Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9ee698e6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9ee698e6
编写于
8月 22, 2018
作者:
Y
Yan Chunwei
提交者:
GitHub
8月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance/ditu rnn with fc fuse (#12831)
* make fc fuse work with ditu rnn * add ditu rnn data download to CMAKE
上级
78415f32
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
423 addition
and
26 deletion
+423
-26
paddle/fluid/framework/ir/graph_helper.cc
paddle/fluid/framework/ir/graph_helper.cc
+1
-1
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+33
-12
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+1
-2
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+1
-2
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+263
-3
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+4
-1
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+5
-2
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+110
-0
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+2
-0
paddle/fluid/operators/mul_op.cc
paddle/fluid/operators/mul_op.cc
+3
-3
未找到文件。
paddle/fluid/framework/ir/graph_helper.cc
浏览文件 @
9ee698e6
...
...
@@ -104,7 +104,7 @@ std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
for
(
auto
&
adj_n
:
var
->
inputs
)
{
PADDLE_ENFORCE
(
adj_n
->
NodeType
()
==
ir
::
Node
::
Type
::
kOperation
);
adj_list
[
n
].
insert
(
adj_n
);
VLOG
(
3
)
<<
"adj "
<<
adj_n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
adj_n
)
VLOG
(
4
)
<<
"adj "
<<
adj_n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
adj_n
)
<<
" -> "
<<
n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
n
)
<<
" via "
<<
var
->
Name
()
<<
reinterpret_cast
<
void
*>
(
var
);
}
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
9ee698e6
...
...
@@ -22,7 +22,7 @@ function (inference_analysis_test TARGET)
if
(
WITH_TESTING
)
set
(
options
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS
)
set
(
multiValueArgs SRCS
EXTRA_DEPS
)
cmake_parse_arguments
(
analysis_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
mem_opt
""
)
...
...
@@ -31,22 +31,43 @@ function (inference_analysis_test TARGET)
endif
()
cc_test
(
${
TARGET
}
SRCS
"
${
analysis_test_SRCS
}
"
DEPS analysis graph fc_fuse_pass graph_viz_pass infer_clean_graph_pass graph_pattern_detecter pass
DEPS analysis graph fc_fuse_pass graph_viz_pass infer_clean_graph_pass graph_pattern_detecter pass
${
analysis_test_EXTRA_DEPS
}
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
${
mem_opt
}
)
set_tests_properties
(
${
TARGET
}
PROPERTIES DEPENDS test_word2vec
)
endif
(
WITH_TESTING
)
endfunction
(
inference_analysis_test
)
cc_test
(
test_analyzer SRCS analyzer_tester.cc DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis
set
(
DITU_RNN_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz"
)
set
(
DITU_RNN_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
set
(
DITU_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/install/ditu_rnn"
CACHE PATH
"Ditu RNN model and data root."
FORCE
)
set
(
DITU_RNN_MODEL
${
DITU_INSTALL_DIR
}
/model
)
set
(
DITU_RNN_DATA
${
DITU_INSTALL_DIR
}
/data.txt
)
function
(
inference_download_and_uncompress target url gz_filename
)
message
(
STATUS
"Download inference test stuff
${
gz_filename
}
from
${
url
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
DITU_INSTALL_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
DITU_INSTALL_DIR
}
&& wget -q
${
url
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
DITU_INSTALL_DIR
}
&& tar xzf
${
gz_filename
}
"
)
message
(
STATUS
"finish downloading
${
gz_filename
}
"
)
endfunction
(
inference_download_and_uncompress
)
if
(
NOT EXISTS
${
DITU_INSTALL_DIR
}
)
inference_download_and_uncompress
(
ditu_rnn_model
${
DITU_RNN_MODEL_URL
}
"ditu_rnn_fluid%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
ditu_rnn_data
${
DITU_RNN_DATA_URL
}
"ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis
# ir
fc_fuse_pass
graph_viz_pass
infer_clean_graph_pass
graph_pattern_detecter
infer_clean_graph_pass
pass
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
)
#set_tests_properties(test_analyzer PROPERTIES DEPENDS test_word2vec)
#inference_api_test(test_analyzer SRC analyzer_tester.cc ARGS test_word2vec
)
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
--infer_ditu_rnn_model=
${
DITU_INSTALL_DIR
}
/model
--infer_ditu_rnn_data=
${
DITU_INSTALL_DIR
}
/data.txt
)
inference_analysis_test
(
test_data_flow_graph SRCS data_flow_graph_tester.cc
)
inference_analysis_test
(
test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc
)
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
9ee698e6
...
