@@ -25,7 +26,8 @@ def convert_and_compare(x, Type):
:param Type: target type to check x over
"""
return type(x)(Type(x))==x
return type(x)(Type(x)) == x
def is_compatible_with(x, Type):
"""
......@@ -38,9 +40,9 @@ def is_compatible_with(x, Type):
return True
try:
if float == Type or int == Type:
# avoid those types that can be converted to float/int but not very
# meaningful and could potentially lead to error
# i.e., str and bool typed value should not be used for initializing float/int variable
# avoid those types that can be converted to float/int but not very
# meaningful and could potentially lead to error
# i.e., str and bool typed value should not be used for initializing float/int variable
if not isinstance(x, str) and not isinstance(x, bool):
return convert_and_compare(x, Type)
elif bool == Type:
......@@ -91,9 +93,17 @@ class ParameterAttribute(object):
:type sparse_update: bool
"""
def __init__(self, name=None, is_static=False, initial_std=None,
initial_mean=None, initial_max=None, initial_min=None,
l1_rate=None, l2_rate=None, learning_rate=None, momentum=None,
def __init__(self,
name=None,
is_static=False,
initial_std=None,
initial_mean=None,
initial_max=None,
initial_min=None,
l1_rate=None,
l2_rate=None,
learning_rate=None,
momentum=None,
sparse_update=False):
# initialize strategy.
if is_static:
......@@ -183,7 +193,10 @@ class ExtraLayerAttribute(object):
:type device: int
"""
def __init__(self, error_clipping_threshold=None, drop_rate=None, device=None):
def __init__(self,
error_clipping_threshold=None,
drop_rate=None,
device=None):
self.attr = dict()
if isinstance(error_clipping_threshold, float):
assert error_clipping_threshold > 0
......@@ -200,8 +213,8 @@ class ExtraLayerAttribute(object):
for key in self.attr:
if not hasattr(self, 'can_%s' % key) or \
not getattr(self, 'can_%s' % key):
raise NotImplementedError(
"Layer %s cannot support %s" % (layer_name, key))
raise NotImplementedError("Layer %s cannot support %s" %
(layer_name, key))
@staticmethod
def to_kwargs(attr):
......
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Data Sources are helpers to define paddle training data or testing data.
"""
......@@ -26,8 +25,12 @@ except ImportError:
__all__ = ['define_py_data_sources2']
def define_py_data_source(file_list, cls, module,
obj, args=None, async=False,
def define_py_data_source(file_list,
cls,
module,
obj,
args=None,
async=False,
data_cls=PyData):
"""
Define a python data source.
......@@ -76,8 +79,9 @@ def define_py_data_source(file_list, cls, module,
args = pickle.dumps(args, 0)
if data_cls is None:
def py_data2(files, load_data_module, load_data_object, load_data_args,
**kwargs):
**kwargs):
data = DataBase()
data.type = 'py2'
data.files = files
......@@ -86,17 +90,25 @@ def define_py_data_source(file_list, cls, module,
data.load_data_args = load_data_args
data.async_load_data = True
return data
data_cls = py_data2
cls(data_cls(files=file_list,
load_data_module=module,
load_data_object=obj,
load_data_args=args,
async_load_data=async))
data_cls = py_data2
def define_py_data_sources(train_list, test_list, module, obj, args=None,
train_async=False, data_cls=PyData):
cls(
data_cls(
files=file_list,
load_data_module=module,
load_data_object=obj,
load_data_args=args,
async_load_data=async))
def define_py_data_sources(train_list,
test_list,
module,
obj,
args=None,
train_async=False,
data_cls=PyData):
"""
The annotation is almost the same as define_py_data_sources2, except that
it can specific train_async and data_cls.
......@@ -125,8 +137,8 @@ def define_py_data_sources(train_list, test_list, module, obj, args=None,
"""
def __is_splitable__(o):
return (isinstance(o, list) or isinstance(o, tuple)
) and hasattr(o, '__len__') and len(o) == 2
return (isinstance(o, list) or
isinstance(o, tuple)) and hasattr(o, '__len__') and len(o) == 2
assert train_list is not None or test_list is not None
assert module is not None and obj is not None
......@@ -196,9 +208,10 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
:return: None
:rtype: None
"""
define_py_data_sources(train_list=train_list,
test_list=test_list,
module=module,
obj=obj,
args=args,
data_cls=None)
define_py_data_sources(
train_list=train_list,
test_list=test_list,
module=module,
obj=obj,
args=args,
data_cls=None)
......@@ -18,16 +18,18 @@ from .attrs import ParamAttr
from .activations import TanhActivation
from paddle.trainer.config_parser import *
__all__ = ['wrap_name_default', 'wrap_param_attr_default',
'wrap_bias_attr_default', 'wrap_act_default',
'wrap_param_default']
__all__ = [
'wrap_name_default', 'wrap_param_attr_default', 'wrap_bias_attr_default',
'wrap_act_default', 'wrap_param_default'
]
def __default_not_set_callback__(kwargs, name):
return name not in kwargs or kwargs[name] is None
def wrap_param_default(param_names=None, default_factory=None,
def wrap_param_default(param_names=None,
default_factory=None,
not_set_callback=__default_not_set_callback__):
assert param_names is not None
assert isinstance(param_names, list) or isinstance(param_names, tuple)
......@@ -43,7 +45,8 @@ def wrap_param_default(param_names=None, default_factory=None,
if argspec.defaults:
num_positional -= len(argspec.defaults)
if not argspec.varargs and len(args) > num_positional:
logger.fatal("Must use keyword arguments for non-positional args")
logger.fatal(
"Must use keyword arguments for non-positional args")
for name in param_names:
if not_set_callback(kwargs, name): # Not set
kwargs[name] = default_factory(func)
......@@ -112,13 +115,13 @@ def wrap_param_attr_default(param_names=None, default_factory=None):
return wrap_param_default(param_names, default_factory)
def wrap_bias_attr_default(param_names=None, default_factory=None,
def wrap_bias_attr_default(param_names=None,
default_factory=None,
has_bias=True):
if param_names is None:
param_names = ['bias_attr']
if default_factory is None:
default_factory = lambda _: ParamAttr(initial_std=0.,
initial_mean=0.)
default_factory = lambda _: ParamAttr(initial_std=0., initial_mean=0.)
def __bias_attr_not_set__(kwargs, name):
if has_bias:
......
......@@ -15,13 +15,14 @@
from paddle.trainer.config_parser import *
from default_decorators import *
__all__ = ["evaluator_base","classification_error_evaluator", "auc_evaluator",
"pnpair_evaluator", "precision_recall_evaluator",
"ctc_error_evaluator", "chunk_evaluator", "sum_evaluator",
"column_sum_evaluator", "value_printer_evaluator",
"gradient_printer_evaluator", "maxid_printer_evaluator",
"maxframe_printer_evaluator", "seqtext_printer_evaluator",
"classification_error_printer_evaluator"]
__all__ = [
"evaluator_base", "classification_error_evaluator", "auc_evaluator",
"pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator",
"chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
"value_printer_evaluator", "gradient_printer_evaluator",
"maxid_printer_evaluator", "maxframe_printer_evaluator",
"seqtext_printer_evaluator", "classification_error_printer_evaluator"
]
class EvaluatorAttribute(object):
......@@ -32,10 +33,7 @@ class EvaluatorAttribute(object):
FOR_UTILS = 1 << 4
KEYS = [
"for_classification",
"for_regression",
"for_rank",
"for_print",
"for_classification", "for_regression", "for_rank", "for_print",
"for_utils"
]
......@@ -55,22 +53,23 @@ def evaluator(*attrs):
setattr(method, EvaluatorAttribute.to_key(attr), True)
method.is_evaluator = True
return method
return impl
def evaluator_base(
input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None):
def evaluator_base(input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None):
"""
Evaluator will evaluate the network status while training/testing.
......@@ -130,14 +129,14 @@ def evaluator_base(
result_file=result_file,
delimited=delimited)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def classification_error_evaluator(
input,
label,
name=None,
weight=None,
threshold=None):
def classification_error_evaluator(input,
label,
name=None,
weight=None,
threshold=None):
"""
Classification Error Evaluator. It will print error rate for classification.
......@@ -170,13 +169,14 @@ def classification_error_evaluator(
:return: None.
"""
evaluator_base(name=name,
type="classification_error",
input=input,
label=label,
weight=weight,
classification_threshold=threshold,
)
evaluator_base(
name=name,
type="classification_error",
input=input,
label=label,
weight=weight,
classification_threshold=threshold, )
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
......@@ -184,8 +184,7 @@ def auc_evaluator(
input,
label,
name=None,
weight=None,
):
weight=None, ):
"""
Auc Evaluator which adapts to binary classification.
......@@ -205,11 +204,13 @@ def auc_evaluator(
[sample_num, 1].
:type weight: LayerOutput
"""
evaluator_base(name=name,
type="last-column-auc",
input=input,
label=label,
weight=weight)
evaluator_base(
name=name,
type="last-column-auc",
input=input,
label=label,
weight=weight)
@evaluator(EvaluatorAttribute.FOR_RANK)
@wrap_name_default()
......@@ -218,8 +219,7 @@ def pnpair_evaluator(
label,
info,
name=None,
weight=None,
):
weight=None, ):
"""
Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.
......@@ -242,12 +242,14 @@ def pnpair_evaluator(
[sample_num, 1]. (TODO, explaination)
:type weight: LayerOutput
"""
evaluator_base(name=name,
type="pnpair",
input=input,
label=label,
info=info,
weight=weight)
evaluator_base(
name=name,
type="pnpair",
input=input,
label=label,
info=info,
weight=weight)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
......@@ -256,8 +258,7 @@ def precision_recall_evaluator(
label,
positive_label=None,
weight=None,
name=None,
):
name=None, ):
"""
An Evaluator to calculate precision and recall, F1-score.
It is adapt to the task with multiple labels.
......@@ -286,20 +287,21 @@ def precision_recall_evaluator(
[sample_num, 1]. (TODO, explaination)
:type weight: LayerOutput
"""
evaluator_base(name=name,
type="precision_recall",
input=input,
label=label,
positive_label=positive_label,
weight=weight)
evaluator_base(
name=name,
type="precision_recall",
input=input,
label=label,
positive_label=positive_label,
weight=weight)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def ctc_error_evaluator(
input,
label,
name=None,
):
name=None, ):
"""
This evaluator is to calculate sequence-to-sequence edit distance.
......@@ -317,10 +319,9 @@ def ctc_error_evaluator(
label for ctc_layer
:type label: LayerOutput
"""
evaluator_base(name=name,
type="ctc_edit_distance",
input=input,
label=label)
evaluator_base(
name=name, type="ctc_edit_distance", input=input, label=label)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
......@@ -328,8 +329,7 @@ def chunk_evaluator(
input,
name=None,
chunk_scheme=None,
num_chunk_types=None,
):
num_chunk_types=None, ):
"""
Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.
......@@ -375,19 +375,20 @@ def chunk_evaluator(
:type chunk_scheme: basestring
:param num_chunk_types: number of chunk types other than "other"
"""
evaluator_base(name=name,
type="chunk",
input=input,
chunk_scheme=chunk_scheme,
num_chunk_types=num_chunk_types)
evaluator_base(
name=name,
type="chunk",
input=input,
chunk_scheme=chunk_scheme,
num_chunk_types=num_chunk_types)
@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def sum_evaluator(
input,
name=None,
weight=None,
):
weight=None, ):
"""
An Evaluator to sum the result of input.
......@@ -405,18 +406,15 @@ def sum_evaluator(
[sample_num, 1]. (TODO, explaination)
:type weight: LayerOutput
"""
evaluator_base(name=name,
type="sum",
input=input,
weight=weight)
evaluator_base(name=name, type="sum", input=input, weight=weight)
@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def column_sum_evaluator(
input,
name=None,
weight=None,
):
weight=None, ):
"""
This Evaluator is used to sum the last column of input.
......@@ -431,22 +429,22 @@ def column_sum_evaluator(
:param input: Input Layer name.
:type input: LayerOutput
"""
evaluator_base(name=name,
type="last-column-sum",
input=input,
weight=weight)
evaluator_base(
name=name, type="last-column-sum", input=input, weight=weight)
"""
The following are printer Evaluators which are usually used to
print the result, like value or gradient of input layers, the
results generated in machine translation, the classification error etc.
"""
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def value_printer_evaluator(
input,
name=None,
):
name=None, ):
"""
This Evaluator is used to print the values of input layers. It contains
one or more input layers.
......@@ -462,16 +460,14 @@ def value_printer_evaluator(
:param name: Evaluator name.
:type name: None|basestring
"""
evaluator_base(name=name,
type="value_printer",
input=input)
evaluator_base(name=name, type="value_printer", input=input)
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def gradient_printer_evaluator(
input,
name=None,
):
name=None, ):
"""
This Evaluator is used to print the gradient of input layers. It contains
one or more input layers.
......@@ -487,17 +483,15 @@ def gradient_printer_evaluator(
:param name: Evaluator name.
:type name: None|basestring
"""
evaluator_base(name=name,
type="gradient_printer",
input=input)
evaluator_base(name=name, type="gradient_printer", input=input)
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxid_printer_evaluator(
input,
num_results=None,
name=None,
):
name=None, ):
"""
This Evaluator is used to print maximum top k values and their indexes
of each row of input layers. It contains one or more input layers.
......@@ -517,18 +511,16 @@ def maxid_printer_evaluator(
:param name: Evaluator name.
:type name: None|basestring
"""
evaluator_base(name=name,
type="max_id_printer",
input=input,
num_results=num_results)
evaluator_base(
name=name, type="max_id_printer", input=input, num_results=num_results)
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxframe_printer_evaluator(
input,
num_results=None,
name=None,
):
name=None, ):
"""
This Evaluator is used to print the top k frames of each input layers.
The input layers should contain sequences info or sequences type.
......@@ -549,10 +541,12 @@ def maxframe_printer_evaluator(
:param name: Evaluator name.
:type name: None|basestring
"""
evaluator_base(name=name,
type="max_frame_printer",
input=input,
num_results=num_results)
evaluator_base(
name=name,
type="max_frame_printer",
input=input,
num_results=num_results)
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
......@@ -562,8 +556,7 @@ def seqtext_printer_evaluator(
id_input=None,
dict_file=None,
delimited=None,
name=None,
):
name=None, ):
"""
Sequence text printer will print text according to index matrix and a
dictionary. There can be multiple input to this layer:
......@@ -636,12 +629,14 @@ def seqtext_printer_evaluator(
inputs = [id_input, input]
input.parents.append(id_input)
evaluator_base(name=name,
type="seq_text_printer",
input=inputs,
dict_file=dict_file,
result_file=result_file,
delimited=delimited)
evaluator_base(
name=name,
type="seq_text_printer",
input=inputs,
dict_file=dict_file,
result_file=result_file,
delimited=delimited)
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
......@@ -649,8 +644,7 @@ def classification_error_printer_evaluator(
input,
label,
threshold=0.5,
name=None,
):
name=None, ):
"""
This Evaluator is used to print the classification error of each sample.
......@@ -667,8 +661,9 @@ def classification_error_printer_evaluator(
:param name: Evaluator name.
:type name: None|basestring
"""
evaluator_base(name=name,
type="classification_error_printer",
input=input,
label=label,
classification_threshold=threshold)
evaluator_base(
name=name,
type="classification_error_printer",
input=input,
label=label,
classification_threshold=threshold)
......@@ -29,36 +29,83 @@ except ImportError:
import pickle
import copy
__all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel",
"identity_projection", "dotmul_projection", "dotmul_operator",
"repeat_layer",
"table_projection", "mixed_layer", "data_layer",
"embedding_layer", "fc_layer", "grumemory",
"pooling_layer", "lstmemory", "last_seq", "first_seq",
"cos_sim", "hsigmoid", "conv_projection",
"regression_cost", 'classification_cost', "LayerOutput",
'img_conv_layer', 'img_pool_layer', 'batch_norm_layer',
'img_cmrnorm_layer', 'addto_layer',
'concat_layer', 'lstm_step_layer', 'recurrent_group',
'memory', 'StaticInput', 'expand_layer', 'scaling_layer',
'power_layer', 'interpolation_layer', 'bilinear_interp_layer',
'trans_layer', 'sum_to_one_norm_layer',
'get_output_layer', 'LayerType', 'context_projection',
'beam_search', 'maxid_layer', 'GeneratedInput', 'SubsequenceInput',
'gru_step_layer', 'recurrent_layer',
'BaseGeneratedInput', 'conv_operator', 'conv_shift_layer',
'tensor_layer', 'selective_fc_layer', 'sampling_id_layer',
'slope_intercept_layer', 'trans_full_matrix_projection',
'linear_comb_layer',
'convex_comb_layer', 'ctc_layer', 'crf_layer', 'crf_decoding_layer',
'nce_layer',
'cross_entropy_with_selfnorm', 'cross_entropy',
'multi_binary_label_cross_entropy', 'sum_cost',
'rank_cost', 'lambda_cost', 'huber_cost',
'block_expand_layer',
'maxout_layer', 'out_prod_layer', 'print_layer',
'spp_layer',
]
__all__ = [
"full_matrix_projection",
"AggregateLevel",
"ExpandLevel",
"identity_projection",
"dotmul_projection",
"dotmul_operator",
"repeat_layer",
"table_projection",
"mixed_layer",
"data_layer",
"embedding_layer",
"fc_layer",
"grumemory",
"pooling_layer",
"lstmemory",
"last_seq",
"first_seq",
"cos_sim",
"hsigmoid",
"conv_projection",
"regression_cost",
'classification_cost',
"LayerOutput",
'img_conv_layer',
'img_pool_layer',
'batch_norm_layer',
'img_cmrnorm_layer',
'addto_layer',
'concat_layer',
'lstm_step_layer',
'recurrent_group',
'memory',
'StaticInput',
'expand_layer',
'scaling_layer',
'power_layer',
'interpolation_layer',
'bilinear_interp_layer',
'trans_layer',
'sum_to_one_norm_layer',
'get_output_layer',
'LayerType',
'context_projection',
'beam_search',
'maxid_layer',
'GeneratedInput',
'SubsequenceInput',
'gru_step_layer',
'recurrent_layer',
'BaseGeneratedInput',
'conv_operator',
'conv_shift_layer',
'tensor_layer',
'selective_fc_layer',
'sampling_id_layer',
'slope_intercept_layer',
'trans_full_matrix_projection',
'linear_comb_layer',
'convex_comb_layer',
'ctc_layer',
'crf_layer',
'crf_decoding_layer',
'nce_layer',
'cross_entropy_with_selfnorm',
'cross_entropy',
'multi_binary_label_cross_entropy',
'sum_cost',
'rank_cost',
'lambda_cost',
'huber_cost',
'block_expand_layer',
'maxout_layer',
'out_prod_layer',
'print_layer',
'spp_layer',
]
class LayerType(object):
......@@ -181,8 +228,15 @@ class LayerOutput(object):
:type parents: list|tuple|collections.Sequence
"""
def __init__(self, name, layer_type, parents=None, activation=None,
num_filters=None, img_norm_type=None, size=None, outputs=None,
def __init__(self,
name,
layer_type,
parents=None,
activation=None,
num_filters=None,
img_norm_type=None,
size=None,
outputs=None,
reverse=None):
assert isinstance(name, basestring)
assert isinstance(layer_type, basestring)
......@@ -223,6 +277,7 @@ DEVICE = 'device'
def layer_support(*attrs):
attrs_list = list(attrs)
attrs_list.append(DEVICE)
def decorator(method):
@functools.wraps(method)
def wrapper(*args, **kwargs):
......@@ -282,9 +337,8 @@ def full_matrix_projection(input, size=0, param_attr=None):
:return: A FullMatrixProjection Object.
:rtype: FullMatrixProjection
"""
proj = FullMatrixProjection(input_layer_name=input.name,
size=size,
**param_attr.attr)
proj = FullMatrixProjection(
input_layer_name=input.name, size=size, **param_attr.attr)
proj.origin = input
return proj
......@@ -319,9 +373,8 @@ def trans_full_matrix_projection(input, size=0, param_attr=None):
:return: A TransposedFullMatrixProjection Object.
:rtype: TransposedFullMatrixProjection
"""
proj = TransposedFullMatrixProjection(input_layer_name=input.name,
size=size,
**param_attr.attr)
proj = TransposedFullMatrixProjection(
input_layer_name=input.name, size=size, **param_attr.attr)
proj.origin = input
return proj
......@@ -365,9 +418,8 @@ def table_projection(input, size=0, param_attr=None):
:return: A TableProjection Object.
:rtype: TableProjection
"""
proj = TableProjection(input_layer_name=input.name,
size=size,
**param_attr.attr)
proj = TableProjection(
input_layer_name=input.name, size=size, **param_attr.attr)
proj.origin = input
return proj
......@@ -413,8 +465,8 @@ def identity_projection(input, offset=None):
proj = IdentityProjection(input_layer_name=input.name)
proj.origin = input
else:
proj = IdentityOffsetProjection(input_layer_name=input.name,
offset=offset)
proj = IdentityOffsetProjection(
input_layer_name=input.name, offset=offset)
proj.origin = input
return proj
......@@ -443,9 +495,8 @@ def dotmul_projection(input, param_attr=None):
:return: A DotMulProjection Object.
