Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a09a1ffd
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a09a1ffd
编写于
2月 14, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
118d950e
上级
e5e21f22
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
1134 addition
and
2 deletion
+1134
-2
develop/doc/_sources/design/parallel_do.md.txt
develop/doc/_sources/design/parallel_do.md.txt
+162
-0
develop/doc/design/parallel_do.html
develop/doc/design/parallel_do.html
+394
-0
develop/doc/objects.inv
develop/doc/objects.inv
+0
-0
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/design/parallel_do.md.txt
develop/doc_cn/_sources/design/parallel_do.md.txt
+162
-0
develop/doc_cn/design/parallel_do.html
develop/doc_cn/design/parallel_do.html
+414
-0
develop/doc_cn/objects.inv
develop/doc_cn/objects.inv
+0
-0
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/design/parallel_do.md.txt
0 → 100644
浏览文件 @
a09a1ffd
# Design Doc: Parallel_Do in PaddlePaddle
In PaddlePaddle, we use parallel_do primitive to represent multithread data parallel processing.
## Design overview
The definition of a parallel_do op looks like the following
```c++
AddInput(kInputs, "Inputs needed to be split onto different devices").AsDuplicable();
AddInput(kParameters, "Parameters are duplicated over different devices")
.AsDuplicable();
AddInput(kPlaces, "Devices used for parallel processing");
AddOutput(kOutputs, "Outputs needed to be merged from different devices").AsDuplicable();
AddOutput(kParallelScopes,
"Scopes for all local variables in forward pass. One scope for each device");
AddAttr<framework::BlockDesc *>(kParallelBlock,
"List of operaters to be executed in parallel");
```
A vanilla implementation of parallel_do can be shown as the following (`|` means single thread and
`||||` means multiple threads)
```
In the forward pass
| Split input onto different devices
| Copy parameter to onto different devices
|||| Compute forward pass in parallel
| Merge output from different devices
In the backward pass
| Split output@grad onto different devices
|||| Compute backward pass in parallel
| accumulate param@grad from different devices to the first device
| Merge input@grad from different devices
| Copy param@grad to the place of parallel_do_op
```
This implementation allows to write mixed device program like this
```python
# get embedding feature on CPU
feature = some_cpu_only_op(data)
gpu_places = get_place(use_gpu=True)
# parallel processing on multiple GPUs
pd = ParallelDo(gpu_places)
with pd.do():
read_input(feature)
prediction = my_net(feature)
write_output(prediction)
prediction = pd()
loss = cross_entropy(prediction, label)
```
And the programDesc are like the following
```
# start_program will be run by executor(CPUPlace), all w1, w2 will be allocated on CPU
start_program
{
vars: w1, w2
ops: init(w1), init(w2)
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2),
sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad
fc_grad
}
}
```
## Proformance Imporvement
There are serial places we can make this parallel_do faster.
### forward: split input onto different devices
If the input of the parallel_do is independent from any prior opeartors, we can avoid this step by
prefetching the input onto different devices in a seperate background thread. And the python code
looks like this.
```python
pd = ParallelDo(gpu_places)
with pd.do():
feature = get_data_from_prefetch_queue(gpu_places)
prediction = my_net(feature)
write_output(activation)
```
### forward: Copy parameter to onto different devices
We can avoid this step by making each device have a copy of the parameter. This requires:
1. `fluid.default_start_up_program()` to be run on all devices
1. In the backward, allreduce param@grad at different devices, this requires
1. `backward.py` add `allreduce` operators at parallel_do_grad
1. `allreduce` operators need to be called in async mode to achieve maximum throughput
1. apply gradients related op(i.e. cliping, normalization, decay, sgd) on different devices in parallel
By doing so, we also avoided "backward: accumulate param@grad from different devices to the first device".