...
@@ -23,8 +23,6 @@
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h"
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h"
namespace
paddle
{
DEFINE_bool
(
IA_enable_tensorrt_subgraph_engine
,
false
,
"Enable subgraph to TensorRT engine for acceleration"
);
...
...
@@ -35,6 +33,7 @@ DEFINE_string(IA_graphviz_log_root, "./",
DEFINE_string
(
IA_output_storage_path
,
""
,
"optimized model output path"
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
9ee698e6
...
...
@@ -39,8 +39,6 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
namespace
paddle
{
// TODO(Superjomn) add a definition flag like PADDLE_WITH_TENSORRT and hide this
// flag if not available.
DECLARE_bool
(
IA_enable_tensorrt_subgraph_engine
);
...
...
@@ -48,6 +46,7 @@ DECLARE_string(IA_graphviz_log_root);
DECLARE_string
(
IA_output_storage_path
);
DECLARE_bool
(
IA_enable_ir
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
9ee698e6
...
...
@@ -13,11 +13,17 @@
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
DEFINE_string
(
infer_ditu_rnn_model
,
""
,
"model path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_data
,
""
,
"data path for ditu RNN"
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
...
...
@@ -38,7 +44,7 @@ TEST(Analyzer, analysis_with_tensorrt) {
analyser
.
Run
(
&
argument
);
}
void
TestWord2vecPrediction
(
const
std
::
string
&
model_path
)
{
void
TestWord2vecPrediction
(
const
std
::
string
&
model_path
)
{
NativeConfig
config
;
config
.
model_dir
=
model_path
;
config
.
use_gpu
=
false
;
...
...
@@ -69,12 +75,245 @@ void TestWord2vecPrediction(const std::string& model_path) {
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
(
5UL
,
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
"data: "
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
];
PADDLE_ENFORCE
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
];
PADDLE_ENFORCE
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
result
[
i
]);
}
}
namespace
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
std
::
vector
<
float
>>
week_data_all
,
minute_data_all
;
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
,
rnn_week_datas
,
rnn_minute_datas
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
DataRecord
()
=
default
;
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
link_step_data_all
.
size
())
{
data
.
link_step_data_all
.
assign
(
link_step_data_all
.
begin
()
+
batch_iter
,
link_step_data_all
.
begin
()
+
batch_end
);
data
.
week_data_all
.
assign
(
week_data_all
.
begin
()
+
batch_iter
,
week_data_all
.
begin
()
+
batch_end
);
data
.
minute_data_all
.
assign
(
minute_data_all
.
begin
()
+
batch_iter
,
minute_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod1
.
push_back
(
0
);
data
.
lod2
.
push_back
(
0
);
data
.
lod3
.
push_back
(
0
);
CHECK
(
!
data
.
link_step_data_all
.
empty
())
<<
"empty"
;
CHECK
(
!
data
.
week_data_all
.
empty
());
CHECK
(
!
data
.
minute_data_all
.
empty
());
CHECK_EQ
(
data
.
link_step_data_all
.
size
(),
data
.
week_data_all
.
size
());
CHECK_EQ
(
data
.
minute_data_all
.
size
(),
data
.
link_step_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
link_step_data_all
.
size
();
j
++
)
{
for
(
const
auto
&
d
:
data
.
link_step_data_all
[
j
])
{
data
.
rnn_link_data
.
push_back
(
d
);
}
data
.
rnn_week_datas
.
push_back
(
data
.
week_data_all
[
j
]);
data
.
rnn_minute_datas
.
push_back
(
data
.
minute_data_all
[
j
]);
// calculate lod
data
.
lod1
.
push_back
(
data
.
lod1
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
data
.
lod3
.
push_back
(
data
.
lod3
.
back
()
+
1
);
for
(
size_t
i
=
1
;
i
<
data
.
link_step_data_all
[
j
].
size
()
+
1
;
i
++
)
{
data
.
lod2
.
push_back
(
data
.