:rtype: DotMulProjection
"""
proj = DotMulProjection(input_layer_name=input.name,
size=input.size,
**param_attr.attr)
proj = DotMulProjection(
input_layer_name=input.name, size=input.size, **param_attr.attr)
proj.origin = input
return proj
......@@ -478,21 +529,22 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs):
if 'x' in kwargs or 'y' in kwargs:
logger.warning('x and y arguments for dotmul_operator is deprecated. '
'Please use a and b as parameter.')
a = kwargs.get('x', a) # For Backward capacity.
a = kwargs.get('x', a) # For Backward capacity.
b = kwargs.get('y', b)
assert isinstance(a, LayerOutput)
assert isinstance(b, LayerOutput)
if a.size is not None and b.size is not None:
assert a.size == b.size
op = DotMulOperator(input_layer_names=[a.name, b.name],
scale=scale)
op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
op.origin = [a, b]
return op
@wrap_bias_attr_default(['padding_attr'])
def context_projection(input, context_len, context_start=None,
def context_projection(input,
context_len,
context_start=None,
padding_attr=False):
"""
Context Projection.
......@@ -529,11 +581,12 @@ def context_projection(input, context_len, context_start=None,
if trainable:
extra_dict = padding_attr.attr
proj = ContextProjection(input_layer_name=input.name,
context_length=context_len,
context_start=context_start,
trainable_padding=trainable,
**extra_dict)
proj = ContextProjection(
input_layer_name=input.name,
context_length=context_len,
context_start=context_start,
trainable_padding=trainable,
**extra_dict)
proj.origin = input
return proj
......@@ -547,8 +600,7 @@ class MixedLayerType(LayerOutput):
def __init__(self):
Exception.__init__(self)
def __init__(self, name, size, act, bias_attr, layer_attr,
parents=None):
def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
"""
Ctor.
:param name: layer name.
......@@ -565,8 +617,13 @@ class MixedLayerType(LayerOutput):
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute or None
"""
LayerOutput.__init__(self, name, LayerType.MIXED_LAYER, parents,
size=size, activation=act)
LayerOutput.__init__(
self,
name,
LayerType.MIXED_LAYER,
parents,
size=size,
activation=act)
self.bias_attr = bias_attr
self.layer_attr = layer_attr
self.inputs = []
......@@ -604,8 +661,7 @@ class MixedLayerType(LayerOutput):
active_type=self.activation.name,
bias=ParamAttr.to_bias(self.bias_attr),
inputs=self.inputs,
**ExtraLayerAttribute.to_kwargs(self.layer_attr)
)
**ExtraLayerAttribute.to_kwargs(self.layer_attr))
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self.size = ml.config.size
......@@ -615,7 +671,11 @@ class MixedLayerType(LayerOutput):
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
def mixed_layer(size=0, input=None, name=None, act=None, bias_attr=False,
def mixed_layer(size=0,
input=None,
name=None,
act=None,
bias_attr=False,
layer_attr=None):
"""
Mixed Layer. A mixed layer will add all inputs together, then activate.
......@@ -660,8 +720,12 @@ def mixed_layer(size=0, input=None, name=None, act=None, bias_attr=False,
if input is None:
return MixedLayerType(name, size, act, bias_attr, layer_attr)
else:
with mixed_layer(name=name, size=size, act=act, bias_attr=bias_attr,
layer_attr=layer_attr) as m:
with mixed_layer(
name=name,
size=size,
act=act,
bias_attr=bias_attr,
layer_attr=layer_attr) as m:
if isinstance(input, collections.Sequence):
for each in input:
m += each
......@@ -691,8 +755,11 @@ def data_layer(name, size, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(type=LayerType.DATA, name=name, size=size,
**ExtraLayerAttribute.to_kwargs(layer_attr))
Layer(
type=LayerType.DATA,
name=name,
size=size,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.DATA, size=size)
......@@ -718,9 +785,12 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
with mixed_layer(name=name, size=size, act=LinearActivation(),
bias_attr=False,
layer_attr=layer_attr) as mix:
with mixed_layer(
name=name,
size=size,
act=LinearActivation(),
bias_attr=False,
layer_attr=layer_attr) as mix:
mix += table_projection(input=input, size=size, param_attr=param_attr)
return mix
......@@ -730,8 +800,13 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
def fc_layer(input, size, act=None, name=None,
param_attr=None, bias_attr=None, layer_attr=None):
def fc_layer(input,
size,
act=None,
name=None,
param_attr=None,
bias_attr=None,
layer_attr=None):
"""
Helper for declare fully connected layer.
......@@ -783,17 +858,17 @@ def fc_layer(input, size, act=None, name=None,
assert isinstance(input, collections.Sequence)
Layer(
inputs=[Input(ipt.name, **attr.attr) for ipt, attr in zip(
input, param_attr)],
inputs=[
Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
],
name=name,
type=LayerType.FC_LAYER,
size=size,
bias=ParamAttr.to_bias(bias_attr),
active_type=act.name,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.FC_LAYER, input, activation=act,
size=size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.FC_LAYER, input, activation=act, size=size)
@wrap_name_default("print")
......@@ -816,8 +891,7 @@ def print_layer(input, name=None):
Layer(
name=name,
type=LayerType.PRINT_LAYER,
inputs=[l.name for l in input],
)
inputs=[l.name for l in input], )
# this layer don't return anything, can not be input of other layer.
......@@ -825,7 +899,10 @@ def print_layer(input, name=None):
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
def pooling_layer(input, pooling_type=None, name=None, bias_attr=None,
def pooling_layer(input,
pooling_type=None,
name=None,
bias_attr=None,
agg_level=AggregateLevel.EACH_TIMESTEP,
layer_attr=None):
"""
......@@ -872,24 +949,27 @@ def pooling_layer(input, pooling_type=None, name=None, bias_attr=None,
inputs=[Input(input.name)],
bias=ParamAttr.to_bias(bias_attr),
trans_type=agg_level,
**extra_dict
)
return LayerOutput(name, pooling_type.name, parents=[input],
size=input.size)
**extra_dict)
return LayerOutput(
name, pooling_type.name, parents=[input], size=input.size)
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'],
act=SigmoidActivation())
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
def lstmemory(input, name=None, reverse=False, act=None,
gate_act=None, size=None,
state_act=None, bias_attr=None, param_attr=None,
def lstmemory(input,
name=None,
reverse=False,
act=None,
gate_act=None,
size=None,
state_act=None,
bias_attr=None,
param_attr=None,
layer_attr=None):
"""
Long Short-term Memory Cell.
......@@ -964,30 +1044,38 @@ def lstmemory(input, name=None, reverse=False, act=None,
"layer. The lstm size should be equal with input layer size/4. The"
" size which is set explicitly will be ignored." % name)
Layer(name=name,
type=LayerType.LSTMEMORY,
active_type=act.name,
active_state_type=state_act.name,
active_gate_type=gate_act.name,
reversed=reverse,
bias=ParamAttr.to_bias(bias_attr),
inputs=[Input(input.name, **param_attr.attr)],
**ExtraLayerAttribute.to_kwargs(layer_attr))
Layer(
name=name,
type=LayerType.LSTMEMORY,
active_type=act.name,
active_state_type=state_act.name,
active_gate_type=gate_act.name,
reversed=reverse,
bias=ParamAttr.to_bias(bias_attr),
inputs=[Input(input.name, **param_attr.attr)],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.LSTMEMORY, [input], size=input.size / 4,
reverse=reverse)
return LayerOutput(
name,
LayerType.LSTMEMORY, [input],
size=input.size / 4,
reverse=reverse)
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'],
act=SigmoidActivation())
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
def grumemory(input, name=None, reverse=False, act=None,
gate_act=None, size=None,
bias_attr=None, param_attr=None,
def grumemory(input,
name=None,
reverse=False,
act=None,
gate_act=None,
size=None,
bias_attr=None,
param_attr=None,
layer_attr=None):
"""
Gate Recurrent Unit Layer.
......@@ -1078,23 +1166,28 @@ def grumemory(input, name=None, reverse=False, act=None,
" and should be input size / 3. Set size explicitly will be "
"ignored.")
Layer(name=name,
type=LayerType.GRUMEMORY,
active_type=act.name,
active_gate_type=gate_act.name,
reversed=reverse,
bias=ParamAttr.to_bias(bias_attr),
inputs=[Input(input.name, **param_attr.attr)],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.GRUMEMORY,
active_type=act.name,
active_gate_type=gate_act.name,
reversed=reverse,
bias=ParamAttr.to_bias(bias_attr),
inputs=[Input(input.name, **param_attr.attr)],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.GRUMEMORY, [input], size=input.size / 3,
reverse=reverse)
return LayerOutput(
name,
LayerType.GRUMEMORY, [input],
size=input.size / 3,
reverse=reverse)
@wrap_name_default()
@layer_support()
def last_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
def last_seq(input,
name=None,
agg_level=AggregateLevel.EACH_TIMESTEP,
layer_attr=None):
"""
Get Last Timestamp Activation of a sequence.
......@@ -1120,15 +1213,19 @@ def last_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
type=LayerType.SEQUENCE_LAST_INSTANCE,
inputs=[input.name],
trans_type=agg_level,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SEQUENCE_LAST_INSTANCE, parents=[input],
size=input.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.SEQUENCE_LAST_INSTANCE,
parents=[input],
size=input.size)
@wrap_name_default()
@layer_support()
def first_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
def first_seq(input,
name=None,
agg_level=AggregateLevel.EACH_TIMESTEP,
layer_attr=None):
"""
Get First Timestamp Activation of a sequence.
......@@ -1155,10 +1252,12 @@ def first_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
type=LayerType.SEQUENCE_FIRST_INSTANCE,
inputs=[input.name],
trans_type=agg_level,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SEQUENCE_FIRST_INSTANCE,
parents=[input], size=input.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.SEQUENCE_FIRST_INSTANCE,
parents=[input],
size=input.size)
class ExpandLevel(object):
......@@ -1168,7 +1267,8 @@ class ExpandLevel(object):
@wrap_name_default()
@layer_support()
def expand_layer(input, expand_as,
def expand_layer(input,
expand_as,
name=None,
bias_attr=False,
expand_level=ExpandLevel.FROM_TIMESTEP,
......@@ -1208,19 +1308,17 @@ def expand_layer(input, expand_as,
bias=ParamAttr.to_bias(bias_attr=bias_attr),
type=LayerType.EXPAND_LAYER,
trans_type=expand_level,
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name=name,
size=input.size,
layer_type=LayerType.EXPAND_LAYER,
parents=[input, expand_as])
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name=name,
size=input.size,
layer_type=LayerType.EXPAND_LAYER,
parents=[input, expand_as])
@wrap_name_default()
@layer_support()
def repeat_layer(input, num_repeats,
name=None,
layer_attr=None):
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
"""
A layer for repeating the input for num_repeats times. This is equivalent
to apply concat_layer() with num_repeats same input.
......@@ -1251,12 +1349,13 @@ def repeat_layer(input, num_repeats,
name=name,
num_filters=num_repeats,
type=LayerType.FEATURE_MAP_EXPAND_LAYER,
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name=name,
size=l.config.size,
layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
parents=[input])
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name=name,
size=l.config.size,
layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
parents=[input])
@wrap_name_default()
@layer_support()
......@@ -1302,11 +1401,12 @@ def interpolation_layer(input, weight, name=None, layer_attr=None):
name=name,
type=LayerType.INTERPOLATION_LAYER,
inputs=[weight.name, input[0].name, input[1].name],
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.INTERPOLATION_LAYER,
parents=[weight, input[0], input[1]],
size=input[0].size)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.INTERPOLATION_LAYER,
parents=[weight, input[0], input[1]],
size=input[0].size)
@wrap_name_default()
......@@ -1345,15 +1445,23 @@ def bilinear_interp_layer(input,
assert out_size_x > 0 and out_size_y > 0
assert input.num_filters is not None
num_channels = input.num_filters
l = Layer(name=name,
inputs=Input(input.name,
bilinear_interp=BilinearInterp(out_size_x=out_size_x,
out_size_y=out_size_y,
num_channels=num_channels)),
type=LayerType.BILINEAR_INTERP_LAYER,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.BILINEAR_INTERP_LAYER, parents=[input],
num_filters=num_channels, size=l.config.size)
l = Layer(
name=name,
inputs=Input(
input.name,
bilinear_interp=BilinearInterp(
out_size_x=out_size_x,
out_size_y=out_size_y,
num_channels=num_channels)),
type=LayerType.BILINEAR_INTERP_LAYER,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.BILINEAR_INTERP_LAYER,
parents=[input],
num_filters=num_channels,
size=l.config.size)
@wrap_name_default()
@layer_support()
......@@ -1392,10 +1500,9 @@ def power_layer(input, weight, name=None, layer_attr=None):
name=name,
type=LayerType.POWER_LAYER,
inputs=[weight.name, input.name],
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.POWER_LAYER,
parents=[input, weight], size=input.size)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
@wrap_name_default()
......@@ -1437,10 +1544,9 @@ def scaling_layer(input, weight, name=None, layer_attr=None):
name=name,
type=LayerType.SCALING_LAYER,
inputs=[weight.name, input.name],
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SCALING_LAYER, parents=[weight, input],
size=input.size)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
@wrap_name_default()
......@@ -1473,10 +1579,9 @@ def trans_layer(input, name=None, layer_attr=None):
name=name,
type=LayerType.TRANS_LAYER,
inputs=[input.name],
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.TRANS_LAYER, parents=[input],
size=input.size)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
@wrap_name_default()
......@@ -1518,8 +1623,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
type=LayerType.COSINE_SIM,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
else:
if a.size is not None and b.size is not None:
assert size == b.size / a.size
......@@ -1529,8 +1633,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
size=size,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
......@@ -1538,8 +1641,13 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
@wrap_bias_attr_default(has_bias=True)
@wrap_param_attr_default()
@layer_support()
def hsigmoid(input, label, num_classes, name=None, bias_attr=None,
param_attr=None, layer_attr=None):
def hsigmoid(input,
label,
num_classes,
name=None,
bias_attr=None,
param_attr=None,
layer_attr=None):
"""
Organize the classes into a binary tree. At each node, a sigmoid function
is used to calculate the probability of belonging to the right branch.
......@@ -1600,10 +1708,9 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None,
num_classes=num_classes,
bias=ParamAttr.to_bias(bias_attr),
inputs=ipts_for_layer,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.HSIGMOID, parents=parents,
size=l.config.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
@wrap_name_default("conv")
......@@ -1611,11 +1718,22 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None,
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv_layer(input, filter_size, num_filters,
name=None, num_channels=None,
act=None, groups=1, stride=1, padding=0, bias_attr=None,
param_attr=None, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None,
def img_conv_layer(input,
filter_size,
num_filters,
name=None,
num_channels=None,
act=None,
groups=1,
stride=1,
padding=0,
bias_attr=None,
param_attr=None,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=False):
"""
Convolution layer for image. Paddle only support square input currently and
......@@ -1713,40 +1831,56 @@ def img_conv_layer(input, filter_size, num_filters,
if param_attr.attr.get('initial_smart'):
# special initial for conv layers.
init_w = (2.0 / (filter_size ** 2 * num_channels)) ** 0.5
init_w = (2.0 / (filter_size**2 * num_channels))**0.5
param_attr.attr["initial_mean"] = 0.0
param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False
lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
l = Layer(
name=name,
inputs=Input(input.name, conv=Conv(
filter_size=filter_size, padding=padding, stride=stride,
channels=num_channels, groups=groups,
filter_size_y=filter_size_y, padding_y=padding_y,
stride_y=stride_y),
**param_attr.attr),
inputs=Input(
input.name,
conv=Conv(
filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
groups=groups,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y),
**param_attr.attr),
active_type=act.name,
num_filters=num_filters,
bias=ParamAttr.to_bias(bias_attr),
shared_biases=shared_biases,
type=lt,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, lt, parents=[input],
activation=act, num_filters=num_filters,
size=l.config.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
lt,
parents=[input],
activation=act,
num_filters=num_filters,
size=l.config.size)
@wrap_name_default("pool")
@layer_support()
def img_pool_layer(input, pool_size, name=None,
num_channels=None, pool_type=None,
stride=1, padding=0, layer_attr=None,
pool_size_y=None, stride_y=None, padding_y=None,
def img_pool_layer(input,
pool_size,
name=None,
num_channels=None,
pool_type=None,
stride=1,
padding=0,
layer_attr=None,
pool_size_y=None,
stride_y=None,
padding_y=None,
img_width=None):
"""
Image pooling Layer.
......@@ -1804,29 +1938,39 @@ def img_pool_layer(input, pool_size, name=None,
l = Layer(
name=name,
type=LayerType.POOL_LAYER,
inputs=[Input(input.name,
pool=Pool(
pool_type=type_name,
channels=num_channels,
size_x=pool_size,
start=None,
stride=stride,
padding=padding,
size_y=pool_size_y,
stride_y=stride_y,
padding_y=padding_y,
img_width=img_width
))],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.POOL_LAYER, parents=[input],
num_filters=num_channels, size=l.config.size)
inputs=[
Input(
input.name,
pool=Pool(
pool_type=type_name,
channels=num_channels,
size_x=pool_size,
start=None,
stride=stride,
padding=padding,
size_y=pool_size_y,
stride_y=stride_y,
padding_y=padding_y,
img_width=img_width))
],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.POOL_LAYER,
parents=[input],
num_filters=num_channels,
size=l.config.size)
@wrap_name_default("spp")
@layer_support()
def spp_layer(input, name=None, num_channels=None, pool_type=None,
pyramid_height=None, img_width=None, layer_attr=None):
def spp_layer(input,
name=None,
num_channels=None,
pool_type=None,
pyramid_height=None,
img_width=None,
layer_attr=None):
"""
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
The details please refer to
......@@ -1866,42 +2010,58 @@ def spp_layer(input, name=None, num_channels=None, pool_type=None,
l = Layer(
name=name,
type=LayerType.SPP_LAYER,
inputs=Input(input.name,
spp=SpatialPyramidPool(pool_type=type_name,
channels=num_channels,
pyramid_height=pyramid_height,
img_width=img_width)
),
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, layer_type=LayerType.SPP_LAYER, parents=[input],
num_filters=num_channels, size=l.config.size)
def __img_norm_layer__(name, input, size, norm_type, scale, power,
num_channels, blocked, layer_attr):
inputs=Input(
input.name,
spp=SpatialPyramidPool(
pool_type=type_name,
channels=num_channels,
pyramid_height=pyramid_height,
img_width=img_width)),
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
layer_type=LayerType.SPP_LAYER,
parents=[input],
num_filters=num_channels,
size=l.config.size)
def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
blocked, layer_attr):
if num_channels is None:
assert input.num_filters is not None
num_channels = input.num_filters
l = Layer(
name=name, type=LayerType.NORM_LAYER, inputs=Input(
input.name, norm=Norm(norm_type=norm_type,
channels=num_channels, size=size,
scale=scale,
pow=power, blocked=blocked)
),
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, layer_type=LayerType.NORM_LAYER, parents=[input],
num_filters=num_channels, img_norm_type=norm_type,
size=l.config.size)
name=name,
type=LayerType.NORM_LAYER,
inputs=Input(
input.name,
norm=Norm(
norm_type=norm_type,
channels=num_channels,
size=size,
scale=scale,
pow=power,
blocked=blocked)),
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
layer_type=LayerType.NORM_LAYER,
parents=[input],
num_filters=num_channels,
img_norm_type=norm_type,
size=l.config.size)
@wrap_name_default("crmnorm")
@layer_support()
def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
name=None, num_channels=None,
def img_cmrnorm_layer(input,
size,
scale=0.0128,
power=0.75,
name=None,
num_channels=None,
layer_attr=None):
"""
Response normalization across feature maps.
......@@ -1935,8 +2095,13 @@ def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
def batch_norm_layer(input, act=None, name=None, num_channels=None,
bias_attr=None, param_attr=None, layer_attr=None,
def batch_norm_layer(input,
act=None,
name=None,
num_channels=None,
bias_attr=None,
param_attr=None,
layer_attr=None,
batch_norm_type=None,
moving_average_fraction=0.9,
use_global_stats=None):
......@@ -2022,22 +2187,23 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None,
(batch_norm_type == "cudnn_batch_norm")
l = Layer(
name=name,
inputs=Input(input.name,
image=Image(channels=num_channels),
**param_attr.attr),
inputs=Input(
input.name, image=Image(channels=num_channels), **param_attr.attr),
active_type=act.name,
type=LayerType.BATCH_NORM_LAYER,
batch_norm_type=batch_norm_type,
bias=ParamAttr.to_bias(bias_attr),
moving_average_fraction=moving_average_fraction,
use_global_stats=use_global_stats,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name, layer_type=LayerType.BATCH_NORM_LAYER,
parents=[input], activation=act,
num_filters=num_channels,
size=l.config.size)
return LayerOutput(
name=name,
layer_type=LayerType.BATCH_NORM_LAYER,
parents=[input],
activation=act,
num_filters=num_channels,
size=l.config.size)
@wrap_name_default()
......@@ -2072,18 +2238,16 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None):
name=name,
type=LayerType.SUM_TO_ONE_NORM_LAYER,
inputs=[input.name],
**ExtraAttr.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input],
size=input.size)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
def addto_layer(input, act=None, name=None, bias_attr=None,
layer_attr=None):
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
"""
AddtoLayer.
