diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index 4d1a89da3dd58934eeda9028004451caa0c9a71d..a42a9718fdf5d3905a13274f20f96bc571b29b56 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -46,6 +46,7 @@ class TranspilerTest(unittest.TestCase): def get_main_program(self): main = fluid.Program() + main.random_seed = 1 with fluid.program_guard(main): self.net_conf() self.origin_prog = main.clone() diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index aca9aafd5254871abd840a91e7dc5e2ce020a072..252afc058b482b95e8f663e0e50c02ff358bb89d 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -31,6 +31,7 @@ Steps to transpile pserver: import math import random import numpy as np +import collections from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .. import core, framework @@ -218,8 +219,9 @@ class DistributeTranspiler(object): # fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2 # shuffle the map will avoid the uneven distribution above grad_var_mapping_items = list(self.grad_var_mapping.items()) + if not self.config.slice_var_up: - random.seed(self.trainer_num) + random.seed(self.origin_program.random_seed) random.shuffle(grad_var_mapping_items) for orig_varname, splited_vars in grad_var_mapping_items: @@ -557,14 +559,14 @@ class DistributeTranspiler(object): # 1. create vars in pserver program to startup program pserver_vars = pserver_program.global_block().vars - created_var_map = dict() + created_var_map = collections.OrderedDict() for _, var in list(pserver_vars.items()): tmpvar = s_prog.global_block()._clone_variable(var) created_var_map[var.name] = tmpvar # 2. rename op outputs for op in orig_s_prog.global_block().ops: - new_outputs = dict() + new_outputs = collections.OrderedDict() # do not append startup op if var is not on this pserver op_on_pserver = False for key in op.output_names: @@ -703,7 +705,7 @@ class DistributeTranspiler(object): self.origin_program, grad_blocks, add_trainer_suffix=self.trainer_num > 1) - self.grad_param_mapping = dict() + self.grad_param_mapping = collections.OrderedDict() for g, p in zip(grad_blocks, param_blocks): g_name, g_bid, _ = g.split(":") p_name, p_bid, _ = p.split(":") @@ -711,7 +713,7 @@ class DistributeTranspiler(object): self.param_var_mapping[p_name][int(p_bid)] # create mapping of endpoint -> split var to create pserver side program - self.param_grad_ep_mapping = dict() + self.param_grad_ep_mapping = collections.OrderedDict() [ self.param_grad_ep_mapping.update({ ep: { @@ -981,14 +983,14 @@ class DistributeTranspiler(object): block_list (list[(varname, block_id, block_size)]): List of gradient blocks. add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True. Returns: - var_mapping (dict(varname->[new_varname_variable])):A dict mapping + var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping from original var name to each var split. """ # varname->[(block_id, current_block_size)] - block_map = dict() + block_map = collections.OrderedDict() - var_mapping = dict() + var_mapping = collections.OrderedDict() for block_str in block_list: varname, offset, size = block_str.split(":") if varname not in block_map: @@ -1181,7 +1183,7 @@ class DistributeTranspiler(object): grad_to_block_id, origin_program, merged_var): program = optimize_block.program pserver_block = program.global_block() - new_inputs = dict() + new_inputs = collections.OrderedDict() # update param/grad shape first, then other inputs like # moment can use the updated shape for key in opt_op.input_names: @@ -1359,7 +1361,7 @@ class DistributeTranspiler(object): def _get_input_map_from_op(self, varmap, op): """Returns a dict from op input name to the vars in varmap.""" - iomap = dict() + iomap = collections.OrderedDict() for key in op.input_names: vars = [] for varname in op.input(key): @@ -1372,7 +1374,7 @@ class DistributeTranspiler(object): def _get_output_map_from_op(self, varmap, op): """Returns a dict from op output name to the vars in varmap.""" - iomap = dict() + iomap = collections.OrderedDict() for key in op.output_names: vars = [] for varname in op.output(key):