And the ProgramDesc looks like the following
```
# w1, w2 will be allocated on all GPUs
start_program
{
block0 {
parallel_do(block1)
}
block1 {
parent_block: 0
vars: w1, w2
ops: init(w1), init(w2)
}
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2), # append_backward
parallel_do(block3) # append_optimization
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad, allreduce(places, scopes, w1_grad),
fc_grad, allreduce(places, scopes, w2_grad)
}
block3 {
parent_block: 0
vars: lr
ops: sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
}
```
develop/doc/design/parallel_do.html
0 → 100644
浏览文件 @
a09a1ffd
此差异已折叠。
点击以展开。
develop/doc/objects.inv
浏览文件 @
a09a1ffd
无法预览此类型文件
develop/doc/searchindex.js
浏览文件 @
a09a1ffd
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/_sources/design/parallel_do.md.txt
0 → 100644
浏览文件 @
a09a1ffd
# Design Doc: Parallel_Do in PaddlePaddle
In PaddlePaddle, we use parallel_do primitive to represent multithread data parallel processing.
## Design overview
The definition of a parallel_do op looks like the following
```c++
AddInput(kInputs, "Inputs needed to be split onto different devices").AsDuplicable();
AddInput(kParameters, "Parameters are duplicated over different devices")
.AsDuplicable();
AddInput(kPlaces, "Devices used for parallel processing");
AddOutput(kOutputs, "Outputs needed to be merged from different devices").AsDuplicable();
AddOutput(kParallelScopes,
"Scopes for all local variables in forward pass. One scope for each device");
AddAttr<framework::BlockDesc *>(kParallelBlock,
"List of operaters to be executed in parallel");
```
A vanilla implementation of parallel_do can be shown as the following (`|` means single thread and
`||||` means multiple threads)
```
In the forward pass
| Split input onto different devices
| Copy parameter to onto different devices
|||| Compute forward pass in parallel
| Merge output from different devices
In the backward pass
| Split output@grad onto different devices
|||| Compute backward pass in parallel
| accumulate param@grad from different devices to the first device
| Merge input@grad from different devices
| Copy param@grad to the place of parallel_do_op
```
This implementation allows to write mixed device program like this
```python
# get embedding feature on CPU
feature = some_cpu_only_op(data)
gpu_places = get_place(use_gpu=True)
# parallel processing on multiple GPUs
pd = ParallelDo(gpu_places)
with pd.do():
read_input(feature)
prediction = my_net(feature)
write_output(prediction)
prediction = pd()
loss = cross_entropy(prediction, label)
```
And the programDesc are like the following
```
# start_program will be run by executor(CPUPlace), all w1, w2 will be allocated on CPU
start_program
{
vars: w1, w2
ops: init(w1), init(w2)
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2),
sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad
fc_grad
}
}
```
## Proformance Imporvement
There are serial places we can make this parallel_do faster.
### forward: split input onto different devices
If the input of the parallel_do is independent from any prior opeartors, we can avoid this step by
prefetching the input onto different devices in a seperate background thread. And the python code
looks like this.
```python
pd = ParallelDo(gpu_places)
with pd.do():
feature = get_data_from_prefetch_queue(gpu_places)
prediction = my_net(feature)
write_output(activation)
```
### forward: Copy parameter to onto different devices
We can avoid this step by making each device have a copy of the parameter. This requires:
1. `fluid.default_start_up_program()` to be run on all devices
1. In the backward, allreduce param@grad at different devices, this requires
1. `backward.py` add `allreduce` operators at parallel_do_grad
1. `allreduce` operators need to be called in async mode to achieve maximum throughput
1. apply gradients related op(i.e. cliping, normalization, decay, sgd) on different devices in parallel
By doing so, we also avoided "backward: accumulate param@grad from different devices to the first device".
And the ProgramDesc looks like the following
```
# w1, w2 will be allocated on all GPUs
start_program
{
block0 {
parallel_do(block1)
}
block1 {
parent_block: 0
vars: w1, w2
ops: init(w1), init(w2)
}
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2), # append_backward
parallel_do(block3) # append_optimization
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad, allreduce(places, scopes, w1_grad),
fc_grad, allreduce(places, scopes, w2_grad)
}
block3 {
parent_block: 0
vars: lr
ops: sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
}
```
develop/doc_cn/design/parallel_do.html
0 → 100644
浏览文件 @
a09a1ffd
此差异已折叠。
点击以展开。
develop/doc_cn/objects.inv
浏览文件 @
a09a1ffd
无法预览此类型文件
develop/doc_cn/searchindex.js
浏览文件 @
a09a1ffd
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录