......@@ -2143,15 +2307,20 @@ def addto_layer(input, act=None, name=None, bias_attr=None,
num_filters = each_input.num_filters
l = Layer(
name=name, type=LayerType.ADDTO_LAYER, inputs=ipts_for_layer,
name=name,
type=LayerType.ADDTO_LAYER,
inputs=ipts_for_layer,
bias=ParamAttr.to_bias(bias_attr),
active_type=act.name,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.ADDTO_LAYER, parents=input,
activation=act, num_filters=num_filters,
size=l.config.size)
return LayerOutput(
name,
LayerType.ADDTO_LAYER,
parents=input,
activation=act,
num_filters=num_filters,
size=l.config.size)
@wrap_act_default(act=IdentityActivation())
......@@ -2210,22 +2379,22 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
LayerOutput)
return a
is_concat_layer = __is_type__(reduce(__reduce_concat_type__,
map(type, input)), LayerOutput)
is_concat_layer = __is_type__(
reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
layer_type = (LayerType.CONCAT_LAYER if is_concat_layer
else LayerType.CONCAT_PROJ_LAYER)
layer_type = (LayerType.CONCAT_LAYER
if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
if layer_type == LayerType.CONCAT_LAYER:
assert not bias_attr
Layer(
name=name, type=layer_type,
name=name,
type=layer_type,
inputs=[x.name for x in input] if is_concat_layer else input,
active_type=act.name,
bias=ParamAttr.to_bias(bias_attr),
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
sz = 0
for each_input in input:
......@@ -2235,14 +2404,20 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
sz = None
break
return LayerOutput(name, layer_type=layer_type,
parents=input if is_concat_layer else [
x.origin for x in input],
activation=act, size=sz)
def memory(name, size, is_seq=False, boot_layer=None,
boot_bias=None, boot_bias_active_type=None,
return LayerOutput(
name,
layer_type=layer_type,
parents=input if is_concat_layer else [x.origin for x in input],
activation=act,
size=sz)
def memory(name,
size,
is_seq=False,
boot_layer=None,
boot_bias=None,
boot_bias_active_type=None,
boot_with_const_id=None):
"""
The memory layers is a layer cross each time step. Reference this output
......@@ -2290,30 +2465,33 @@ def memory(name, size, is_seq=False, boot_layer=None,
assert boot_layer is None or isinstance(boot_layer, LayerOutput)
agent_name = Memory(name, size,
is_seq,
boot_layer.name if boot_layer is not None else None,
boot_bias,
boot_bias_active_type.name,
boot_with_const_id)
lout = LayerOutput(name=agent_name, size=size,
layer_type=LayerType.MEMORY,
parents=[boot_layer] if boot_layer is not None
else None)
agent_name = Memory(name, size, is_seq, boot_layer.name
if boot_layer is not None else None, boot_bias,
boot_bias_active_type.name, boot_with_const_id)
lout = LayerOutput(
name=agent_name,
size=size,
layer_type=LayerType.MEMORY,
parents=[boot_layer] if boot_layer is not None else None)
return lout
@wrap_bias_attr_default()
@wrap_act_default(param_names=['gate_act',
'state_act'],
act=SigmoidActivation())
@wrap_act_default(
param_names=['gate_act', 'state_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
def lstm_step_layer(input, state, size, act=None,
name=None, gate_act=None, state_act=None,
bias_attr=None, layer_attr=None):
def lstm_step_layer(input,
state,
size,
act=None,
name=None,
gate_act=None,
state_act=None,
bias_attr=None,
layer_attr=None):
"""
LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
as follow.
......@@ -2380,24 +2558,32 @@ def lstm_step_layer(input, state, size, act=None,
active_gate_type=gate_act.name,
active_state_type=state_act.name,
bias=ParamAttr.to_bias(bias_attr),
size=size, inputs=[input.name, state.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
size=size,
inputs=[input.name, state.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name, layer_type=LayerType.LSTM_STEP_LAYER,
parents=[input, state], activation=act,
size=size, outputs=['default', 'state'])
return LayerOutput(
name=name,
layer_type=LayerType.LSTM_STEP_LAYER,
parents=[input, state],
activation=act,
size=size,
outputs=['default', 'state'])
@wrap_bias_attr_default()
@wrap_act_default(param_names=['gate_act'],
act=SigmoidActivation())
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
def gru_step_layer(input, output_mem, size=None, act=None,
name=None, gate_act=None,
bias_attr=None, layer_attr=None):
def gru_step_layer(input,
output_mem,
size=None,
act=None,
name=None,
gate_act=None,
bias_attr=None,
layer_attr=None):
"""
:param input:
......@@ -2418,20 +2604,18 @@ def gru_step_layer(input, output_mem, size=None, act=None,
Layer(
name=name,
type=LayerType.GRU_STEP_LAYER,
inputs=[
input.name,
output_mem.name
],
inputs=[input.name, output_mem.name],
bias=ParamAttr.to_bias(bias_attr),
size=size,
active_type=act.name,
active_gate_type=gate_act.name,
**ExtraAttr.to_kwargs(layer_attr)
)
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name=name, layer_type=LayerType.GRU_STEP_LAYER,
name=name,
layer_type=LayerType.GRU_STEP_LAYER,
parents=[input, output_mem],
size=size, activation=act)
size=size,
activation=act)
@wrap_name_default()
......@@ -2459,13 +2643,19 @@ def get_output_layer(input, arg_name, name=None, layer_attr=None):
' The get output name is %s, which not' \
' in %s' % (
arg_name, ",".join(input.outputs))
Layer(name=name, type=LayerType.GET_OUTPUT_LAYER,
inputs=[Input(input.name, input_layer_argument=arg_name)],
size=input.size,
**ExtraLayerAttribute.to_kwargs(layer_attr))
Layer(
name=name,
type=LayerType.GET_OUTPUT_LAYER,
inputs=[Input(
input.name, input_layer_argument=arg_name)],
size=input.size,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name, layer_type=LayerType.GET_OUTPUT_LAYER,
parents=[input], size=input.size)
return LayerOutput(
name=name,
layer_type=LayerType.GET_OUTPUT_LAYER,
parents=[input],
size=input.size)
@wrap_name_default()
......@@ -2473,8 +2663,13 @@ def get_output_layer(input, arg_name, name=None, layer_attr=None):
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
def recurrent_layer(input, act=None, bias_attr=None,
param_attr=None, name=None, reverse=False, layer_attr=None):
def recurrent_layer(input,
act=None,
bias_attr=None,
param_attr=None,
name=None,
reverse=False,
layer_attr=None):
"""
Simple recurrent unit layer. It is just a fully connect layer through both
time and neural network.
......@@ -2509,16 +2704,21 @@ def recurrent_layer(input, act=None, bias_attr=None,
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name,
type=LayerType.RECURRENT_LAYER,
inputs=Input(input.name, **param_attr.attr),
active_type=act.name,
bias=ParamAttr.to_bias(bias_attr),
reversed=reverse,
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(name=name, layer_type=LayerType.RECURRENT_LAYER,
parents=[input], size=input.size, activation=act,
reverse=reverse)
Layer(
name=name,
type=LayerType.RECURRENT_LAYER,
inputs=Input(input.name, **param_attr.attr),
active_type=act.name,
bias=ParamAttr.to_bias(bias_attr),
reversed=reverse,
**ExtraAttr.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.RECURRENT_LAYER,
parents=[input],
size=input.size,
activation=act,
reverse=reverse)
class StaticInput(object):
......@@ -2646,7 +2846,7 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
return True
return False
assert(targetInlink == None or targetInlink_in_inlinks())
assert (targetInlink == None or targetInlink_in_inlinks())
targetInlinkName = None if targetInlink == None \
else targetInlink.name if isinstance(targetInlink, LayerOutput) \
else targetInlink.input.name
......@@ -2661,7 +2861,8 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
return x.name
RecurrentLayerGroupWithoutOutLinksBegin(
name=name, in_links=map(map_in_links, in_links),
name=name,
in_links=map(map_in_links, in_links),
seq_reversed=reverse,
target_inlinkname=targetInlinkName)
in_args = []
......@@ -2673,12 +2874,15 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
in_args.append(each_input.input)
else:
mem_name = "__%s_memory__" % each_input.input.name
mem = memory(name=mem_name,
is_seq=each_input.is_seq,
size=each_input.input.size,
boot_layer=each_input.input)
with mixed_layer(name=mem_name, size=each_input.input.size,
act=IdentityActivation()) as mix:
mem = memory(
name=mem_name,
is_seq=each_input.is_seq,
size=each_input.input.size,
boot_layer=each_input.input)
with mixed_layer(
name=mem_name,
size=each_input.input.size,
act=IdentityActivation()) as mix:
mix += identity_projection(mem)
in_args.append(mem)
......@@ -2720,14 +2924,15 @@ class GeneratedInput(BaseGeneratedInput):
return maxid_layer(input=input, name='__beam_search_predict__')
def before_real_step(self):
predict_id = memory(name='__beam_search_predict__',
size=self.size,
boot_with_const_id=self.bos_id)
trg_emb = embedding_layer(input=predict_id,
size=self.embedding_size,
param_attr=ParamAttr(
name=self.embedding_name))
predict_id = memory(
name='__beam_search_predict__',
size=self.size,
boot_with_const_id=self.bos_id)
trg_emb = embedding_layer(
input=predict_id,
size=self.embedding_size,
param_attr=ParamAttr(name=self.embedding_name))
return trg_emb
def __init__(self, size, embedding_name, embedding_size):
......@@ -2760,14 +2965,16 @@ def maxid_layer(input, name=None, layer_attr=None):
"""
assert isinstance(input, LayerOutput)
l = Layer(name=name,
type='maxid',
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name,
layer_type=LayerType.MAXID_LAYER,
parents=[input],
size=l.config.size)
l = Layer(
name=name,
type='maxid',
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.MAXID_LAYER,
parents=[input],
size=l.config.size)
@wrap_name_default()
......@@ -2796,14 +3003,16 @@ def out_prod_layer(input1, input2, name=None, layer_attr=None):
assert isinstance(input1, LayerOutput)
assert isinstance(input2, LayerOutput)
l = Layer(name=name,
type=LayerType.OUT_PROD_LAYER,
inputs=[input1.name, input2.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name,
layer_type=LayerType.OUT_PROD_LAYER,
parents=[input1, input2],
size=l.config.size)
l = Layer(
name=name,
type=LayerType.OUT_PROD_LAYER,
inputs=[input1.name, input2.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.OUT_PROD_LAYER,
parents=[input1, input2],
size=l.config.size)
@wrap_name_default()
......@@ -2832,19 +3041,27 @@ def eos_layer(input, eos_id, name=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
l = Layer(name=name,
type=LayerType.EOSID_LAYER,
eos_id=eos_id,
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name=name, layer_type=LayerType.EOSID_LAYER,
parents=[input],
size=l.config.size)
l = Layer(
name=name,
type=LayerType.EOSID_LAYER,
eos_id=eos_id,
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.EOSID_LAYER,
parents=[input],
size=l.config.size)
@wrap_name_default()
def beam_search(step, input, bos_id, eos_id, beam_size,
max_length=500, name=None,
def beam_search(step,
input,
bos_id,
eos_id,
beam_size,
max_length=500,
name=None,
num_results_per_sample=None):
"""
Beam search is a heuristic search algorithm used in sequence generation.
......@@ -2918,8 +3135,7 @@ def beam_search(step, input, bos_id, eos_id, beam_size,
if num_results_per_sample > beam_size:
logger.warning("num_results_per_sample should be less than beam_size")
if isinstance(input, StaticInput) or isinstance(input,
BaseGeneratedInput):
if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
input = [input]
generated_input_index = -1
......@@ -2944,11 +3160,12 @@ def beam_search(step, input, bos_id, eos_id, beam_size,
def __real_step__(*args):
eos_name = "__%s_eos_layer__" % name
RecurrentLayerGroupSetGenerator(Generator(
eos_layer_name=eos_name,
max_num_frames=max_length,
beam_size=beam_size,
num_results_per_sample=num_results_per_sample))
RecurrentLayerGroupSetGenerator(
Generator(
eos_layer_name=eos_name,
max_num_frames=max_length,
beam_size=beam_size,
num_results_per_sample=num_results_per_sample))
args = list(args)
args.insert(generated_input_index, gipt.before_real_step())
......@@ -2959,11 +3176,12 @@ def beam_search(step, input, bos_id, eos_id, beam_size,
return predict
tmp = recurrent_group(step=__real_step__, input=real_input, reverse=False,
name=name)
tmp = recurrent_group(
step=__real_step__, input=real_input, reverse=False, name=name)
return tmp
def __cost_input__(input, label, weight=None):
"""
inputs and parents for cost layers.
......@@ -2979,8 +3197,7 @@ def __cost_input__(input, label, weight=None):
@wrap_name_default()
@layer_support()
def regression_cost(input, label, weight=None, name=None,
layer_attr=None):
def regression_cost(input, label, weight=None, name=None, layer_attr=None):
"""
Regression Layer.
......@@ -3002,14 +3219,20 @@ def regression_cost(input, label, weight=None, name=None,
"""
ipts, parents = __cost_input__(input, label, weight)
Layer(inputs=ipts, type="square_error", name=name,
**ExtraLayerAttribute.to_kwargs(layer_attr))
Layer(
inputs=ipts,
type="square_error",
name=name,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.COST, parents=parents, size=1)
@wrap_name_default("cost")
@layer_support()
def classification_cost(input, label, weight=None, name=None,
def classification_cost(input,
label,
weight=None,
name=None,
evaluator=classification_error_evaluator,
layer_attr=None):
"""
......@@ -3036,8 +3259,11 @@ def classification_cost(input, label, weight=None, name=None,
ipts, parents = __cost_input__(input, label, weight)
Layer(name=name, type="multi-class-cross-entropy", inputs=ipts,
**ExtraLayerAttribute.to_kwargs(layer_attr))
Layer(
name=name,
type="multi-class-cross-entropy",
inputs=ipts,
**ExtraLayerAttribute.to_kwargs(layer_attr))
def __add_evaluator__(e):
assert callable(e)
......@@ -3059,9 +3285,16 @@ def classification_cost(input, label, weight=None, name=None,
return LayerOutput(name, LayerType.COST, parents=parents, size=1)
def conv_operator(img, filter, filter_size, num_filters,
num_channels=None, stride=1, padding=0,
filter_size_y=None, stride_y=None, padding_y=None):
def conv_operator(img,
filter,
filter_size,
num_filters,
num_channels=None,
stride=1,
padding=0,
filter_size_y=None,
stride_y=None,
padding_y=None):
"""
Different from img_conv_layer, conv_op is an Operator, which can be used
in mixed_layer. And conv_op takes two inputs to perform convolution.
......@@ -3117,24 +3350,34 @@ def conv_operator(img, filter, filter_size, num_filters,
if filter.size is not None:
filter.size = filter_size * filter_size_y * num_filters * num_channels
op = ConvOperator(input_layer_names=[img.name, filter.name],
num_filters=num_filters,
conv_conf=Conv(filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y,
groups=1))
op = ConvOperator(
input_layer_names=[img.name, filter.name],
num_filters=num_filters,
conv_conf=Conv(
filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y,
groups=1))
op.origin = [img, filter]
return op
@wrap_param_attr_default()
def conv_projection(input, filter_size, num_filters,
num_channels=None, stride=1, padding=0,
filter_size_y=None, stride_y=None, padding_y=None,
groups=1, param_attr=None):
def conv_projection(input,
filter_size,
num_filters,
num_channels=None,
stride=1,
padding=0,
filter_size_y=None,
stride_y=None,
padding_y=None,
groups=1,
param_attr=None):
"""
ConvProjection with a layer as input.
It performs element-wise multiplication with weight.
......@@ -3206,23 +3449,25 @@ def conv_projection(input, filter_size, num_filters,
if param_attr.attr.get('initial_smart'):
# special initial for conv layers.
init_w = (2.0 / (filter_size ** 2 * num_channels)) ** 0.5
init_w = (2.0 / (filter_size**2 * num_channels))**0.5
param_attr.attr["initial_mean"] = 0.0
param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False
proj = ConvProjection(input_layer_name=input.name,
num_filters=num_filters,
conv_conf=Conv(filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y,
groups=groups),
**param_attr.attr)
proj = ConvProjection(
input_layer_name=input.name,
num_filters=num_filters,
conv_conf=Conv(
filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y,
groups=groups),
**param_attr.attr)
proj.origin = input
return proj
......@@ -3270,11 +3515,10 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
name=name,
type=LayerType.CONV_SHIFT_LAYER,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.CONV_SHIFT_LAYER, parents=[a, b],
size=a.size)
return LayerOutput(
name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
@wrap_name_default()
......@@ -3282,8 +3526,14 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
@wrap_bias_attr_default()
@wrap_act_default(act=LinearActivation())
@layer_support(ERROR_CLIPPING, DROPOUT)
def tensor_layer(a, b, size, act=None, name=None,
param_attr=None, bias_attr=None, layer_attr=None):
def tensor_layer(a,
b,
size,
act=None,
name=None,
param_attr=None,
bias_attr=None,
layer_attr=None):
"""
This layer performs tensor operation for two input.
For example, each sample:
......@@ -3332,12 +3582,10 @@ def tensor_layer(a, b, size, act=None, name=None,
type=LayerType.TENSOR_LAYER,
active_type=act.name,
bias=ParamAttr.to_bias(bias_attr),
inputs=[Input(a.name, **param_attr.attr),
Input(b.name)],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.TENSOR_LAYER, parents=[a, b],
activation=act, size=size)
inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
@wrap_name_default()
......@@ -3345,11 +3593,17 @@ def tensor_layer(a, b, size, act=None, name=None,
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support()
def selective_fc_layer(input, select, size, act=None, name=None,
def selective_fc_layer(input,
select,
size,
act=None,
name=None,
pass_generation=False,
has_selected_colums=True,
mul_ratio=0.02,
param_attr=None, bias_attr=None, layer_attr=None):
param_attr=None,
bias_attr=None,
layer_attr=None):
"""
Selectived fully connected layer. Different from fc_layer, the output
of this layer maybe sparse. It requires an additional input to indicate
......@@ -3399,8 +3653,9 @@ def selective_fc_layer(input, select, size, act=None, name=None,
if select.size is not None:
assert select.size == size
Layer(
inputs=[Input(ipt.name, **attr.attr) for ipt, attr in zip(
input, param_attr)] + [select.name],
inputs=[
Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
] + [select.name],
name=name,
type=LayerType.SEL_FC_LAYER,
size=size,
......@@ -3409,11 +3664,13 @@ def selective_fc_layer(input, select, size, act=None, name=None,
selective_fc_pass_generation=pass_generation,
has_selected_colums=has_selected_colums,
selective_fc_full_mul_ratio=mul_ratio,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SEL_FC_LAYER, list(input) + [select],
activation=act,
size=size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.SEL_FC_LAYER,
list(input) + [select],
activation=act,
size=size)
@wrap_name_default()
......@@ -3442,15 +3699,17 @@ def sampling_id_layer(input, name=None, layer_attr=None):
name=name,
type=LayerType.SAMPLING_ID_LAYER,
inputs=[Input(input.name)],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SAMPLING_ID_LAYER, input,
size=l.config.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
@wrap_name_default()
@layer_support()
def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0,
def slope_intercept_layer(input,
name=None,
slope=1.0,
intercept=0.0,
layer_attr=None):
"""
This layer for applying a slope and an intercept to the input
......@@ -3484,16 +3743,14 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0,
slope=slope,
intercept=intercept,
inputs=[Input(input.name)],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.SLOPE_INTERCEPT_LAYER, input,
size=input.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
@wrap_name_default()
@layer_support()
def linear_comb_layer(weights, vectors, size=None, name=None,
layer_attr=None):
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
"""
A layer for weighted sum of vectors takes two inputs.