lod2
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
}
}
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
':'
,
&
data
);
std
::
vector
<
std
::
vector
<
float
>>
link_step_data
;
std
::
vector
<
std
::
string
>
link_datas
;
split
(
data
[
0
],
'|'
,
&
link_datas
);
for
(
auto
&
step_data
:
link_datas
)
{
std
::
vector
<
float
>
tmp
;
split_to_float
(
step_data
,
','
,
&
tmp
);
link_step_data
.
push_back
(
tmp
);
}
// load week data
std
::
vector
<
float
>
week_data
;
split_to_float
(
data
[
2
],
','
,
&
week_data
);
// load minute data
std
::
vector
<
float
>
minute_data
;
split_to_float
(
data
[
1
],
','
,
&
minute_data
);
link_step_data_all
.
push_back
(
std
::
move
(
link_step_data
));
week_data_all
.
push_back
(
std
::
move
(
week_data
));
minute_data_all
.
push_back
(
std
::
move
(
minute_data
));
}
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
// DataRecord data(FLAGS_datapath, batch_size);
PaddleTensor
lod_attention_tensor
,
init_zero_tensor
,
lod_tensor_tensor
,
week_tensor
,
minute_tensor
;
lod_attention_tensor
.
name
=
"data_lod_attention"
;
init_zero_tensor
.
name
=
"cell_init"
;
lod_tensor_tensor
.
name
=
"data"
;
week_tensor
.
name
=
"week"
;
minute_tensor
.
name
=
"minute"
;
auto
one_batch
=
data
->
NextBatch
();
// clang-format off
std
::
vector
<
int
>
rnn_link_data_shape
({
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
front
().
size
())});
lod_attention_tensor
.
shape
.
assign
({
1
,
2
});
lod_attention_tensor
.
lod
.
assign
({
one_batch
.
lod1
,
one_batch
.
lod2
});
init_zero_tensor
.
shape
.
assign
({
batch_size
,
15
});
init_zero_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
lod_tensor_tensor
.
shape
=
rnn_link_data_shape
;
lod_tensor_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
week_tensor
.
shape
.
assign
({(
int
)
one_batch
.
rnn_week_datas
.
size
(),
(
int
)
one_batch
.
rnn_week_datas
.
front
().
size
()});
week_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
minute_tensor
.
shape
.
assign
({(
int
)
one_batch
.
rnn_minute_datas
.
size
(),
(
int
)
one_batch
.
rnn_minute_datas
.
front
().
size
()});
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
// assign data
TensorAssignData
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
TensorAssignData
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
// clang-format on
// Set inputs.
auto
init_zero_tensor1
=
init_zero_tensor
;
init_zero_tensor1
.
name
=
"hidden_init"
;
input_slots
->
assign
({
week_tensor
,
init_zero_tensor
,
minute_tensor
,
init_zero_tensor1
,
lod_attention_tensor
,
lod_tensor_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
}
}
std
::
string
DescribeTensor
(
const
PaddleTensor
&
tensor
)
{
std
::
stringstream
os
;
os
<<
"Tensor ["
<<
tensor
.
name
<<
"]
\n
"
;
os
<<
" - type: "
;
switch
(
tensor
.
dtype
)
{
case
PaddleDType
::
FLOAT32
:
os
<<
"float32"
;
break
;
case
PaddleDType
::
INT64
:
os
<<
"int64"
;
break
;
default:
os
<<
"unset"
;
}
os
<<
'\n'
;
os
<<
" - shape: "
<<
to_string
(
tensor
.
shape
)
<<
'\n'
;
os
<<
" - lod: "
;
for
(
auto
&
l
:
tensor
.
lod
)
{
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
// clang-format off
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
// clang-format on
for
(
size_t
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
}
}
// namespace
const
float
ditu_rnn_target_data
[]
=
{
104.711
,
11.2431
,
1.35422
,
0
,
0
,
0
,
0
,
0
,
27.7039
,
1.41486
,
7.09526
,
0
,
0
,
0
,
0
,
0
,
7.6481
,
6.5324
,
56.383
,
2.88018
,
8.92918
,
132.007
,
4.27429
,
2.02934
,
14.1727
,
10.7461
,
25.0616
,
16.0197
,
14.4163
,
16.9199
,
6.75517
,
0
,
80.0249
,
4.77739
,
0
,
0
,
0
,
0
,
0
,
0
,
47.5643
,
2.67029
,
8.76252
,
0
,
0
,
0
,
0
,
0
,
51.8822
,
4.4411
,
0
,
0
,
0
,
0
,
0
,
0
,
10.7286
,
12.0595
,
10.6672
,
0
,
0
,
0
,
0
,
0
,
93.5771
,
3.84641
,
0
,
0
,
0
,
0
,
0
,
0
,
169.426
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
// Test with a really complicate model.