- Input: size of weights is M
......@@ -3543,7 +3800,7 @@ def linear_comb_layer(weights, vectors, size=None, name=None,
if vectors.size is not None and weights.size is not None:
assert vectors.size % weights.size == 0
if size is None:
size = vectors.size / weights.size
size = vectors.size / weights.size
else:
assert size == vectors.size / weights.size
Layer(
......@@ -3551,10 +3808,9 @@ def linear_comb_layer(weights, vectors, size=None, name=None,
type=LayerType.LINEAR_COMBINATION_LAYER,
size=size,
inputs=[Input(weights.name), Input(vectors.name)],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.LINEAR_COMBINATION_LAYER,
[weights, vectors], size=size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
convex_comb_layer = linear_comb_layer
......@@ -3626,21 +3882,23 @@ def block_expand_layer(input,
if num_channels is None:
assert input.num_filters is not None
num_channels = input.num_filters
l = Layer(name=name,
inputs=Input(input.name,
block_expand=BlockExpand(channels=num_channels,
block_x=block_x,
block_y=block_y,
stride_x=stride_x,
stride_y=stride_y,
padding_x=padding_x,
padding_y=padding_y)),
type=LayerType.BLOCK_EXPAND,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.BLOCK_EXPAND, parents=[input],
size=l.config.size)
l = Layer(
name=name,
inputs=Input(
input.name,
block_expand=BlockExpand(
channels=num_channels,
block_x=block_x,
block_y=block_y,
stride_x=stride_x,
stride_y=stride_y,
padding_x=padding_x,
padding_y=padding_y)),
type=LayerType.BLOCK_EXPAND,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
@wrap_name_default()
......@@ -3701,19 +3959,24 @@ def maxout_layer(input,
assert input.num_filters is not None
num_channels = input.num_filters
assert num_channels % groups == 0
l = Layer(name=name,
inputs=Input(input.name,
maxout=MaxOut(channels=num_channels,
groups=groups)),
type=LayerType.MAXOUT,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.MAXOUT, parents=[input],
size=l.config.size)
l = Layer(
name=name,
inputs=Input(
input.name, maxout=MaxOut(
channels=num_channels, groups=groups)),
type=LayerType.MAXOUT,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.MAXOUT, parents=[input], size=l.config.size)
@wrap_name_default()
@layer_support()
def ctc_layer(input, label, size=None, name=None, norm_by_times=False,
def ctc_layer(input,
label,
size=None,
name=None,
norm_by_times=False,
layer_attr=None):
"""
Connectionist Temporal Classification (CTC) is designed for temporal
......@@ -3769,15 +4032,19 @@ def ctc_layer(input, label, size=None, name=None, norm_by_times=False,
size=size,
norm_by_times=norm_by_times,
inputs=[input.name, label.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)
@wrap_name_default()
@wrap_param_attr_default()
@layer_support()
def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None,
def crf_layer(input,
label,
size=None,
weight=None,
param_attr=None,
name=None,
layer_attr=None):
"""
A layer for calculating the cost of sequential conditional random
......@@ -3819,8 +4086,7 @@ def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None,
else:
assert size == input.size
ipts = [Input(input.name, **param_attr.attr),
Input(label.name)]
ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
if weight is not None:
ipts.append(Input(weight.name))
......@@ -3829,8 +4095,7 @@ def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None,
type=LayerType.CRF_LAYER,
size=size,
inputs=ipts,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
parents = [input, label]
if weight is not None:
parents.append(weight)
......@@ -3843,7 +4108,11 @@ def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None,
@wrap_name_default()
@wrap_param_attr_default()
@layer_support()
def crf_decoding_layer(input, size, label=None, param_attr=None, name=None,
def crf_decoding_layer(input,
size,
label=None,
param_attr=None,
name=None,
layer_attr=None):
"""
A layer for calculating the decoding sequence of sequential conditional
......@@ -3880,8 +4149,7 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None,
type=LayerType.CRF_DECODING_LAYER,
size=size,
inputs=ipts,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
**ExtraLayerAttribute.to_kwargs(layer_attr))
parents = [input]
if label is not None:
parents.append(label)
......@@ -3890,12 +4158,19 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None,
# classes.
return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
@wrap_bias_attr_default(has_bias=True)
@wrap_name_default()
@layer_support()
def nce_layer(input, label, num_classes, weight=None,
num_neg_samples=10, neg_distribution=None,
name=None, bias_attr=None, layer_attr=None):
def nce_layer(input,
label,
num_classes,
weight=None,
num_neg_samples=10,
neg_distribution=None,
name=None,
bias_attr=None,
layer_attr=None):
"""
Noise-contrastive estimation.
Implements the method in the following paper:
......@@ -3964,10 +4239,10 @@ def nce_layer(input, label, num_classes, weight=None,
num_neg_samples=num_neg_samples,
inputs=ipts_for_layer,
bias=ParamAttr.to_bias(bias_attr),
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.NCE_LAYER, parents=parents,
size=l.config.size)
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.NCE_LAYER, parents=parents, size=l.config.size)
"""
following are cost Layers.
......@@ -3976,7 +4251,13 @@ following are cost Layers.
@wrap_name_default()
@layer_support()
def rank_cost(left, right, label, weight=None, name=None, coeff=1.0, layer_attr=None):
def rank_cost(left,
right,
label,
weight=None,
name=None,
coeff=1.0,
layer_attr=None):
"""
A cost Layer for learning to rank using gradient descent. Details can refer
to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
......@@ -4035,19 +4316,24 @@ def rank_cost(left, right, label, weight=None, name=None, coeff=1.0, layer_attr=
ipts.append(weight.name)
parents.append(weight)
Layer(name=name,
type=LayerType.RANK_COST,
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.RANK_COST,
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
@wrap_name_default()
@layer_support()
def lambda_cost(input, score, name, NDCG_num=5, max_sort_size=-1, layer_attr=None):
def lambda_cost(input,
score,
name,
NDCG_num=5,
max_sort_size=-1,
layer_attr=None):
"""
lambdaCost for lambdaRank LTR approach.
......@@ -4086,16 +4372,16 @@ def lambda_cost(input, score, name, NDCG_num=5, max_sort_size=-1, layer_attr=Non
assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
if score.size is not None:
assert score.size == 1
Layer(name=name,
type=LayerType.LAMBDA_COST,
inputs=[input.name, score.name],
NDCG_num=NDCG_num,
max_sort_size=max_sort_size,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.LAMBDA_COST,
inputs=[input.name, score.name],
NDCG_num=NDCG_num,
max_sort_size=max_sort_size,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.LAMBDA_COST, parents=[input, score],
size=1)
return LayerOutput(
name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
@wrap_name_default()
......@@ -4123,19 +4409,22 @@ def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None):
:rtype: LayerOutput.
"""
Layer(name=name,
type=LayerType.CROSS_ENTROPY,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=[input, label],
size=1)
Layer(
name=name,
type=LayerType.CROSS_ENTROPY,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.CROSS_ENTROPY, parents=[input, label], size=1)
@wrap_name_default()
@layer_support()
def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0,
def cross_entropy_with_selfnorm(input,
label,
name=None,
coeff=1.0,
softmax_selfnorm_alpha=0.1,
layer_attr=None):
"""
......@@ -4161,17 +4450,19 @@ def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0,
:return: LayerOutput object.
:rtype: LayerOutput.
"""
Layer(name=name,
type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
inputs=[input.name, label.name],
coeff=coeff,
softmax_selfnorm_alpha=softmax_selfnorm_alpha,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
inputs=[input.name, label.name],
coeff=coeff,
softmax_selfnorm_alpha=softmax_selfnorm_alpha,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name,
LayerType.CROSS_ENTROPY_WITH_SELFNORM,
parents=[input, label], size=1)
return LayerOutput(
name,
LayerType.CROSS_ENTROPY_WITH_SELFNORM,
parents=[input, label],
size=1)
@wrap_name_default()
......@@ -4194,16 +4485,13 @@ def sum_cost(input, name=None, layer_attr=None):
:rtype: LayerOutput.
"""
assert isinstance(input, LayerOutput)
Layer(name=name,
type=LayerType.SUM_COST,
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.SUM_COST,
inputs=[input.name],
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name,
LayerType.SUM_COST,
parents=[input],
size=1)
return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
@wrap_name_default()
......@@ -4233,18 +4521,21 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
assert isinstance(input, LayerOutput)
if input.size is not None:
assert input.size == 1
Layer(name=name,
type=LayerType.HUBER,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
Layer(
name=name,
type=LayerType.HUBER,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
@wrap_name_default()
@layer_support()
def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0,
def multi_binary_label_cross_entropy(input,
label,
name=None,
coeff=1.0,
layer_attr=None):
"""
A loss layer for multi binary label cross entropy.
......@@ -4272,15 +4563,19 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0,
if input.activation is None or \
not isinstance(input.activation, SigmoidActivation):
logger.log(logging.WARN,
"%s is not recommend for multi_binary_label_cross_entropy's activation, "
"maybe the sigmoid is better" % repr(input.activation))
Layer(name=name,
type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
parents=[input, label], size=1)
logger.log(
logging.WARN,
"%s is not recommend for multi_binary_label_cross_entropy's activation, "
"maybe the sigmoid is better" % repr(input.activation))
Layer(
name=name,
type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
parents=[input, label],
size=1)
......@@ -21,16 +21,18 @@ from paddle.trainer.config_parser import logger
__all__ = []
def register_unary_math_op(op_name, act):
def op(input, name=None):
return mixed_layer(input=[identity_projection(input=input)],
name=name,
act=act)
return mixed_layer(
input=[identity_projection(input=input)], name=name, act=act)
op = wrap_name_default(op_name)(op)
op.__doc__ = type(act).__doc__
globals()[op_name] = op
__all__.append(op_name)
register_unary_math_op('exp', act.ExpActivation())
register_unary_math_op('log', act.LogActivation())
register_unary_math_op('abs', act.AbsActivation())
......@@ -38,6 +40,7 @@ register_unary_math_op('sigmoid', act.SigmoidActivation())
register_unary_math_op('tanh', act.TanhActivation())
register_unary_math_op('square', act.SquareActivation())
def add(layeroutput, other):
if is_compatible_with(other, float):
return slope_intercept_layer(input=layeroutput, intercept=other)
......@@ -45,8 +48,10 @@ def add(layeroutput, other):
logger.fatal("LayerOutput can only be added with"
" another LayerOutput or a number")
if layeroutput.size == other.size:
return mixed_layer(input=[identity_projection(input=layeroutput),
identity_projection(input=other)])
return mixed_layer(input=[
identity_projection(input=layeroutput),
identity_projection(input=other)
])
if other.size != 1 and layeroutput.size != 1:
logger.fatal("Two LayerOutput can be added only if they have equal size"
" or one of their sizes is 1. sizes are %s and %s" %
......@@ -56,12 +61,15 @@ def add(layeroutput, other):
layeroutput = other
other = tmp
other = repeat_layer(other, layeroutput.size)
return mixed_layer(input=[identity_projection(input=layeroutput),
identity_projection(input=other)])
return mixed_layer(input=[
identity_projection(input=layeroutput), identity_projection(input=other)
])
LayerOutput.__radd__ = add
LayerOutput.__add__ = add
def sub(layeroutput, other):
if is_compatible_with(other, float):
return slope_intercept_layer(input=layeroutput, intercept=other)
......@@ -71,14 +79,18 @@ def sub(layeroutput, other):
neg = slope_intercept_layer(input=other, slope=-1.0)
return add(layeroutput, neg)
LayerOutput.__sub__ = sub
def rsub(layeroutput, other):
neg = slope_intercept_layer(input=layeroutput, slope=-1.0)
return add(neg, other)
LayerOutput.__rsub__ = rsub
def mul(layeroutput, other):
if is_compatible_with(other, float):
return slope_intercept_layer(input=layeroutput, slope=other)
......@@ -93,5 +105,6 @@ def mul(layeroutput, other):
logger.fatal("At least one of the operand of '*' must be a number"
" or a LayerOutput with size=1")
LayerOutput.__mul__ = mul
LayerOutput.__rmul__ = mul
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
......@@ -25,28 +24,32 @@ from layers import * # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *
__all__ = ['sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
"img_conv_bn_pool", 'dropout_layer', 'lstmemory_group',
'lstmemory_unit', 'small_vgg', 'img_conv_group', 'vgg_16_network',
'gru_unit', 'gru_group', 'simple_gru', 'simple_attention',
'simple_gru2', 'bidirectional_gru', 'text_conv_pool',
'bidirectional_lstm', 'inputs', 'outputs']
__all__ = [
'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
"img_conv_bn_pool", 'dropout_layer', 'lstmemory_group', 'lstmemory_unit',
'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group',
'simple_gru', 'simple_attention', 'simple_gru2', 'bidirectional_gru',
'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs'
]
######################################################
# Text CNN #
######################################################
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
context_len, hidden_size,
context_len,
hidden_size,
name=None,
context_start=None,
pool_type=None, context_proj_layer_name=None,
pool_type=None,
context_proj_layer_name=None,
context_proj_param_attr=False,
fc_layer_name=None,
fc_param_attr=None,
fc_bias_attr=None, fc_act=None,
fc_bias_attr=None,
fc_act=None,
pool_bias_attr=None,
fc_attr=None,
context_attr=None,
......@@ -101,40 +104,62 @@ def sequence_conv_pool(input,
context_proj_layer_name = "%s_conv_proj" % name \
if context_proj_layer_name is None else context_proj_layer_name
with mixed_layer(name=context_proj_layer_name,
size=input.size * context_len,
act=LinearActivation(),
layer_attr=context_attr) as m:
m += context_projection(input, context_len=context_len,
context_start=context_start,
padding_attr=context_proj_param_attr)
with mixed_layer(
name=context_proj_layer_name,
size=input.size * context_len,
act=LinearActivation(),
layer_attr=context_attr) as m:
m += context_projection(
input,
context_len=context_len,
context_start=context_start,
padding_attr=context_proj_param_attr)
fc_layer_name = "%s_conv_fc" % name \
if fc_layer_name is None else fc_layer_name
fl = fc_layer(name=fc_layer_name, input=m, size=hidden_size,
act=fc_act, layer_attr=fc_attr,
param_attr=fc_param_attr, bias_attr=fc_bias_attr)
fl = fc_layer(
name=fc_layer_name,
input=m,
size=hidden_size,
act=fc_act,
layer_attr=fc_attr,
param_attr=fc_param_attr,
bias_attr=fc_bias_attr)
return pooling_layer(name=name, input=fl,
pooling_type=pool_type,
bias_attr=pool_bias_attr,
layer_attr=pool_attr)
return pooling_layer(
name=name,
input=fl,
pooling_type=pool_type,
bias_attr=pool_bias_attr,
layer_attr=pool_attr)
text_conv_pool = sequence_conv_pool
############################################################################
# Images #
############################################################################
@wrap_name_default("conv_pool")
def simple_img_conv_pool(input, filter_size, num_filters, pool_size, name=None,
pool_type=None, act=None, groups=1, conv_stride=1,
conv_padding=0, bias_attr=None, num_channel=None,
param_attr=None, shared_bias=True,
conv_layer_attr=None, pool_stride=1,
pool_padding=0, pool_layer_attr=None):
def simple_img_conv_pool(input,
filter_size,
num_filters,
pool_size,
name=None,
pool_type=None,
act=None,
groups=1,
conv_stride=1,
conv_padding=0,
bias_attr=None,
num_channel=None,
param_attr=None,
shared_bias=True,
conv_layer_attr=None,
pool_stride=1,
pool_padding=0,
pool_layer_attr=None):
"""
Simple image convolution and pooling group.
......@@ -179,29 +204,52 @@ def simple_img_conv_pool(input, filter_size, num_filters, pool_size, name=None,
:return: Layer's output
:rtype: LayerOutput
"""
_conv_ = img_conv_layer(name="%s_conv" % name, input=input,
filter_size=filter_size,
num_filters=num_filters, num_channels=num_channel,
act=act, groups=groups,
stride=conv_stride,
padding=conv_padding, bias_attr=bias_attr,
param_attr=param_attr, shared_biases=shared_bias,
layer_attr=conv_layer_attr)
return img_pool_layer(name="%s_pool" % name, input=_conv_,
pool_size=pool_size,
pool_type=pool_type, stride=pool_stride,
padding=pool_padding,
layer_attr=pool_layer_attr)
_conv_ = img_conv_layer(
name="%s_conv" % name,
input=input,
filter_size=filter_size,
num_filters=num_filters,
num_channels=num_channel,
act=act,
groups=groups,
stride=conv_stride,
padding=conv_padding,
bias_attr=bias_attr,
param_attr=param_attr,
shared_biases=shared_bias,
layer_attr=conv_layer_attr)
return img_pool_layer(
name="%s_pool" % name,
input=_conv_,
pool_size=pool_size,
pool_type=pool_type,
stride=pool_stride,
padding=pool_padding,
layer_attr=pool_layer_attr)
@wrap_name_default("conv_bn_pool")
def img_conv_bn_pool(input, filter_size, num_filters, pool_size, name=None,
pool_type=None, act=None, groups=1, conv_stride=1,
conv_padding=0, conv_bias_attr=None, num_channel=None,
conv_param_attr=None, shared_bias=True,
conv_layer_attr=None, bn_param_attr=None,
bn_bias_attr=None, bn_layer_attr=None, pool_stride=1,
pool_padding=0, pool_layer_attr=None):
def img_conv_bn_pool(input,
filter_size,
num_filters,
pool_size,
name=None,
pool_type=None,
act=None,
groups=1,
conv_stride=1,
conv_padding=0,
conv_bias_attr=None,
num_channel=None,
conv_param_attr=None,
shared_bias=True,
conv_layer_attr=None,
bn_param_attr=None,
bn_bias_attr=None,
bn_layer_attr=None,
pool_stride=1,
pool_padding=0,
pool_layer_attr=None):
"""
Convolution, batch normalization, pooling group.
......@@ -248,31 +296,42 @@ def img_conv_bn_pool(input, filter_size, num_filters, pool_size, name=None,
:return: Layer groups output
:rtype: LayerOutput
"""
__conv__ = img_conv_layer(name="%s_conv" % name,
input=input, filter_size=filter_size,
num_filters=num_filters, num_channels=num_channel,
act=LinearActivation(), groups=groups,
stride=conv_stride, padding=conv_padding,
bias_attr=conv_bias_attr,
param_attr=conv_param_attr,
shared_biases=shared_bias,
layer_attr=conv_layer_attr)
__bn__ = batch_norm_layer(name="%s_bn" % name,
input=__conv__, act=act,
bias_attr=bn_bias_attr, param_attr=bn_param_attr,
layer_attr=bn_layer_attr)
return img_pool_layer(name="%s_pool" % name,
input=__bn__, pool_type=pool_type,
pool_size=pool_size, stride=pool_stride,
padding=pool_padding,
layer_attr=pool_layer_attr)
@wrap_act_default(param_names=['conv_act'],
act=ReluActivation())
@wrap_param_default(param_names=['pool_type'],
default_factory=lambda _: MaxPooling())
def img_conv_group(input, conv_num_filter,
__conv__ = img_conv_layer(
name="%s_conv" % name,
input=input,
filter_size=filter_size,
num_filters=num_filters,
num_channels=num_channel,
act=LinearActivation(),
groups=groups,
stride=conv_stride,
padding=conv_padding,
bias_attr=conv_bias_attr,
param_attr=conv_param_attr,
shared_biases=shared_bias,
layer_attr=conv_layer_attr)
__bn__ = batch_norm_layer(
name="%s_bn" % name,
input=__conv__,
act=act,
bias_attr=bn_bias_attr,
param_attr=bn_param_attr,
layer_attr=bn_layer_attr)
return img_pool_layer(
name="%s_pool" % name,
input=__bn__,
pool_type=pool_type,
pool_size=pool_size,
stride=pool_stride,
padding=pool_padding,
layer_attr=pool_layer_attr)
@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
conv_num_filter,
pool_size,
num_channels=None,
conv_padding=1,
......@@ -333,10 +392,12 @@ def img_conv_group(input, conv_num_filter,
else:
extra_kwargs['act'] = conv_act[i]
tmp = img_conv_layer(input=tmp, padding=conv_padding[i],
filter_size=conv_filter_size[i],
num_filters=conv_num_filter[i],
**extra_kwargs)
tmp = img_conv_layer(
input=tmp,
padding=conv_padding[i],
filter_size=conv_filter_size[i],
num_filters=conv_num_filter[i],
**extra_kwargs)
# logger.debug("tmp.num_filters = %d" % tmp.num_filters)
......@@ -345,34 +406,41 @@ def img_conv_group(input, conv_num_filter,
if dropout == 0 or abs(dropout) < 1e-5: # dropout not set
tmp = batch_norm_layer(input=tmp, act=conv_act[i])
else:
tmp = batch_norm_layer(input=tmp, act=conv_act[i],
layer_attr=ExtraAttr(drop_rate=dropout))
tmp = batch_norm_layer(
input=tmp,
act=conv_act[i],
layer_attr=ExtraAttr(drop_rate=dropout))
return img_pool_layer(input=tmp, stride=pool_stride, pool_size=pool_size,
pool_type=pool_type)
return img_pool_layer(
input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
def small_vgg(input_image, num_channels, num_classes):
def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
return img_conv_group(input=ipt, num_channels=num_channels_,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * times,
conv_filter_size=3,
conv_act=ReluActivation(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=MaxPooling())
return img_conv_group(
input=ipt,
num_channels=num_channels_,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * times,
conv_filter_size=3,
conv_act=ReluActivation(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=MaxPooling())
tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
tmp = __vgg__(tmp, 128, 2, [0.4, 0])
tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
tmp = img_pool_layer(input=tmp, stride=2,
pool_size=2, pool_type=MaxPooling())
tmp = img_pool_layer(
input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
tmp = dropout_layer(input=tmp, dropout_rate=0.5)
tmp = fc_layer(input=tmp, size=512, layer_attr=ExtraAttr(drop_rate=0.5),
act=LinearActivation())
tmp = fc_layer(
input=tmp,
size=512,
layer_attr=ExtraAttr(drop_rate=0.5),
act=LinearActivation())
tmp = batch_norm_layer(input=tmp, act=ReluActivation())
return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
......@@ -389,37 +457,67 @@ def vgg_16_network(input_image, num_channels, num_classes=1000):
:return:
"""
tmp = img_conv_group(input=input_image, num_channels=num_channels,
conv_padding=1, conv_num_filter=[64, 64],
conv_filter_size=3,
conv_act=ReluActivation(), pool_size=2,
pool_stride=2,
pool_type=MaxPooling())
tmp = img_conv_group(input=tmp, conv_num_filter=[128, 128], conv_padding=1,
conv_filter_size=3, conv_act=ReluActivation(),
pool_stride=2, pool_type=MaxPooling(),
pool_size=2)
tmp = img_conv_group(input=tmp, conv_num_filter=[256, 256, 256],
conv_padding=1,
conv_filter_size=3, conv_act=ReluActivation(),
pool_stride=2, pool_type=MaxPooling(), pool_size=2)
tmp = img_conv_group(input=tmp, conv_num_filter=[512, 512, 512],
conv_padding=1,
conv_filter_size=3, conv_act=ReluActivation(),
pool_stride=2, pool_type=MaxPooling(), pool_size=2)
tmp = img_conv_group(input=tmp, conv_num_filter=[512, 512, 512],
conv_padding=1,
conv_filter_size=3, conv_act=ReluActivation(),
pool_stride=2, pool_type=MaxPooling(), pool_size=2)
tmp = fc_layer(input=tmp, size=4096, act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
tmp = fc_layer(input=tmp, size=4096, act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
tmp = img_conv_group(
input=input_image,
num_channels=num_channels,
conv_padding=1,
conv_num_filter=[64, 64],
conv_filter_size=3,
conv_act=ReluActivation(),
pool_size=2,
pool_stride=2,
pool_type=MaxPooling())
tmp = img_conv_group(
input=tmp,
conv_num_filter=[128, 128],
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = img_conv_group(
input=tmp,
conv_num_filter=[256, 256, 256],
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = img_conv_group(
input=tmp,
conv_num_filter=[512, 512, 512],
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = img_conv_group(
input=tmp,
conv_num_filter=[512, 512, 512],
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = fc_layer(
input=tmp,
size=4096,
act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
tmp = fc_layer(
input=tmp,
size=4096,
act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
......@@ -428,10 +526,19 @@ def vgg_16_network(input_image, num_channels, num_classes=1000):
# Recurrent #
############################################################################
@wrap_name_default("lstm")
def simple_lstm(input, size, name=None, reverse=False, mat_param_attr=None,
bias_param_attr=None, inner_param_attr=None, act=None,
gate_act=None, state_act=None, mixed_layer_attr=None,
def simple_lstm(input,
size,
name=None,
reverse=False,
mat_param_attr=None,
bias_param_attr=None,
inner_param_attr=None,
act=None,
gate_act=None,
state_act=None,
mixed_layer_attr=None,
lstm_cell_attr=None):
"""
Simple LSTM Cell.
......@@ -485,23 +592,38 @@ def simple_lstm(input, size, name=None, reverse=False, mat_param_attr=None,
:rtype: LayerOutput
"""
fc_name = 'lstm_transform_%s' % name
with mixed_layer(name=fc_name, size=size * 4,
act=IdentityActivation(),
layer_attr=mixed_layer_attr, bias_attr=False) as m:
with mixed_layer(
name=fc_name,
size=size * 4,
act=IdentityActivation(),
layer_attr=mixed_layer_attr,
bias_attr=False) as m:
m += full_matrix_projection(input, param_attr=mat_param_attr)
return lstmemory(name=name, input=m, reverse=reverse,
bias_attr=bias_param_attr,
param_attr=inner_param_attr, act=act,
gate_act=gate_act, state_act=state_act,
layer_attr=lstm_cell_attr)
return lstmemory(
name=name,
input=m,
reverse=reverse,
bias_attr=bias_param_attr,
param_attr=inner_param_attr,
act=act,
gate_act=gate_act,
state_act=state_act,
layer_attr=lstm_cell_attr)
@wrap_name_default('lstm_unit')
def lstmemory_unit(input, name=None, size=None, param_attr=None,
act=None, gate_act=None, state_act=None,
mixed_bias_attr=None, lstm_bias_attr=None,
mixed_layer_attr=None, lstm_layer_attr=None,
def lstmemory_unit(input,
name=None,
size=None,
param_attr=None,
act=None,
gate_act=None,
state_act=None,
mixed_bias_attr=None,
lstm_bias_attr=None,
mixed_layer_attr=None,
lstm_layer_attr=None,
get_output_layer_attr=None):
"""
Define calculations that a LSTM unit performs in a single time step.
......@@ -572,10 +694,12 @@ def lstmemory_unit(input, name=None, size=None, param_attr=None,
out_mem = memory(name=name, size=size)
state_mem = memory(name="%s_state" % name, size=size)
with mixed_layer(name="%s_input_recurrent" % name,
size=size * 4, bias_attr=mixed_bias_attr,
layer_attr=mixed_layer_attr,
act=IdentityActivation()) as m:
with mixed_layer(
name="%s_input_recurrent" % name,
size=size * 4,
bias_attr=mixed_bias_attr,
layer_attr=mixed_layer_attr,
act=IdentityActivation()) as m:
m += identity_projection(input=input)
m += full_matrix_projection(input=out_mem, param_attr=param_attr)
......@@ -588,22 +712,29 @@ def lstmemory_unit(input, name=None, size=None, param_attr=None,
act=act,
gate_act=gate_act,
state_act=state_act,
layer_attr=lstm_layer_attr
)
get_output_layer(name='%s_state' % name,
input=lstm_out,
arg_name='state',
layer_attr=get_output_layer_attr)
layer_attr=lstm_layer_attr)
get_output_layer(
name='%s_state' % name,
input=lstm_out,
arg_name='state',
layer_attr=get_output_layer_attr)
return lstm_out
@wrap_name_default('lstm_group')
def lstmemory_group(input, size=None, name=None,
reverse=False, param_attr=None,
act=None, gate_act=None, state_act=None,
mixed_bias_attr=None, lstm_bias_attr=None,
mixed_layer_attr=None, lstm_layer_attr=None,
def lstmemory_group(input,
size=None,
name=None,
reverse=False,
param_attr=None,
act=None,
gate_act=None,
state_act=None,
mixed_bias_attr=None,
lstm_bias_attr=None,
mixed_layer_attr=None,
lstm_layer_attr=None,
get_output_layer_attr=None):
"""
lstm_group is a recurrent layer group version Long Short Term Memory. It
......@@ -665,20 +796,25 @@ def lstmemory_group(input, size=None, name=None,
"""
def __lstm_step__(ipt):
return lstmemory_unit(input=ipt, name=name,
size=size, mixed_bias_attr=mixed_bias_attr,
mixed_layer_attr=mixed_layer_attr,
param_attr=param_attr,
lstm_bias_attr=lstm_bias_attr,
act=act, gate_act=gate_act,
state_act=state_act,
lstm_layer_attr=lstm_layer_attr,
get_output_layer_attr=get_output_layer_attr)
return recurrent_group(name='%s_recurrent_group' % name,
step=__lstm_step__,
reverse=reverse,
input=input)
return lstmemory_unit(
input=ipt,
name=name,
size=size,
mixed_bias_attr=mixed_bias_attr,
mixed_layer_attr=mixed_layer_attr,
param_attr=param_attr,
lstm_bias_attr=lstm_bias_attr,
act=act,
gate_act=gate_act,
state_act=state_act,
lstm_layer_attr=lstm_layer_attr,
get_output_layer_attr=get_output_layer_attr)
return recurrent_group(
name='%s_recurrent_group' % name,
step=__lstm_step__,
reverse=reverse,
input=input)
@wrap_name_default('gru_unit')
......@@ -728,8 +864,7 @@ def gru_unit(input,
bias_attr=gru_bias_attr,
act=act,
gate_act=gate_act,
layer_attr=gru_layer_attr
)
layer_attr=gru_layer_attr)
return gru_out
......@@ -739,7 +874,8 @@ def gru_group(input,
name=None,
reverse=False,
gru_bias_attr=None,
act=None, gate_act=None,
act=None,
gate_act=None,
gru_layer_attr=None):
"""
gru_group is a recurrent layer group version Gated Recurrent Unit. It
......@@ -788,13 +924,13 @@ def gru_group(input,
gru_bias_attr=gru_bias_attr,
act=act,
gate_act=gate_act,
gru_layer_attr=gru_layer_attr
)
gru_layer_attr=gru_layer_attr)
return recurrent_group(name='%s_recurrent_group' % name,
step=__gru_step__,
reverse=reverse,
input=input)
return recurrent_group(
name='%s_recurrent_group' % name,
step=__gru_step__,
reverse=reverse,
input=input)
@wrap_name_default('simple_gru')
......@@ -808,8 +944,7 @@ def simple_gru(input,
gru_bias_attr=None,
act=None,
gate_act=None,
gru_layer_attr=None
):
gru_layer_attr=None):
"""
You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
simple_gru in network.py. The reason why there are so many interfaces is
......@@ -862,20 +997,22 @@ def simple_gru(input,
:return: the gru group.
:rtype: LayerOutput
"""
with mixed_layer(name='%s_transform' % name,
size=size * 3,
bias_attr=mixed_bias_param_attr,
layer_attr=mixed_layer_attr) as m:
with mixed_layer(
name='%s_transform' % name,
size=size * 3,
bias_attr=mixed_bias_param_attr,
layer_attr=mixed_layer_attr) as m:
m += full_matrix_projection(input=input, param_attr=mixed_param_attr)
return gru_group(name=name,
size=size,
input=m,
reverse=reverse,
gru_bias_attr=gru_bias_attr,
act=act,
gate_act=gate_act,
gru_layer_attr=gru_layer_attr)
return gru_group(
name=name,
size=size,
input=m,
reverse=reverse,
gru_bias_attr=gru_bias_attr,
act=act,
gate_act=gate_act,
gru_layer_attr=gru_layer_attr)
@wrap_name_default('simple_gru2')
......@@ -890,8 +1027,7 @@ def simple_gru2(input,
act=None,
gate_act=None,
mixed_layer_attr=None,
gru_cell_attr=None
):
gru_cell_attr=None):
"""
simple_gru2 is the same with simple_gru, but using grumemory instead
Please see grumemory in layers.py for more detail about the maths.
......@@ -922,37 +1058,50 @@ def simple_gru2(input,
:return: the gru group.
:rtype: LayerOutput
"""
with mixed_layer(name='%s_transform' % name,
size=size * 3,
bias_attr=mixed_bias_attr,
layer_attr=mixed_layer_attr) as m:
with mixed_layer(
name='%s_transform' % name,
size=size * 3,
bias_attr=mixed_bias_attr,
layer_attr=mixed_layer_attr) as m:
m += full_matrix_projection(input=input, param_attr=mixed_param_attr)
return grumemory(name=name,
size=size,
input=m,
reverse=reverse,
bias_attr=gru_bias_attr,
param_attr=gru_param_attr,
act=act,
gate_act=gate_act,
layer_attr=gru_cell_attr)
return grumemory(
name=name,
size=size,
input=m,
reverse=reverse,
bias_attr=gru_bias_attr,
param_attr=gru_param_attr,
act=act,
gate_act=gate_act,
layer_attr=gru_cell_attr)
@wrap_name_default("bidirectional_gru")
def bidirectional_gru(input, size, name=None, return_seq=False,
fwd_mixed_param_attr=None, fwd_mixed_bias_attr=None,
fwd_gru_param_attr=None, fwd_gru_bias_attr=None,
fwd_act=None, fwd_gate_act=None,
fwd_mixed_layer_attr=None, fwd_gru_cell_attr=None,
bwd_mixed_param_attr=None, bwd_mixed_bias_attr=None,
bwd_gru_param_attr=None, bwd_gru_bias_attr=None,
bwd_act=None, bwd_gate_act=None,
bwd_mixed_layer_attr=None, bwd_gru_cell_attr=None,
last_seq_attr=None, first_seq_attr=None,
concat_attr=None, concat_act=None):
def bidirectional_gru(input,
size,
name=None,
return_seq=False,
fwd_mixed_param_attr=None,
fwd_mixed_bias_attr=None,
fwd_gru_param_attr=None,
fwd_gru_bias_attr=None,
fwd_act=None,
fwd_gate_act=None,
fwd_mixed_layer_attr=None,
fwd_gru_cell_attr=None,
bwd_mixed_param_attr=None,
bwd_mixed_bias_attr=None,
bwd_gru_param_attr=None,
bwd_gru_bias_attr=None,
bwd_act=None,
bwd_gate_act=None,
bwd_mixed_layer_attr=None,
bwd_gru_cell_attr=None,
last_seq_attr=None,
first_seq_attr=None,
concat_attr=None,
concat_act=None):
"""
A bidirectional_gru is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two
......@@ -983,41 +1132,61 @@ def bidirectional_gru(input, size, name=None, return_seq=False,
"""
args = locals()
fw = simple_gru2(name='%s_fw' % name, input=input, size=size,
**dict((k[len('fwd_'):], v) for k, v in args.iteritems()
if k.startswith('fwd_')))
fw = simple_gru2(
name='%s_fw' % name,
input=input,
size=size,
**dict((k[len('fwd_'):], v) for k, v in args.iteritems()
if k.startswith('fwd_')))
bw = simple_gru2(name="%s_bw" % name, input=input, size=size,
reverse=True,
**dict((k[len('bwd_'):], v) for k, v in args.iteritems()
if k.startswith('bwd_')))
bw = simple_gru2(
name="%s_bw" % name,
input=input,
size=size,
reverse=True,
**dict((k[len('bwd_'):], v) for k, v in args.iteritems()
if k.startswith('bwd_')))
if return_seq:
return concat_layer(name=name, input=[fw, bw], layer_attr=concat_attr,
act=concat_act)
return concat_layer(
name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
else:
fw_seq = last_seq(name="%s_fw_last" % name, input=fw,
layer_attr=last_seq_attr)
bw_seq = first_seq(name="%s_bw_last" % name, input=bw,
layer_attr=first_seq_attr)
return concat_layer(name=name, input=[fw_seq, bw_seq],
layer_attr=concat_attr, act=concat_act)
fw_seq = last_seq(
name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
bw_seq = first_seq(
name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
return concat_layer(
name=name,
input=[fw_seq, bw_seq],
layer_attr=concat_attr,
act=concat_act)
@wrap_name_default("bidirectional_lstm")
def bidirectional_lstm(input, size, name=None, return_seq=False,
fwd_mat_param_attr=None, fwd_bias_param_attr=None,
fwd_inner_param_attr=None, fwd_act=None,
fwd_gate_act=None, fwd_state_act=None,
fwd_mixed_layer_attr=None, fwd_lstm_cell_attr=None,
bwd_mat_param_attr=None, bwd_bias_param_attr=None,
bwd_inner_param_attr=None, bwd_act=None,
bwd_gate_act=None, bwd_state_act=None,
bwd_mixed_layer_attr=None, bwd_lstm_cell_attr=None,
last_seq_attr=None, first_seq_attr=None,
concat_attr=None, concat_act=None):
def bidirectional_lstm(input,
size,
name=None,
return_seq=False,
fwd_mat_param_attr=None,
fwd_bias_param_attr=None,
fwd_inner_param_attr=None,
fwd_act=None,
fwd_gate_act=None,
fwd_state_act=None,
fwd_mixed_layer_attr=None,
fwd_lstm_cell_attr=None,
bwd_mat_param_attr=None,
bwd_bias_param_attr=None,
bwd_inner_param_attr=None,
bwd_act=None,
bwd_gate_act=None,
bwd_state_act=None,
bwd_mixed_layer_attr=None,
bwd_lstm_cell_attr=None,
last_seq_attr=None,
first_seq_attr=None,
concat_attr=None,
concat_act=None):
"""
A bidirectional_lstm is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two
......@@ -1053,25 +1222,34 @@ def bidirectional_lstm(input, size, name=None, return_seq=False,
"""
args = locals()
fw = simple_lstm(name='%s_fw' % name, input=input, size=size,
**dict((k[len('fwd_'):], v) for k, v in args.iteritems()
if k.startswith('fwd_')))
fw = simple_lstm(
name='%s_fw' % name,
input=input,
size=size,
**dict((k[len('fwd_'):], v) for k, v in args.iteritems()
if k.startswith('fwd_')))
bw = simple_lstm(name="%s_bw" % name, input=input, size=size,
reverse=True,
**dict((k[len('bwd_'):], v) for k, v in args.iteritems()
if k.startswith('bwd_')))
bw = simple_lstm(
name="%s_bw" % name,
input=input,
size=size,
reverse=True,
**dict((k[len('bwd_'):], v) for k, v in args.iteritems()
if k.startswith('bwd_')))
if return_seq:
return concat_layer(name=name, input=[fw, bw], layer_attr=concat_attr,
act=concat_act)
return concat_layer(
name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
else:
fw_seq = last_seq(name="%s_fw_last" % name, input=fw,
layer_attr=last_seq_attr)
bw_seq = first_seq(name="%s_bw_last" % name, input=bw,
layer_attr=first_seq_attr)
return concat_layer(name=name, input=[fw_seq, bw_seq],
layer_attr=concat_attr, act=concat_act)
fw_seq = last_seq(
name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
bw_seq = first_seq(
name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
return concat_layer(
name=name,
input=[fw_seq, bw_seq],
layer_attr=concat_attr,
act=concat_act)
@wrap_name_default()
......@@ -1142,37 +1320,41 @@ def simple_attention(encoded_sequence,
proj_size = encoded_proj.size
with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
m += full_matrix_projection(decoder_state,
param_attr=transform_param_attr)
m += full_matrix_projection(
decoder_state, param_attr=transform_param_attr)
expanded = expand_layer(input=m, expand_as=encoded_sequence,
name='%s_expand' % name)
expanded = expand_layer(
input=m, expand_as=encoded_sequence, name='%s_expand' % name)
with mixed_layer(size=proj_size, act=weight_act,
name="%s_combine" % name) as m:
with mixed_layer(
size=proj_size, act=weight_act, name="%s_combine" % name) as m:
m += identity_projection(expanded)
m += identity_projection(encoded_proj)
# sequence softmax is used to normalize similarities between decoder state
# and encoder outputs into a distribution
attention_weight = fc_layer(input=m,
size=1,
act=SequenceSoftmaxActivation(),
param_attr=softmax_param_attr,
name="%s_softmax" % name,
bias_attr=False)
attention_weight = fc_layer(
input=m,
size=1,
act=SequenceSoftmaxActivation(),
param_attr=softmax_param_attr,
name="%s_softmax" % name,
bias_attr=False)
scaled = scaling_layer(weight=attention_weight, input=encoded_sequence,
name='%s_scaling' % name)
scaled = scaling_layer(
weight=attention_weight,
input=encoded_sequence,
name='%s_scaling' % name)
return pooling_layer(input=scaled, pooling_type=SumPooling(),
name="%s_pooling" % name)
return pooling_layer(
input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
############################################################################
# Miscs #
############################################################################
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
"""
......@@ -1183,9 +1365,12 @@ def dropout_layer(input, dropout_rate, name=None):
:param dropout_rate:
:return:
"""
return addto_layer(name=name, input=input, act=LinearActivation(),
bias_attr=False,
layer_attr=ExtraAttr(drop_rate=dropout_rate))
return addto_layer(
name=name,
input=input,
act=LinearActivation(),
bias_attr=False,
layer_attr=ExtraAttr(drop_rate=dropout_rate))
def inputs(layers, *args):
......@@ -1218,7 +1403,6 @@ def outputs(layers, *args):
def __dfs_travel__(layer,
predicate=lambda x: x.layer_type == LayerType.DATA):
"""
DFS LRV Travel for output layer.
......@@ -1259,8 +1443,9 @@ def outputs(layers, *args):
for each_layer in layers:
assert isinstance(each_layer, LayerOutput)
inputs.extend(__dfs_travel__(each_layer))
outputs_.extend(__dfs_travel__(
each_layer, lambda x: x.layer_type == LayerType.COST))
outputs_.extend(
__dfs_travel__(each_layer,
lambda x: x.layer_type == LayerType.COST))
# Currently, we got each leaf node's inputs order, output order.
# We merge them together.
......@@ -1278,16 +1463,13 @@ def outputs(layers, *args):
if each_output.name not in final_outputs:
final_outputs.append(each_output.name)
logger.info(
"".join(["The input order is [", ", ".join(final_inputs), "]"])
)
logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
if len(final_outputs) == 0:
final_outputs = map(lambda x: x.name, layers)
logger.info(
"".join(["The output order is [", ", ".join(final_outputs), "]"
]))
logger.info("".join(
["The output order is [", ", ".join(final_outputs), "]"]))
Inputs(*final_inputs)
Outputs(*final_outputs)
......@@ -17,11 +17,12 @@ from paddle.trainer.config_parser import Settings, default_decay_rate, \
from .default_decorators import wrap_param_default
__all__ = ['Optimizer', 'BaseSGDOptimizer', 'MomentumOptimizer',
'AdamaxOptimizer', 'AdamOptimizer', 'AdaGradOptimizer',
'RMSPropOptimizer', 'DecayedAdaGradOptimizer',
'AdaDeltaOptimizer', 'BaseRegularization', 'L2Regularization',
'settings', 'ModelAverage']
__all__ = [
'Optimizer', 'BaseSGDOptimizer', 'MomentumOptimizer', 'AdamaxOptimizer',
'AdamOptimizer', 'AdaGradOptimizer', 'RMSPropOptimizer',
'DecayedAdaGradOptimizer', 'AdaDeltaOptimizer', 'BaseRegularization',
'L2Regularization', 'settings', 'ModelAverage'
]
class Optimizer(object):
......@@ -90,18 +91,15 @@ class MomentumOptimizer(BaseSGDOptimizer):
:param sparse: with sparse support or not.