void
TestDituRNNPrediction
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_path
,
int
batch_size
,
bool
use_analysis
,
bool
activate_ir
,
int
num_times
=
1
)
{
FLAGS_IA_enable_ir
=
activate_ir
;
FLAGS_IA_enable_tensorrt_subgraph_engine
=
false
;
FLAGS_IA_output_storage_path
=
"./analysis.out"
;
std
::
string
model_out
;
if
(
use_analysis
)
{
Argument
argument
(
model_path
);
argument
.
model_output_store_path
.
reset
(
new
std
::
string
(
"./analysis.out"
));
Analyzer
analyzer
;
analyzer
.
Run
(
&
argument
);
// Should get the transformed model stored to ./analysis.out
model_out
=
"./analysis.out"
;
ASSERT_TRUE
(
PathExists
(
model_out
));
}
else
{
model_out
=
FLAGS_infer_ditu_rnn_model
;
}
NativeConfig
config
;
config
.
prog_file
=
model_out
+
"/__model__"
;
config
.
param_file
=
model_out
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
data_path
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
LOG
(
INFO
)
<<
"time/batch: "
<<
timer
.
toc
()
/
num_times
;
for
(
auto
&
out
:
outputs
)
{
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
for
(
int
i
=
0
;
i
<
std
::
min
(
sizeof
(
ditu_rnn_target_data
)
/
sizeof
(
float
),
size
);
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
ditu_rnn_target_data
[
i
],
1e-3
);
}
}
}
// Turn on the IR pass supportion, run a real inference and check the result.
TEST
(
Analyzer
,
SupportIRPass
)
{
FLAGS_IA_enable_ir
=
true
;
...
...
@@ -94,6 +333,27 @@ TEST(Analyzer, SupportIRPass) {
TestWord2vecPrediction
(
"./analysis.out"
);
}
// Directly infer with the original model.
TEST
(
Analyzer
,
DituRNN_without_analysis
)
{
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
false
,
false
);
}
// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST
(
Analyzer
,
DituRNN_with_analysis
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
true
,
false
,
1
);
}
// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST
(
Analyzer
,
DituRNN_with_analysis_with_IR
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis and IR fuse"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
true
,
true
,
1
);
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
9ee698e6
...
...
@@ -18,7 +18,10 @@ if(APPLE)
endif
(
APPLE
)
set
(
inference_deps paddle_inference_api paddle_fluid_api
)
set
(
inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager
graph_viz_pass fc_fuse_pass
infer_clean_graph_pass
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine
)
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
9ee698e6
...
...
@@ -137,9 +137,12 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
return
false
;
}
for
(
size_t
i
=
0
;
i
<
feed_target_names_
.
size
();
++
i
)
{
VLOG
(
4
)
<<
"setting "
<<
i
<<
"-th target"
;
if
(
config_
.
specify_input_name
)
{
feed_targets
[
inputs
[
i
].
name
]
=
&
feeds
[
i
];
}
else
{
feed_targets
[
feed_target_names_
[
i
]]
=
&
feeds
[
i
];
}
}
// get fetch variable
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
fetch_targets
;
std
::
vector
<
framework
::
LoDTensor
>
fetchs
;
...