:type sparse: bool
"""
def extra_settings(self):
default_momentum(self.momentum)
def to_setting_kwargs(self):
if self.sparse:
return {
'learning_method': 'sparse_momentum'
}
return {'learning_method': 'sparse_momentum'}
else:
return {
'learning_method': 'momentum'
}
return {'learning_method': 'momentum'}
def __init__(self, momentum=None, sparse=False):
self.momentum = momentum
......@@ -197,9 +195,7 @@ class AdaGradOptimizer(BaseSGDOptimizer):
"""
def to_setting_kwargs(self):
return {
'learning_method': 'adagrad'
}
return {'learning_method': 'adagrad'}
def __init__(self):
pass
......@@ -311,9 +307,7 @@ class L2Regularization(BaseRegularization):
def to_setting_kwargs(self):
if self.algorithm == 'owlqn':
return {
'l2weight': self.decay_rate
}
return {'l2weight': self.decay_rate}
else:
return dict()
......@@ -330,7 +324,8 @@ class ModelAverage(Optimizer):
'do_average_in_cpu': self.do_average_in_cpu
}
def __init__(self, average_window,
def __init__(self,
average_window,
max_average_window=None,
do_average_in_cpu=False):
self.average_window = average_window
......@@ -356,10 +351,10 @@ def __extends__(dict1, dict2):
return dict1
@wrap_param_default(['learning_method'],
default_factory=lambda _: MomentumOptimizer())
@wrap_param_default(['regularization'],
default_factory=lambda _: BaseRegularization())
@wrap_param_default(
['learning_method'], default_factory=lambda _: MomentumOptimizer())
@wrap_param_default(
['regularization'], default_factory=lambda _: BaseRegularization())
def settings(batch_size,
learning_rate=1e-3,
learning_rate_decay_a=0.,
......@@ -373,8 +368,7 @@ def settings(batch_size,
regularization=None,
is_async=False,
model_average=None,
gradient_clipping_threshold=None
):
gradient_clipping_threshold=None):
"""
Set the optimization method, learning rate, batch size, and other training
settings. The currently supported algorithms are SGD and Async-SGD.
......@@ -415,10 +409,11 @@ def settings(batch_size,
else:
algorithm = 'owlqn'
args=['batch_size', 'learning_rate', 'learning_rate_decay_a',
'learning_rate_decay_b', 'learning_rate_schedule',
'learning_rate_args', 'average_window', 'do_average_in_cpu',
'max_average_window']
args = [
'batch_size', 'learning_rate', 'learning_rate_decay_a',
'learning_rate_decay_b', 'learning_rate_schedule', 'learning_rate_args',
'average_window', 'do_average_in_cpu', 'max_average_window'
]
kwargs = dict()
kwargs['algorithm'] = algorithm
for arg in args:
......
......@@ -11,18 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
__all__ = [
"BasePoolingType",
"MaxPooling",
"AvgPooling",
"CudnnMaxPooling",
"CudnnAvgPooling",
"SumPooling",
"SquareRootNPooling"
"BasePoolingType", "MaxPooling", "AvgPooling", "CudnnMaxPooling",
"CudnnAvgPooling", "SumPooling", "SquareRootNPooling"
]
......@@ -36,6 +30,7 @@ class BasePoolingType(object):
:type name: basestring
"""
def __init__(self, name):
self.name = name
......@@ -54,6 +49,7 @@ class MaxPooling(BasePoolingType):
value. None means use default value in proto.
:type output_max_index: bool|None
"""
def __init__(self, output_max_index=None):
BasePoolingType.__init__(self, "max")
self.output_max_index = output_max_index
......@@ -64,6 +60,7 @@ class CudnnMaxPooling(BasePoolingType):
Cudnn max pooling only support GPU. Return the maxinum value in the
pooling window.
"""
def __init__(self):
BasePoolingType.__init__(self, "cudnn-max-pool")
......@@ -73,9 +70,11 @@ class CudnnAvgPooling(BasePoolingType):
Cudnn average pooling only support GPU. Return the average value in the
pooling window.
"""
def __init__(self):
BasePoolingType.__init__(self, "cudnn-avg-pool")
class AvgPooling(BasePoolingType):
"""
Average pooling.
......@@ -105,7 +104,9 @@ class SumPooling(AvgPooling):
sum(samples\\_of\\_a\\_sequence)
"""
def __init__(self): AvgPooling.__init__(self, AvgPooling.STRATEGY_SUM)
def __init__(self):
AvgPooling.__init__(self, AvgPooling.STRATEGY_SUM)
class SquareRootNPooling(AvgPooling):
......@@ -118,4 +119,6 @@ class SquareRootNPooling(AvgPooling):
sum(samples\\_of\\_a\\_sequence)/sqrt(sample\\_num)
"""
def __init__(self): AvgPooling.__init__(self, AvgPooling.STRATEGY_SQROOTN)
def __init__(self):
AvgPooling.__init__(self, AvgPooling.STRATEGY_SQROOTN)
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-3,
batch_size=1000
)
settings(learning_rate=1e-3, batch_size=1000)
img = data_layer(name='image', size=256*256)
img = data_layer(name='image', size=256 * 256)
# the parse_conv in config_parse.py is not strictly accurate when filter_size
# is not square. So here set square filter_size.
img_conv = img_conv_layer(input=img, num_channels=1, num_filters=64,
filter_size=(32, 32), padding=(1, 1), stride=(1, 1),
act=LinearActivation())
img_conv = img_conv_layer(
input=img,
num_channels=1,
num_filters=64,
filter_size=(32, 32),
padding=(1, 1),
stride=(1, 1),
act=LinearActivation())
img_bn = batch_norm_layer(input=img_conv, act=ReluActivation())
img_norm = img_cmrnorm_layer(input=img_bn, size=32)
img_pool = img_pool_layer(input=img_conv, pool_size=32, pool_type=MaxPooling())
outputs(img_pool, img_norm)
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-3,
batch_size=1000
)
settings(learning_rate=1e-3, batch_size=1000)
img = data_layer(name='image', size=227*227)
img = data_layer(name='image', size=227 * 227)
# the parse_conv in config_parse.py is not strictly accurate when filter_size
# is not square. So here set square filter_size.
img_conv = img_conv_layer(input=img, num_channels=1, num_filters=64,
filter_size=(32, 32), padding=(1, 1), stride=(1, 1),
act=LinearActivation(), trans=True)
img_conv = img_conv_layer(
input=img,
num_channels=1,
num_filters=64,
filter_size=(32, 32),
padding=(1, 1),
stride=(1, 1),
act=LinearActivation(),
trans=True)
img_bn = batch_norm_layer(input=img_conv, act=ReluActivation())
img_norm = img_cmrnorm_layer(input=img_bn, size=32)
img_pool = img_pool_layer(input=img_conv, pool_size=32, pool_type=MaxPooling())
outputs(img_pool, img_norm)
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
din = data_layer(name='data', size=30)
seq_op = [
first_seq,
last_seq
]
seq_op = [first_seq, last_seq]
agg_level = [
AggregateLevel.EACH_SEQUENCE,
AggregateLevel.EACH_TIMESTEP
]
agg_level = [AggregateLevel.EACH_SEQUENCE, AggregateLevel.EACH_TIMESTEP]
opts = []
......@@ -23,4 +14,4 @@ for op in seq_op:
for al in agg_level:
opts.append(op(input=din, agg_level=al))
outputs(opts)
\ No newline at end of file
outputs(opts)
......@@ -4,18 +4,18 @@ Test all activations.
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
din = data_layer(name='input', size=100)
acts = [
TanhActivation, SigmoidActivation, SoftmaxActivation, IdentityActivation,
LinearActivation, ExpActivation, ReluActivation, BReluActivation,
SoftReluActivation, STanhActivation, AbsActivation, SquareActivation]
SoftReluActivation, STanhActivation, AbsActivation, SquareActivation
]
outputs(
[fc_layer(input=din, size=100, act=act(), name="layer_%d" % i) for i, act in
enumerate(acts)])
outputs([
fc_layer(
input=din, size=100, act=act(), name="layer_%d" % i)
for i, act in enumerate(acts)
])
from paddle.trainer_config_helpers import *
from paddle.trainer_config_helpers import math
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
x = data_layer(name='data', size=100)
x = math.exp(x)
......@@ -21,10 +18,9 @@ y = y - 2
y = 2 - y
y = 2 * y
y = y * 3
z= data_layer(name='data_2', size=1)
z = data_layer(name='data_2', size=1)
y = y * z
y = z * y
y = y + z
y = z + y
outputs(y)
......@@ -3,10 +3,7 @@ Test mixed layer, projections and operators.
'''
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-4
)
settings(batch_size=1000, learning_rate=1e-4)
din = data_layer(name='test', size=100)
......@@ -30,18 +27,20 @@ with mixed_layer() as m5:
with mixed_layer() as m6:
m6 += dotmul_operator(a=m3, b=m4)
img = data_layer(name='img', size=32*32)
flt = data_layer(name='filter', size=3*3*1*64)
img = data_layer(name='img', size=32 * 32)
flt = data_layer(name='filter', size=3 * 3 * 1 * 64)
with mixed_layer() as m7:
m7 += conv_operator(img=img, filter=flt, num_filters=64,
num_channels=1, filter_size=3)
end = mixed_layer(input=[full_matrix_projection(input=m5),
trans_full_matrix_projection(input=m6),
full_matrix_projection(input=m7)],
size=100,
layer_attr=ExtraAttr(drop_rate=0.5,
error_clipping_threshold=40))
m7 += conv_operator(
img=img, filter=flt, num_filters=64, num_channels=1, filter_size=3)
end = mixed_layer(
input=[
full_matrix_projection(input=m5),
trans_full_matrix_projection(input=m6), full_matrix_projection(input=m7)
],
size=100,
layer_attr=ExtraAttr(
drop_rate=0.5, error_clipping_threshold=40))
outputs(end)
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
a = data_layer(name='feature_a', size=200)
b = data_layer(name='feature_b', size=200)
......@@ -11,12 +8,22 @@ b = data_layer(name='feature_b', size=200)
fc_param = ParamAttr(name='fc_param', initial_max=1.0, initial_min=-1.0)
bias_param = ParamAttr(name='bias_param', initial_mean=0.0, initial_std=0.0)
softmax_param = ParamAttr(name='softmax_param', initial_max=1.0, initial_min=-1.0)
softmax_param = ParamAttr(
name='softmax_param', initial_max=1.0, initial_min=-1.0)
hidden_a = fc_layer(input=a, size=200, param_attr=fc_param, bias_attr=bias_param)
hidden_b = fc_layer(input=b, size=200, param_attr=fc_param, bias_attr=bias_param)
hidden_a = fc_layer(
input=a, size=200, param_attr=fc_param, bias_attr=bias_param)
hidden_b = fc_layer(
input=b, size=200, param_attr=fc_param, bias_attr=bias_param)
predict = fc_layer(input=[hidden_a, hidden_b], param_attr=[softmax_param, softmax_param],
bias_attr=False, size=10, act=SoftmaxActivation())
predict = fc_layer(
input=[hidden_a, hidden_b],
param_attr=[softmax_param, softmax_param],
bias_attr=False,
size=10,
act=SoftmaxActivation())
outputs(classification_cost(input=predict, label=data_layer(name='label', size=10)))
outputs(
classification_cost(
input=predict, label=data_layer(
name='label', size=10)))
......@@ -16,14 +16,26 @@ with mixed_layer(size=400, bias_attr=False) as m2:
lstm_param = ParamAttr(name='lstm_param')
lstm_bias = ParamAttr(name='lstm_bias', initial_mean=0., initial_std=0.)
lstm1 = lstmemory_group(input=m1, param_attr=lstm_param, lstm_bias_attr=lstm_bias, mixed_bias_attr=False)
lstm2 = lstmemory_group(input=m2, param_attr=lstm_param, lstm_bias_attr=lstm_bias, mixed_bias_attr=False)
lstm1 = lstmemory_group(
input=m1,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
lstm2 = lstmemory_group(
input=m2,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
softmax_param = ParamAttr(name='softmax_param')
predict = fc_layer(input=[last_seq(input=lstm1), last_seq(input=lstm2)],
size=10,
param_attr=[softmax_param, softmax_param],
bias_attr=False,
act=SoftmaxActivation())
outputs(classification_cost(input=predict, label=data_layer(name='label', size=10)))
predict = fc_layer(
input=[last_seq(input=lstm1), last_seq(input=lstm2)],
size=10,
param_attr=[softmax_param, softmax_param],
bias_attr=False,
act=SoftmaxActivation())
outputs(
classification_cost(
input=predict, label=data_layer(
name='label', size=10)))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-4
)
settings(batch_size=1000, learning_rate=1e-4)
din = data_layer(name='data', size=200)
......@@ -13,24 +10,28 @@ rnn = recurrent_layer(input=hidden, act=SigmoidActivation())
rnn2 = recurrent_layer(input=hidden, act=SigmoidActivation(), reverse=True)
lstm1_param = fc_layer(input=hidden, size=200*4, act=LinearActivation(),
bias_attr=False)
lstm1_param = fc_layer(
input=hidden, size=200 * 4, act=LinearActivation(), bias_attr=False)
lstm1 = lstmemory(input=lstm1_param, act=SigmoidActivation())
lstm2_param = fc_layer(input=hidden, size=200*4, act=LinearActivation(),
bias_attr=False)
lstm2_param = fc_layer(
input=hidden, size=200 * 4, act=LinearActivation(), bias_attr=False)
lstm2 = lstmemory(input=lstm2_param, act=SigmoidActivation(), reverse=True)
gru1_param = fc_layer(input=hidden, size=200*3, act=LinearActivation(),
bias_attr=False)
gru1_param = fc_layer(
input=hidden, size=200 * 3, act=LinearActivation(), bias_attr=False)
gru1 = grumemory(input=gru1_param, act=SigmoidActivation())
gru2_param = fc_layer(input=hidden, size=200*3, act=LinearActivation(),
bias_attr=False)
gru2_param = fc_layer(
input=hidden, size=200 * 3, act=LinearActivation(), bias_attr=False)
gru2 = grumemory(input=gru2_param, act=SigmoidActivation(), reverse=True)
outputs(last_seq(input=rnn), first_seq(input=rnn2),
last_seq(input=lstm1), first_seq(input=lstm2),
last_seq(input=gru1), first_seq(gru2))
outputs(
last_seq(input=rnn),
first_seq(input=rnn2),
last_seq(input=lstm1),
first_seq(input=lstm2),
last_seq(input=gru1),
first_seq(gru2))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-4
)
settings(batch_size=1000, learning_rate=1e-4)
din = data_layer(name='data', size=120)
......
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
data = data_layer(name='data', size=2304)
conv = img_conv_layer(input=data,
filter_size = 3,
num_channels=1,
num_filters=16,
padding=1,
act=LinearActivation(),
bias_attr=True)
conv = img_conv_layer(
input=data,
filter_size=3,
num_channels=1,
num_filters=16,
padding=1,
act=LinearActivation(),
bias_attr=True)
bilinear = bilinear_interp_layer(input=conv,
out_size_x=64,
out_size_y=64)
bilinear = bilinear_interp_layer(input=conv, out_size_x=64, out_size_y=64)
pool = img_pool_layer(input=bilinear,
num_channels=4,
pool_size=2,
stride=2,
pool_type=MaxPooling())
pool = img_pool_layer(
input=bilinear,
num_channels=4,
pool_size=2,
stride=2,
pool_type=MaxPooling())
fc = fc_layer(input=pool, size=384, bias_attr=False)
outputs(fc)
\ No newline at end of file
outputs(fc)
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
seq_in = data_layer(name='input', size=200)
labels = data_layer(name='labels', size=5000)
......@@ -12,17 +9,33 @@ probs = data_layer(name='probs', size=10)
xe_label = data_layer(name='xe-label', size=10)
hidden = fc_layer(input=seq_in, size=4)
outputs(ctc_layer(input=seq_in, label=labels),
crf_layer(input=hidden,
label=data_layer(name='crf_label', size=4)),
rank_cost(left=data_layer(name='left', size=1),
right=data_layer(name='right', size=1),
label=data_layer(name='label', size=1)),
lambda_cost(input=data_layer(name='list_feature', size=100),
score=data_layer(name='list_scores', size=1)),
cross_entropy(input=probs, label=xe_label),
cross_entropy_with_selfnorm(input=probs, label=xe_label),
huber_cost(input=data_layer(name='huber_probs', size=1),
label=data_layer(name='huber_label', size=1)),
multi_binary_label_cross_entropy(input=probs, label=xe_label),
sum_cost(input=hidden))
outputs(
ctc_layer(
input=seq_in, label=labels),
crf_layer(
input=hidden, label=data_layer(
name='crf_label', size=4)),
rank_cost(
left=data_layer(
name='left', size=1),
right=data_layer(
name='right', size=1),
label=data_layer(
name='label', size=1)),
lambda_cost(
input=data_layer(
name='list_feature', size=100),
score=data_layer(
name='list_scores', size=1)),
cross_entropy(
input=probs, label=xe_label),
cross_entropy_with_selfnorm(
input=probs, label=xe_label),
huber_cost(
input=data_layer(
name='huber_probs', size=1),
label=data_layer(
name='huber_label', size=1)),
multi_binary_label_cross_entropy(
input=probs, label=xe_label),
sum_cost(input=hidden))
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
data = data_layer(name='input', size=300)
lbl = data_layer(name='label', size=1)
wt = data_layer(name='weight', size=1)
fc = fc_layer(input=data, size=10, act=SoftmaxActivation())
outputs(classification_cost(input=fc, label=lbl, weight=wt),
regression_cost(input=fc, label=lbl, weight=wt))
outputs(
classification_cost(
input=fc, label=lbl, weight=wt),
regression_cost(
input=fc, label=lbl, weight=wt))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
din = data_layer(name='data', size=30)
data_seq = data_layer(name='data_seq', size=30)
outputs(expand_layer(input=din, expand_as=data_seq,
expand_level=ExpandLevel.FROM_SEQUENCE),
expand_layer(input=din, expand_as=data_seq,
expand_level=ExpandLevel.FROM_TIMESTEP))
outputs(
expand_layer(
input=din, expand_as=data_seq, expand_level=ExpandLevel.FROM_SEQUENCE),
expand_layer(
input=din, expand_as=data_seq, expand_level=ExpandLevel.FROM_TIMESTEP))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
din = data_layer(name='data', size=100)
trans = trans_layer(input=din)
hidden = fc_layer(input=trans, size=100,
bias_attr=False)
hidden = fc_layer(input=trans, size=100, bias_attr=False)
mask = data_layer(name='mask', size=100)
hidden_sel = selective_fc_layer(input=din, select=mask, size=100,
act=SigmoidActivation())
hidden_sel = selective_fc_layer(
input=din, select=mask, size=100, act=SigmoidActivation())
outputs(hidden, hidden_sel)
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-4
)
settings(batch_size=1000, learning_rate=1e-4)
din = data_layer(name='data', size=120)
outputs(grumemory(input=din, size=40, reverse=True, gate_act=TanhActivation(),
act=SigmoidActivation()))
outputs(
grumemory(
input=din,
size=40,
reverse=True,
gate_act=TanhActivation(),
act=SigmoidActivation()))
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
din = data_layer(name='data', size=100)
label = data_layer(name='label', size=10)
outputs(hsigmoid(input=din, label=label, num_classes=10))
\ No newline at end of file
outputs(hsigmoid(input=din, label=label, num_classes=10))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
din = data_layer(name='data', size=128)
outputs(lstmemory(input=din, reverse=True, gate_act=TanhActivation(),
act=TanhActivation(), size=32))
outputs(
lstmemory(
input=din,
reverse=True,
gate_act=TanhActivation(),
act=TanhActivation(),
size=32))
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
data = data_layer(name='data', size=2304)
conv = img_conv_layer(input=data,
filter_size = 3,
num_channels=1,
num_filters=16,
padding=1,
act=LinearActivation(),
bias_attr=True)
maxout = maxout_layer(input=conv,
num_channels=16,
groups=2)
pool = img_pool_layer(input=maxout,
num_channels=8,
pool_size=2,
stride=2,
pool_type=MaxPooling())
conv2 = img_conv_layer(input=pool,
filter_size = 3,
num_channels=32,
num_filters=128,
padding=1,
act=LinearActivation(),
bias_attr=True)
maxout2 = maxout_layer(input=conv,
num_channels=128,
groups=4)
block = block_expand_layer(input=maxout,
num_channels=32,
stride_x=1,
stride_y=1,
block_x=1,
block_y=6)
conv = img_conv_layer(
input=data,
filter_size=3,
num_channels=1,
num_filters=16,
padding=1,
act=LinearActivation(),
bias_attr=True)
maxout = maxout_layer(input=conv, num_channels=16, groups=2)
pool = img_pool_layer(
input=maxout, num_channels=8, pool_size=2, stride=2, pool_type=MaxPooling())
conv2 = img_conv_layer(
input=pool,
filter_size=3,
num_channels=32,
num_filters=128,
padding=1,
act=LinearActivation(),
bias_attr=True)
maxout2 = maxout_layer(input=conv, num_channels=128, groups=4)
block = block_expand_layer(
input=maxout, num_channels=32, stride_x=1, stride_y=1, block_x=1, block_y=6)
fc = fc_layer(input=block, size=384, bias_attr=False)
......
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-5
)
settings(batch_size=1000, learning_rate=1e-5)
weight = data_layer(name='w', size=1)
a = data_layer(name='a', size=100)
......@@ -11,13 +8,23 @@ b = data_layer(name='b', size=100)
c = data_layer(name='c', size=200)
d = data_layer(name='d', size=31)
outputs(interpolation_layer(input=[a, b], weight=weight),
power_layer(input=a, weight=weight),
scaling_layer(input=a, weight=weight),
cos_sim(a=a, b=b),
cos_sim(a=a, b=c, size=2),
sum_to_one_norm_layer(input=a),
conv_shift_layer(a=a, b=d),
tensor_layer(a=a, b=b, size=1000),
slope_intercept_layer(input=a, slope=0.7, intercept=0.9),
linear_comb_layer(weights=b, vectors=c))
outputs(
interpolation_layer(
input=[a, b], weight=weight),
power_layer(
input=a, weight=weight),
scaling_layer(
input=a, weight=weight),
cos_sim(
a=a, b=b),
cos_sim(
a=a, b=c, size=2),
sum_to_one_norm_layer(input=a),
conv_shift_layer(
a=a, b=d),
tensor_layer(
a=a, b=b, size=1000),
slope_intercept_layer(
input=a, slope=0.7, intercept=0.9),
linear_comb_layer(
weights=b, vectors=c))
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
din = data_layer(name='input', size=100)
......
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
seq = data_layer(name='seq_input', size=100)
sub_seq = data_layer(name='sub_seq_input', size=100)
......@@ -25,11 +22,15 @@ with mixed_layer() as lstm_param: # test lstm unit, rnn group
with mixed_layer() as gru_param:
gru_param += full_matrix_projection(input=seq, size=100 * 3)
outputs(last_seq(input=recurrent_group(step=generate_rnn_simple('rnn_forward'),
input=seq)),
first_seq(input=recurrent_group(step=generate_rnn_simple('rnn_back'),
input=seq, reverse=True)),
last_seq(input=recurrent_group(step=generate_rnn_simple(
'rnn_subseq_forward'), input=SubsequenceInput(input=sub_seq))),
last_seq(input=lstmemory_group(input=lstm_param, size=100)),
last_seq(input=gru_group(input=gru_param, size=100)))
outputs(
last_seq(input=recurrent_group(
step=generate_rnn_simple('rnn_forward'), input=seq)),
first_seq(input=recurrent_group(
step=generate_rnn_simple('rnn_back'), input=seq, reverse=True)),
last_seq(input=recurrent_group(
step=generate_rnn_simple('rnn_subseq_forward'),
input=SubsequenceInput(input=sub_seq))),
last_seq(input=lstmemory_group(
input=lstm_param, size=100)),
last_seq(input=gru_group(
input=gru_param, size=100)))
from paddle.trainer_config_helpers import *
settings(
learning_rate=1e-4,
batch_size=1000
)
settings(learning_rate=1e-4, batch_size=1000)
din = data_layer(name='dat_in', size=100)
POOL_TYPE = [
MaxPooling,
AvgPooling,
SumPooling
]
POOL_TYPE = [MaxPooling, AvgPooling, SumPooling]
AGG_LEVEL = [
AggregateLevel.EACH_SEQUENCE,
AggregateLevel.EACH_TIMESTEP
]
AGG_LEVEL = [AggregateLevel.EACH_SEQUENCE, AggregateLevel.EACH_TIMESTEP]
opts = []
......@@ -24,7 +14,8 @@ for pt in POOL_TYPE:
for al in AGG_LEVEL:
opts.append(pooling_layer(input=din, agg_level=al, pooling_type=pt()))
opts.append(pooling_layer(input=din,
pooling_type=MaxPooling(output_max_index=True)))
opts.append(
pooling_layer(
input=din, pooling_type=MaxPooling(output_max_index=True)))
outputs(opts)
from paddle.trainer_config_helpers import *
define_py_data_sources2(train_list="train.list",
test_list="test.list",
module=["a", "b"],
obj=("c", "d"))
settings(
learning_rate=1e-3,
batch_size=1000
)
define_py_data_sources2(
train_list="train.list",
test_list="test.list",
module=["a", "b"],
obj=("c", "d"))
settings(learning_rate=1e-3, batch_size=1000)
outputs(data_layer(name="a", size=10))
from paddle.trainer_config_helpers import *
settings(
batch_size=100,
learning_rate=1e-5
)
settings(batch_size=100, learning_rate=1e-5)
data = data_layer(name='data', size=3200)
spp = spp_layer(input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling(),
img_width=10)
spp = spp_layer(
input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling(),
img_width=10)
outputs(spp)
from paddle.trainer_config_helpers import *
settings(
batch_size=1000,
learning_rate=1e-4
)
settings(batch_size=1000, learning_rate=1e-4)
probs = data_layer(name='probs', size=100)
......@@ -11,4 +8,4 @@ outputs(
# It seems this layer is not correct, and should be rewrite.
# block_expand_layer(input=probs, channel=1, block_x=1, block_y=3),
)
\ No newline at end of file
)
......@@ -7,9 +7,7 @@ b = data_layer(name='b', size=10)
result = addto_layer(input=[a, b])
concat1 = concat_layer(input=[a, b])
concat2 = concat_layer(input=[
identity_projection(input=a),
identity_projection(input=b)
])
concat2 = concat_layer(
input=[identity_projection(input=a), identity_projection(input=b)])
outputs(result, concat1, concat2)
\ No newline at end of file
outputs(result, concat1, concat2)
......@@ -24,13 +24,17 @@ z = out_prod_layer(input1=x, input2=y)
x1 = fc_layer(input=x, size=5)
y1 = fc_layer(input=y, size=5)
z1 = mixed_layer(act=LinearActivation(),
input=[conv_operator(img=x1,
filter=y1,
filter_size=1,
num_filters=5,
num_channels=5,
stride=1)])
z1 = mixed_layer(
act=LinearActivation(),
input=[
conv_operator(
img=x1,
filter=y1,
filter_size=1,
num_filters=5,
num_channels=5,
stride=1)
])
assert z1.size > 0
......@@ -41,34 +45,36 @@ cos3 = cos_sim(a=x1, b=y2, size=3)
linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3)
out = fc_layer(input=[cos1, cos3, linear_comb, z, z1],
size=num_classes,
act=SoftmaxActivation())
out = fc_layer(
input=[cos1, cos3, linear_comb, z, z1],
size=num_classes,
act=SoftmaxActivation())
print_layer(input=[out])
outputs(classification_cost(out, data_layer(name="label", size=num_classes)))
dotmul = mixed_layer(input=[dotmul_operator(a=x1, b=x1),
dotmul_projection(input=y1)])
proj_with_attr_init = mixed_layer(input=full_matrix_projection(input=y1,
param_attr=ParamAttr(learning_rate = 0,
initial_mean = 0,
initial_std = 0)),
bias_attr = ParamAttr(initial_mean=0, initial_std=0, learning_rate=0),
act = LinearActivation(),
size = 5,
name='proj_with_attr_init')
dotmul = mixed_layer(
input=[dotmul_operator(
a=x1, b=x1), dotmul_projection(input=y1)])
proj_with_attr_init = mixed_layer(
input=full_matrix_projection(
input=y1,
param_attr=ParamAttr(
learning_rate=0, initial_mean=0, initial_std=0)),
bias_attr=ParamAttr(
initial_mean=0, initial_std=0, learning_rate=0),
act=LinearActivation(),
size=5,
name='proj_with_attr_init')
# for ctc
tmp = fc_layer(input=[x1, dotmul, proj_with_attr_init],
size=num_classes + 1,
act=SoftmaxActivation())
ctc = ctc_layer(input=tmp,
label=y,
size=num_classes + 1)
tmp = fc_layer(
input=[x1, dotmul, proj_with_attr_init],
size=num_classes + 1,
act=SoftmaxActivation())
ctc = ctc_layer(input=tmp, label=y, size=num_classes + 1)
ctc_eval = ctc_error_evaluator(input=tmp, label=y)
settings(
......@@ -76,5 +82,4 @@ settings(
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
gradient_clipping_threshold=25)
......@@ -23,8 +23,8 @@ def deprecated(instead):
@functools.wraps(func)
def __wrapper__(*args, **kwargs):
logger.warning("The interface %s is deprecated, "
"will be removed soon. Please use %s instead."
% (func.__name__, instead))
"will be removed soon. Please use %s instead." %
(func.__name__, instead))
return func(*args, **kwargs)
......
......@@ -16,17 +16,20 @@ import numpy as np
from PIL import Image
from cStringIO import StringIO
def resize_image(img, target_size):
"""
Resize an image so that the shorter edge has length target_size.
img: the input image to be resized.
target_size: the target resized image size.
"""
percent = (target_size/float(min(img.size[0], img.size[1])))
resized_size = int(round(img.size[0] * percent)), int(round(img.size[1] * percent))
percent = (target_size / float(min(img.size[0], img.size[1])))
resized_size = int(round(img.size[0] * percent)), int(
round(img.size[1] * percent))
img = img.resize(resized_size, Image.ANTIALIAS)
return img
def flip(im):
"""
Return the flipped image.
......@@ -38,6 +41,7 @@ def flip(im):
else:
return im[:, ::-1]
def crop_img(im, inner_size, color=True, test=True):
"""
Return cropped image.
......@@ -50,20 +54,22 @@ def crop_img(im, inner_size, color=True, test=True):
If True, crop the center of images.
"""
if color:
height, width = max(inner_size, im.shape[1]), max(inner_size, im.shape[2])
height, width = max(inner_size, im.shape[1]), max(inner_size,
im.shape[2])
padded_im = np.zeros((3, height, width))
startY = (height - im.shape[1]) / 2
startX = (width - im.shape[2]) / 2
endY, endX = startY + im.shape[1], startX + im.shape[2]
padded_im[:, startY: endY, startX: endX] = im
padded_im[:, startY:endY, startX:endX] = im
else:
im = im.astype('float32')
height, width = max(inner_size, im.shape[0]), max(inner_size, im.shape[1])
height, width = max(inner_size, im.shape[0]), max(inner_size,
im.shape[1])
padded_im = np.zeros((height, width))
startY = (height - im.shape[0]) / 2
startX = (width - im.shape[1]) / 2
endY, endX = startY + im.shape[0], startX + im.shape[1]
padded_im[startY: endY, startX: endX] = im
padded_im[startY:endY, startX:endX] = im
if test:
startY = (height - inner_size) / 2
startX = (width - inner_size) / 2
......@@ -72,19 +78,21 @@ def crop_img(im, inner_size, color=True, test=True):
startX = np.random.randint(0, width - inner_size + 1)
endY, endX = startY + inner_size, startX + inner_size
if color:
pic = padded_im[:, startY: endY, startX: endX]
pic = padded_im[:, startY:endY, startX:endX]
else:
pic = padded_im[startY: endY, startX: endX]
pic = padded_im[startY:endY, startX:endX]
if (not test) and (np.random.randint(2) == 0):
pic = flip(pic)
return pic
def decode_jpeg(jpeg_string):
np_array = np.array(Image.open(StringIO(jpeg_string)))
if len(np_array.shape) == 3:
np_array = np.transpose(np_array, (2, 0, 1))
return np_array
def preprocess_img(im, img_mean, crop_size, is_train, color=True):
"""
Does data augmentation for images.
......@@ -99,6 +107,7 @@ def preprocess_img(im, img_mean, crop_size, is_train, color=True):
pic -= img_mean
return pic.flatten()
def load_meta(meta_path, mean_img_size, crop_size, color=True):
"""
Return the loaded meta file.
......@@ -109,17 +118,18 @@ def load_meta(meta_path, mean_img_size, crop_size, color=True):
mean = np.load(meta_path)['data_mean']
border = (mean_img_size - crop_size) / 2
if color:
assert(mean_img_size * mean_img_size * 3 == mean.shape[0])
assert (mean_img_size * mean_img_size * 3 == mean.shape[0])
mean = mean.reshape(3, mean_img_size, mean_img_size)
mean = mean[:, border: border + crop_size,
border: border + crop_size].astype('float32')
mean = mean[:, border:border + crop_size, border:border +
crop_size].astype('float32')
else:
assert(mean_img_size * mean_img_size == mean.shape[0])
assert (mean_img_size * mean_img_size == mean.shape[0])
mean = mean.reshape(mean_img_size, mean_img_size)
mean = mean[border: border + crop_size,
border: border + crop_size].astype('float32')
mean = mean[border:border + crop_size, border:border +
crop_size].astype('float32')
return mean
def load_image(img_path, is_color=True):
"""
Load image and return.
......@@ -130,6 +140,7 @@ def load_image(img_path, is_color=True):
img.load()
return img
def oversample(img, crop_dims):
"""
image : iterable of (H x W x K) ndarrays
......@@ -152,50 +163,53 @@ def oversample(img, crop_dims):
for j in w_indices:
crops_ix[curr] = (i, j, i + crop_dims[0], j + crop_dims[1])
curr += 1
crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate([
-crop_dims / 2.0,
crop_dims / 2.0
])
crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate(
[-crop_dims / 2.0, crop_dims / 2.0])
crops_ix = np.tile(crops_ix, (2, 1))
# Extract crops
crops = np.empty((10 * len(img), crop_dims[0], crop_dims[1],
im_shape[-1]), dtype=np.float32)
crops = np.empty(
(10 * len(img), crop_dims[0], crop_dims[1], im_shape[-1]),
dtype=np.float32)
ix = 0
for im in img:
for crop in crops_ix:
crops[ix] = im[crop[0]:crop[2], crop[1]:crop[3], :]
ix += 1
crops[ix-5:ix] = crops[ix-5:ix, :, ::-1, :] # flip for mirrors
crops[ix - 5:ix] = crops[ix - 5:ix, :, ::-1, :] # flip for mirrors
return crops
class ImageTransformer:
def __init__(self, transpose = None,
channel_swap = None, mean = None, is_color = True):
def __init__(self,
transpose=None,
channel_swap=None,
mean=None,
is_color=True):
self.transpose = transpose
self.channel_swap = None
self.mean = None
self.is_color = is_color
self.is_color = is_color
def set_transpose(self, order):
def set_transpose(self, order):
if self.is_color:
assert 3 == len(order)
assert 3 == len(order)
self.transpose = order
def set_channel_swap(self, order):
def set_channel_swap(self, order):
if self.is_color:
assert 3 == len(order)
assert 3 == len(order)
self.channel_swap = order
def set_mean(self, mean):
# mean value, may be one value per channel
if mean.ndim == 1:
mean = mean[:, np.newaxis, np.newaxis]
else:
mean = mean[:, np.newaxis, np.newaxis]
else:
# elementwise mean
if self.is_color:
assert len(mean.shape) == 3
self.mean = mean
self.mean = mean
def transformer(self, data):
if self.transpose is not None:
......
......@@ -15,7 +15,6 @@
# Generate dot diagram file for the given paddle model config
# The generated file can be viewed using Graphviz (http://graphviz.org)
import sys
import traceback
......@@ -46,16 +45,16 @@ def make_diagram(config_file, dot_file, config_arg_str):
submodel_layers = set()
def make_link(link):
return 'l%s -> l%s;' % (
name2id[link.layer_name], name2id[link.link_name])
return 'l%s -> l%s;' % (name2id[link.layer_name],
name2id[link.link_name])
def make_mem(mem):
s = ''
if mem.boot_layer_name:
s += 'l%s -> l%s;\n' % (
name2id[mem.boot_layer_name], name2id[mem.layer_name])
s += 'l%s -> l%s [style=dashed];' % (
name2id[mem.layer_name], name2id[mem.link_name])
s += 'l%s -> l%s;\n' % (name2id[mem.boot_layer_name],
name2id[mem.layer_name])
s += 'l%s -> l%s [style=dashed];' % (name2id[mem.layer_name],
name2id[mem.link_name])
return s
print >> f, 'digraph graphname {'
......@@ -110,8 +109,8 @@ def make_diagram(config_file, dot_file, config_arg_str):
def usage():
print >> sys.stderr, ("Usage: python show_model_diagram.py"
+ " CONFIG_FILE DOT_FILE [config_str]")
print >> sys.stderr, ("Usage: python show_model_diagram.py" +
" CONFIG_FILE DOT_FILE [config_str]")
exit(1)
......
......@@ -12,7 +12,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Plot training and testing curve from paddle log.
It takes input from a file or stdin, and output to a file or stdout.
......@@ -59,8 +58,8 @@ import re
import os
def plot_paddle_curve(keys, inputfile, outputfile,
format='png', show_fig = False):
def plot_paddle_curve(keys, inputfile, outputfile, format='png',
show_fig=False):
"""Plot curves from paddle log and save to outputfile.
:param keys: a list of strings to be plotted, e.g. AvgCost
......@@ -93,12 +92,17 @@ def plot_paddle_curve(keys, inputfile, outputfile,
return
m = len(keys) + 1
for i in xrange(1, m):
pyplot.plot(x[:, 0], x[:, i], color=cm.jet(1.0 * (i - 1) / (2 * m)),
label=keys[i - 1])
pyplot.plot(
x[:, 0],
x[:, i],
color=cm.jet(1.0 * (i - 1) / (2 * m)),
label=keys[i - 1])
if (x_test.shape[0] > 0):
pyplot.plot(x[:, 0], x_test[:, i],
color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)),
label="Test " + keys[i - 1])
pyplot.plot(
x[:, 0],
x_test[:, i],
color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)),
label="Test " + keys[i - 1])
pyplot.xlabel('number of epoch')
pyplot.legend(loc='best')
if show_fig:
......@@ -111,12 +115,20 @@ def main(argv):
"""
main method of plotting curves.
"""
cmdparser = argparse.ArgumentParser("Plot training and testing curves from paddle log file.")
cmdparser.add_argument('key', nargs='*', help='keys of scores to plot, the default is AvgCost')
cmdparser.add_argument('-i', '--input', help='input filename of paddle log, '
'default will be standard input')
cmdparser.add_argument('-o', '--output', help='output filename of figure, '
'default will be standard output')
cmdparser = argparse.ArgumentParser(
"Plot training and testing curves from paddle log file.")
cmdparser.add_argument(
'key', nargs='*', help='keys of scores to plot, the default is AvgCost')
cmdparser.add_argument(
'-i',
'--input',
help='input filename of paddle log, '
'default will be standard input')
cmdparser.add_argument(
'-o',
'--output',
help='output filename of figure, '
'default will be standard output')
cmdparser.add_argument('--format', help='figure format(png|pdf|ps|eps|svg)')
args = cmdparser.parse_args(argv)
keys = args.key
......
......@@ -41,9 +41,8 @@ def image_data(data_dir,
the size of the mean image, the number of classes.
async_load_data: whether to load image data asynchronuously.
"""
data_creator = ImageClassificationDatasetCreater(data_dir,
processed_image_size,
color)
data_creator = ImageClassificationDatasetCreater(
data_dir, processed_image_size, color)
batch_data_dir = data_dir
train_list = os.path.join(batch_data_dir, train_list)
test_list = os.path.join(batch_data_dir, test_list)
......@@ -64,13 +63,17 @@ def image_data(data_dir,
'color': color_string
}
define_py_data_sources2(train_list, test_list,
module='image_provider',
obj='processData',
args=args)
return {"image_size": image_size,
"num_classes": num_classes,
"is_color": is_color}
define_py_data_sources2(
train_list,
test_list,
module='image_provider',
obj='processData',
args=args)
return {
"image_size": image_size,
"num_classes": num_classes,
"is_color": is_color
}
def get_extra_layer_attr(drop_rate):
......@@ -80,8 +83,8 @@ def get_extra_layer_attr(drop_rate):
return ExtraLayerAttribute(drop_rate=drop_rate)
def image_data_layers(image_size, num_classes,
is_color=False, is_predict=False):
def image_data_layers(image_size, num_classes, is_color=False,
is_predict=False):
"""
Data layers for image classification.
image_size: image size.
......@@ -109,56 +112,58 @@ def simple_conv_net(data_conf, is_color=False):
num_classes: num of classes.
is_color: whether the input images are color.