...
paddle/fluid/inference/api/helper.h
0 → 100644
浏览文件 @
9ee698e6
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/time.h>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
namespace
paddle
{
namespace
inference
{
// Timer for timer
class
Timer
{
public:
double
start
;
double
startu
;
void
tic
()
{
struct
timeval
tp
;
gettimeofday
(
&
tp
,
NULL
);
start
=
tp
.
tv_sec
;
startu
=
tp
.
tv_usec
;
}
double
toc
()
{
struct
timeval
tp
;
gettimeofday
(
&
tp
,
NULL
);
double
used_time_ms
=
(
tp
.
tv_sec
-
start
)
*
1000.0
+
(
tp
.
tv_usec
-
startu
)
/
1000.0
;
return
used_time_ms
;
}
};
void
split
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
std
::
string
>
*
pieces
)
{
pieces
->
clear
();
if
(
str
.
empty
())
{
return
;
}
size_t
pos
=
0
;
size_t
next
=
str
.
find
(
sep
,
pos
);
while
(
next
!=
std
::
string
::
npos
)
{
pieces
->
push_back
(
str
.
substr
(
pos
,
next
-
pos
));
pos
=
next
+
1
;
next
=
str
.
find
(
sep
,
pos
);
}
if
(
!
str
.
substr
(
pos
).
empty
())
{
pieces
->
push_back
(
str
.
substr
(
pos
));
}
}
void
split_to_float
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
float
>
*
fs
)
{
std
::
vector
<
std
::
string
>
pieces
;
split
(
str
,
sep
,
&
pieces
);
std
::
transform
(
pieces
.
begin
(),
pieces
.
end
(),
std
::
back_inserter
(
*
fs
),
[](
const
std
::
string
&
v
)
{
return
std
::
stof
(
v
);
});
}
template
<
typename
T
>
std
::
string
to_string
(
const
std
::
vector
<
T
>
&
vec
)
{
std
::
stringstream
ss
;
for
(
const
auto
&
c
:
vec
)
{
ss
<<
c
<<
" "
;
}
return
ss
.
str
();
}
template
<
>
std
::
string
to_string
<
std
::
vector
<
float
>>
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
vec
)
{
std
::
stringstream
ss
;
for
(
const
auto
&
piece
:
vec
)
{
ss
<<
to_string
(
piece
)
<<
"
\n
"
;
}
return
ss
.
str
();
}
template
<
>
std
::
string
to_string
<
std
::
vector
<
std
::
vector
<
float
>>>
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
vec
)
{
std
::
stringstream
ss
;
for
(
const
auto
&
line
:
vec
)
{
for
(
const
auto
&
rcd
:
line
)
{
ss
<<
to_string
(
rcd
)
<<
";
\t
"
;
}
ss
<<
'\n'
;
}
return
ss
.
str
();
}
// clang-format off
void
TensorAssignData
(
PaddleTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
data
)
{
// Assign buffer
int
dim
=
std
::
accumulate
(
tensor
->
shape
.
begin
(),
tensor
->
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
tensor
->
data
.
Resize
(
sizeof
(
float
)
*
dim
);
int
c
=
0
;
for
(
const
auto
&
f
:
data
)
{
for
(
float
v
:
f
)
{
static_cast
<
float
*>
(
tensor
->
data
.
data
())[
c
++
]
=
v
;
}
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
9ee698e6
...
...
@@ -120,6 +120,8 @@ struct NativeConfig : public PaddlePredictor::Config {
bool
use_gpu
{
false
};
int
device
{
0
};
float
fraction_of_gpu_memory
{
-
1.
f
};
// Negative to notify initialization.
// Specify the variable's name of each input.
bool
specify_input_name
{
false
};
std
::
string
prog_file
;
std
::
string
param_file
;
...
...
paddle/fluid/operators/mul_op.cc
浏览文件 @
9ee698e6
...
...
@@ -54,9 +54,9 @@ class MulOp : public framework::OperatorWithKernel {
auto
x_mat_dims
=
framework
::
flatten_to_2d
(
x_dims
,
x_num_col_dims
);
auto
y_mat_dims
=
framework
::
flatten_to_2d
(
y_dims
,
y_num_col_dims
);
PADDLE_ENFORCE_EQ
(
x_mat_dims
[
1
],
y_mat_dims
[
0
],
"First matrix's width must be equal with second matrix's height.
"
);
PADDLE_ENFORCE_EQ
(
x_mat_dims
[
1
],
y_mat_dims
[
0
],
"First matrix's width must be equal with second matrix's "
"height. %s, %s
"
);
std
::
vector
<
int64_t
>
output_dims
;
output_dims
.
reserve
(
static_cast
<
size_t
>
(
x_num_col_dims
+
y_dims
.
size
()
-
y_num_col_dims
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录