"""
for k, v in data_conf.iteritems(): globals()[k] = v
for k, v in data_conf.iteritems():
globals()[k] = v
data_input, label_input, num_image_channels = \
image_data_layers(image_size, num_classes, is_color, is_predict)
filter_sizes = [5, 5]
num_channels = [32, 64]
strides = [1, 1]
fc_dims = [500]
conv_bn_pool1 = img_conv_bn_pool(name="g1",
input=data_input,
filter_size=filter_sizes[0],
num_channel=num_image_channels,
num_filters=num_channels[0],
conv_stride=1,
conv_padding=0,
pool_size=3,
pool_stride=2,
act=ReluActivation())
conv_bn_pool2 = img_conv_bn_pool(name="g2",
input=conv_bn_pool1,
filter_size=filter_sizes[1],
num_channel=num_channels[0],
num_filters=num_channels[1],
conv_stride=1,
conv_padding=0,
pool_size=3,
pool_stride=2,
act=ReluActivation())
fc3 = fc_layer(name="fc3",
input=conv_bn_pool2,
dim=fc_dims[0],
act=ReluActivation())
fc3_dropped = dropout_layer(name="fc3_dropped",
input=fc3,
dropout_rate=0.5)
output = fc_layer(name="output",
input=fc3_dropped,
dim=fc_dims[0],
act=SoftmaxActivation())
conv_bn_pool1 = img_conv_bn_pool(
name="g1",
input=data_input,
filter_size=filter_sizes[0],
num_channel=num_image_channels,
num_filters=num_channels[0],
conv_stride=1,
conv_padding=0,
pool_size=3,
pool_stride=2,
act=ReluActivation())
conv_bn_pool2 = img_conv_bn_pool(
name="g2",
input=conv_bn_pool1,
filter_size=filter_sizes[1],
num_channel=num_channels[0],
num_filters=num_channels[1],
conv_stride=1,
conv_padding=0,
pool_size=3,
pool_stride=2,
act=ReluActivation())
fc3 = fc_layer(
name="fc3", input=conv_bn_pool2, dim=fc_dims[0], act=ReluActivation())
fc3_dropped = dropout_layer(name="fc3_dropped", input=fc3, dropout_rate=0.5)
output = fc_layer(
name="output",
input=fc3_dropped,
dim=fc_dims[0],
act=SoftmaxActivation())
if is_predict:
end_of_network(output)
else:
cost = classify(name="cost",
input=output,
label=label_input)
cost = classify(name="cost", input=output, label=label_input)
end_of_network(cost)
def conv_layer_group(prefix_num, num_layers, input,
input_channels, output_channels,
drop_rates=[], strides=[],
def conv_layer_group(prefix_num,
num_layers,
input,
input_channels,
output_channels,
drop_rates=[],
strides=[],
with_bn=[]):
"""
A set of convolution layers, and batch normalization layers,
......@@ -190,36 +195,45 @@ def conv_layer_group(prefix_num, num_layers, input,
i_conv_in = group_output
i_channels_conv = input_channels if i == 1 else output_channels
conv_act = LinearActivation() if with_bn[i - 1] else ReluActivation()
conv_output = img_conv_layer(name="conv%d_%d" % (prefix_num, i),
input=i_conv_in,
filter_size=3,
num_channels=i_channels_conv,
num_filters=output_channels,
stride=strides[i - 1],
padding=1,
act=conv_act)
conv_output = img_conv_layer(
name="conv%d_%d" % (prefix_num, i),
input=i_conv_in,
filter_size=3,
num_channels=i_channels_conv,
num_filters=output_channels,
stride=strides[i - 1],
padding=1,
act=conv_act)
if with_bn[i - 1]:
bn = batch_norm_layer(name="conv%d_%d_bn" % (prefix_num, i),
input=conv_output,
num_channels=output_channels,
act=ReluActivation(),
layer_attr=get_extra_layer_attr(
drop_rate=drop_rates[i - 1]))
bn = batch_norm_layer(
name="conv%d_%d_bn" % (prefix_num, i),
input=conv_output,
num_channels=output_channels,
act=ReluActivation(),
layer_attr=get_extra_layer_attr(drop_rate=drop_rates[i - 1]))
group_output = bn
else:
group_output = conv_output
pool = img_pool_layer(name="pool%d" % prefix_num,
input=group_output,
pool_size=2,
num_channels=output_channels,
stride=2)
pool = img_pool_layer(
name="pool%d" % prefix_num,
input=group_output,
pool_size=2,
num_channels=output_channels,
stride=2)
return pool
def vgg_conv_net(image_size, num_classes, num_layers,
channels, strides, with_bn, fc_dims,
drop_rates, drop_rates_fc=[],
is_color=True, is_predict=False):
def vgg_conv_net(image_size,
num_classes,
num_layers,
channels,
strides,
with_bn,
fc_dims,
drop_rates,
drop_rates_fc=[],
is_color=True,
is_predict=False):
"""
A Wrapper for a VGG network for image classification.
It is a set of convolutional groups followed by several fully
......@@ -248,51 +262,49 @@ def vgg_conv_net(image_size, num_classes, num_layers,
for i in range(len(num_layers)):
input_layer = data_input if i == 0 else group_output
input_channels = 3 if i == 0 else channels[i - 1]
group_output = conv_layer_group(prefix_num=i + 1,
num_layers=num_layers[i],
input=input_layer,
input_channels=input_channels,
output_channels=channels[i],
drop_rates=drop_rates[i],
strides=strides[i],
with_bn=with_bn[i])
group_output = conv_layer_group(
prefix_num=i + 1,
num_layers=num_layers[i],
input=input_layer,
input_channels=input_channels,
output_channels=channels[i],
drop_rates=drop_rates[i],
strides=strides[i],
with_bn=with_bn[i])
conv_output_name = group_output
if drop_rates_fc[0] != 0.0:
dropped_pool_name = "pool_dropped"
conv_output_name = dropout_layer(name=dropped_pool_name,
input=conv_output_name,
dropout_rate=drop_rates_fc[0])
conv_output_name = dropout_layer(
name=dropped_pool_name,
input=conv_output_name,
dropout_rate=drop_rates_fc[0])
for i in range(len(fc_dims)):
input_layer_name = conv_output_name if i == 0 else fc_output
active_type = LinearActivation() if i == len(
fc_dims) - 1 else ReluActivation()
drop_rate = 0.0 if i == len(fc_dims) - 1 else drop_rates_fc[i + 1]
fc_output = fc_layer(name="fc%d" % (i + 1),
input=input_layer_name,
size=fc_dims[i],
act=active_type,
layer_attr=get_extra_layer_attr(drop_rate))
bn = batch_norm_layer(name="fc_bn",
input=fc_output,
num_channels=fc_dims[len(fc_dims) - 1],
act=ReluActivation(),
layer_attr=get_extra_layer_attr(
drop_rate=drop_rates_fc[-1]))
output = fc_layer(name="output",
input=bn,
size=num_classes,
act=SoftmaxActivation())
fc_output = fc_layer(
name="fc%d" % (i + 1),
input=input_layer_name,
size=fc_dims[i],
act=active_type,
layer_attr=get_extra_layer_attr(drop_rate))
bn = batch_norm_layer(
name="fc_bn",
input=fc_output,
num_channels=fc_dims[len(fc_dims) - 1],
act=ReluActivation(),
layer_attr=get_extra_layer_attr(drop_rate=drop_rates_fc[-1]))
output = fc_layer(
name="output", input=bn, size=num_classes, act=SoftmaxActivation())
if is_predict:
outputs(output)
else:
cost = classification_cost(name="cost",
input=output,
label=label_input)
cost = classification_cost(name="cost", input=output, label=label_input)
outputs(cost)
def vgg16_conv_net(image_size, num_classes,
is_color=True, is_predict=False):
def vgg16_conv_net(image_size, num_classes, is_color=True, is_predict=False):
"""
A Wrapper for a 16 layers VGG network for image classification.
The detailed architecture of the paper can be found here:
......@@ -314,8 +326,7 @@ def vgg16_conv_net(image_size, num_classes,
is_predict=is_predict)
def small_vgg(data_conf,
is_predict=False):
def small_vgg(data_conf, is_predict=False):
"""
A Wrapper for a small VGG network for CIFAR-10 image classification.
The detailed architecture of the paper can be found here:
......@@ -329,7 +340,8 @@ def small_vgg(data_conf,
num_classes: num of classes.
is_color: whether the input images are color.
"""
for k, v in data_conf.iteritems(): globals()[k] = v
for k, v in data_conf.iteritems():
globals()[k] = v
vgg_conv_net(image_size, num_classes,
num_layers=[2, 2, 3, 3],
channels=[64, 128, 256, 512],
......@@ -343,8 +355,11 @@ def small_vgg(data_conf,
is_predict=is_predict)
def training_settings(learning_rate=0.1, batch_size=128, algorithm="sgd",
momentum=0.9, decay_rate=0.001):
def training_settings(learning_rate=0.1,
batch_size=128,
algorithm="sgd",
momentum=0.9,
decay_rate=0.001):
"""
Training settings.
learning_rate: learning rate of the training.
......@@ -357,8 +372,9 @@ def training_settings(learning_rate=0.1, batch_size=128, algorithm="sgd",
momentum: momentum of the training algorithm.
decay_rate: weight decay rate.
"""
Settings(algorithm=algorithm,
batch_size=batch_size,
learning_rate=learning_rate / float(batch_size))
Settings(
algorithm=algorithm,
batch_size=batch_size,
learning_rate=learning_rate / float(batch_size))
default_momentum(momentum)
default_decay_rate(decay_rate * batch_size)
......@@ -28,16 +28,18 @@ def resize_image(img, target_size):
img: the input image to be resized.
target_size: the target resized image size.
"""
percent = (target_size/float(min(img.size[0], img.size[1])))
percent = (target_size / float(min(img.size[0], img.size[1])))
resized_size = int(round(img.size[0] * percent)),\
int(round(img.size[1] * percent))
img = img.resize(resized_size, Image.ANTIALIAS)
return img
class DiskImage:
"""
A class of image data on disk.
"""
def __init__(self, path, target_size):
"""
path: path of the image.
......@@ -77,6 +79,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
"""
A class to process data for image classification.
"""
def __init__(self, data_path, target_size, color=True):
"""
data_path: the path to store the training data and batches.
......@@ -95,8 +98,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
The meta file contains the meam image, as well as some configs.
data: the training Dataaet.
"""
output_path = os.path.join(self.data_path,
self.batch_dir_name,
output_path = os.path.join(self.data_path, self.batch_dir_name,
self.meta_filename)
if self.color:
mean_img = np.zeros((3, self.target_size, self.target_size))
......@@ -108,12 +110,13 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
mean_img += cropped_img
mean_img /= len(data.data)
mean_img = mean_img.astype('int32').flatten()
preprocess_util.save_file({"data_mean": mean_img,
"image_size": self.target_size,
"mean_image_size": self.target_size,
"num_classes": self.num_classes,
"color": self.color},
output_path)
preprocess_util.save_file({
"data_mean": mean_img,
"image_size": self.target_size,
"mean_image_size": self.target_size,
"num_classes": self.num_classes,
"color": self.color
}, output_path)
pass
def create_dataset_from_list(self, path):
......@@ -125,12 +128,11 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
label_name = items[1]
if not label_name in label_set:
label_set[label_name] = len(label_set.keys())
img = DiskImage(path = image_path, target_size = self.target_size)
label = preprocess_util.Lablel(label = label_set[label_name],
name=label_name)
img = DiskImage(path=image_path, target_size=self.target_size)
label = preprocess_util.Lablel(
label=label_set[label_name], name=label_name)
return preprocess_util.Dataset(data, self.keys), label_set
def create_dataset_from_dir(self, path):
"""
Create a Dataset object for image classfication.
......@@ -143,11 +145,12 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
label_set = preprocess_util.get_label_set_from_dir(path)
data = []
for l_name in label_set.keys():
image_paths = preprocess_util.list_images(os.path.join(path, l_name))
image_paths = preprocess_util.list_images(
os.path.join(path, l_name))
for p in image_paths:
img = DiskImage(path = p, target_size = self.target_size)
label = preprocess_util.Label(label = label_set[l_name],
name = l_name)
img = DiskImage(path=p, target_size=self.target_size)
label = preprocess_util.Label(
label=label_set[l_name], name=l_name)
data.append((img, label))
random.shuffle(data)
return preprocess_util.Dataset(data, self.keys), label_set
......@@ -18,6 +18,7 @@ import cPickle as pickle
import random
import collections
def save_file(data, filename):
"""
Save data into pickle format.
......@@ -26,6 +27,7 @@ def save_file(data, filename):
"""
pickle.dump(data, open(filename, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
def save_list(l, outfile):
"""
Save a list of string into a text file. There is one line for each string.
......@@ -42,15 +44,20 @@ def exclude_pattern(f):
"""
return f.startswith(".") or f.endswith("~")
def list_dirs(path):
"""
Return a list of directories in path. Exclude all the directories that
start with '.'.
path: the base directory to search over.
"""
return [os.path.join(path, d) for d in next(os.walk(path))[1] if not exclude_pattern(d)]
return [
os.path.join(path, d) for d in next(os.walk(path))[1]
if not exclude_pattern(d)
]
def list_images(path, exts = set(["jpg", "png", "bmp", "jpeg"])):
def list_images(path, exts=set(["jpg", "png", "bmp", "jpeg"])):
"""
Return a list of images in path.
path: the base directory to search over.
......@@ -60,6 +67,7 @@ def list_images(path, exts = set(["jpg", "png", "bmp", "jpeg"])):
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)\
and os.path.splitext(d)[-1][1:] in exts]
def list_files(path):
"""
Return a list of files in path.
......@@ -69,6 +77,7 @@ def list_files(path):
return [os.path.join(path, d) for d in os.listdir(path) \
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)]
def get_label_set_from_dir(path):
"""
Return a dictionary of the labels and label ids from a path.
......@@ -84,6 +93,7 @@ class Label:
"""
A class of label data.
"""
def __init__(self, label, name):
"""
label: the id of the label.
......@@ -98,9 +108,10 @@ class Label:
"""
return int(self.label)
def __hash__(self):
def __hash__(self):
return hash((self.label))
class Dataset:
"""
A class to represent a dataset. A dataset contains a set of items.
......@@ -108,6 +119,7 @@ class Dataset:
For example: in image classification dataset, each item contains two slot,
The first slot is an image, and the second slot is a label.
"""
def __init__(self, data, keys):
"""
data: a list of data.
......@@ -120,7 +132,7 @@ class Dataset:
def check_valid(self):
for d in self.data:
assert(len(d) == len(self.keys))
assert (len(d) == len(self.keys))
def permute(self, key_id, num_per_batch):
"""
......@@ -167,8 +179,9 @@ class Dataset:
while len(permuted_data) < len(self.data):
for k in keyvalue_indices:
begin_idx = keyvalue_readpointer[k]
end_idx = int(min(begin_idx + num_data_per_key_batch,
len(keyvalue_indices[k])))
end_idx = int(
min(begin_idx + num_data_per_key_batch,
len(keyvalue_indices[k])))
print "begin_idx, end_idx"
print begin_idx, end_idx
for idx in range(begin_idx, end_idx):
......@@ -177,12 +190,12 @@ class Dataset:
self.data = permuted_data
class DataBatcher:
"""
A class that is used to create batches for both training and testing
datasets.
"""
def __init__(self, train_data, test_data, label_set):
"""
train_data, test_data: Each one is a dataset object repesenting
......@@ -190,10 +203,10 @@ class DataBatcher:
label_set: a dictionary storing the mapping from label name to label id.
"""
self.train_data = train_data
self.test_data = test_data
self.test_data = test_data
self.label_set = label_set
self.num_per_batch = 5000
assert(self.train_data.keys == self.test_data.keys)
assert (self.train_data.keys == self.test_data.keys)
def create_batches_and_list(self, output_path, train_list_name,
test_list_name, label_set_name):
......@@ -202,16 +215,19 @@ class DataBatcher:
It also create train.list and test.list to indicate the list
of the batch files for training and testing data, respectively.
"""
train_list = self.create_batches(self.train_data, output_path,
"train_", self.num_per_batch)
train_list = self.create_batches(self.train_data, output_path, "train_",
self.num_per_batch)
test_list = self.create_batches(self.test_data, output_path, "test_",
self.num_per_batch)
self.num_per_batch)
save_list(train_list, os.path.join(output_path, train_list_name))
save_list(test_list, os.path.join(output_path, test_list_name))
save_file(self.label_set, os.path.join(output_path, label_set_name))
def create_batches(self, data, output_path,
prefix = "", num_data_per_batch=5000):
def create_batches(self,
data,
output_path,
prefix="",
num_data_per_batch=5000):
"""
Create batches for a Dataset object.
data: the Dataset object to process.
......@@ -244,6 +260,7 @@ class DatasetCreater(object):
- create_dataset()
- create_meta_file()
"""
def __init__(self, data_path):
"""
data_path: the path to store the training data and batches.
......@@ -324,24 +341,22 @@ class DatasetCreater(object):
out_path = os.path.join(self.data_path, self.batch_dir_name)
if not os.path.exists(out_path):
os.makedirs(out_path)
if (self.overwrite or
not os.path.exists(os.path.join(out_path, self.train_list_name))):
if (self.overwrite or not os.path.exists(
os.path.join(out_path, self.train_list_name))):
train_data, train_label_set = \
self.create_dataset(train_path)
test_data, test_label_set = \
self.create_dataset(test_path)
train_data.permute(self.keys.index(self.permutate_key),
self.num_per_batch)
train_data.permute(
self.keys.index(self.permutate_key), self.num_per_batch)
assert(train_label_set == test_label_set)
data_batcher = DataBatcher(train_data, test_data,
train_label_set)
assert (train_label_set == test_label_set)
data_batcher = DataBatcher(train_data, test_data, train_label_set)
data_batcher.num_per_batch = self.num_per_batch
data_batcher.create_batches_and_list(self.output_path,
self.train_list_name,
self.test_list_name,
self.label_set_name)
data_batcher.create_batches_and_list(
self.output_path, self.train_list_name, self.test_list_name,
self.label_set_name)
self.num_classes = len(train_label_set.keys())
self.create_meta_file(train_data)
return out_path
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Show the content of proto buffer data file of PADDLE
"""
......@@ -21,6 +20,7 @@ import sys
from google.protobuf.internal.decoder import _DecodeVarint
import paddle.proto.DataFormat_pb2 as DataFormat
def read_proto(file, message):
"""
read a protobuffer struct from file, the length of the struct is stored as
......@@ -39,7 +39,7 @@ def read_proto(file, message):
def usage():
print >>sys.stderr, "Usage: python show_pb.py PROTO_DATA_FILE"
print >> sys.stderr, "Usage: python show_pb.py PROTO_DATA_FILE"
exit(1)
......@@ -51,10 +51,7 @@ if __name__ == '__main__':
header = DataFormat.DataHeader()
read_proto(f, header)
print header
sample = DataFormat.DataSample()
while read_proto(f, sample):
print sample
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert torch parameter file to paddle model files.
......@@ -28,10 +27,11 @@ import torchfile
import cPickle as pickle
import argparse
# save parameters
def save_layer_parameters(outfile, feats):
version = 0
value_size = 4;
value_size = 4
ret = ""
for feat in feats:
ret += feat.tostring()
......@@ -41,16 +41,18 @@ def save_layer_parameters(outfile, feats):
fo.write(ret)
fo.close()
def save_net_parameters(layers, params, output_path):
for i in range(len(layers)):
weight = params[i*2]
biases = params[i*2+1]
weight = params[i * 2]
biases = params[i * 2 + 1]
weight_file = os.path.join(output_path, '_%s.w0' % layers[i])
biases_file = os.path.join(output_path, '_%s.wbias' % layers[i])
print "Saving for layer %s." % layers[i]
save_layer_parameters(weight_file, [weight])
save_layer_parameters(biases_file, biases)
def load_layer_parameters(filename):
fn = open(filename, 'rb')
version, = struct.unpack('i', fn.read(4))
......@@ -60,16 +62,20 @@ def load_layer_parameters(filename):
value = np.fromfile(fn, dtype)
return value
def main(argv):
"""
main method of converting torch to paddle files.
:param argv:
:return:
"""
cmdparser = argparse.ArgumentParser("Convert torch parameter file to paddle model files.")
cmdparser.add_argument('-i', '--input', help='input filename of torch parameters')
cmdparser = argparse.ArgumentParser(
"Convert torch parameter file to paddle model files.")
cmdparser.add_argument(
'-i', '--input', help='input filename of torch parameters')
cmdparser.add_argument('-l', '--layers', help='list of layer names')
cmdparser.add_argument('-o', '--output', help='output file path of paddle model')
cmdparser.add_argument(
'-o', '--output', help='output file path of paddle model')
args = cmdparser.parse_args(argv)
if args.input and args.layers and args.output:
......@@ -77,7 +83,10 @@ def main(argv):
layers = [line.strip() for line in open(args.layers, 'r')]
save_net_parameters(layers, params, args.output)
else:
print('Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model')
print(
'Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model'
)
if __name__ == "__main__":
main(sys.argv[1:])
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册