Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9c426728
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9c426728
编写于
9月 27, 2022
作者:
C
ceci3
提交者:
GitHub
9月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
speedup ChannelClipAndQuantDequantKernelQuantAxis1 kernel (#46471)
上级
c182e5dd
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
47 addition
and
45 deletion
+47
-45
paddle/fluid/operators/fake_quantize_op.cu.h
paddle/fluid/operators/fake_quantize_op.cu.h
+47
-45
未找到文件。
paddle/fluid/operators/fake_quantize_op.cu.h
浏览文件 @
9c426728
...
@@ -590,20 +590,16 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
...
@@ -590,20 +590,16 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
const
T
*
scale
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
round_type
,
const
int
n
,
const
int
wh_size
,
const
int
c
,
const
int
num
,
const
int
cout
,
T
*
out
)
{
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
T
s
=
scale
[
blockIdx
.
x
];
for
(
int64_t
i
=
idx
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
s
=
scale
[(
i
/
wh_size
)
%
cout
];
T
inv_s
=
inverse
(
s
);
T
inv_s
=
inverse
(
s
);
T
x
=
in
[
i
];
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
if
(
round_type
==
0
)
{
if
(
round_type
==
0
)
{
x
=
bin_cnt
*
inv_s
*
x
;
x
=
bin_cnt
*
inv_s
*
x
;
x
=
roundWithTiesToEven
(
x
);
x
=
roundWithTiesToEven
(
x
);
...
@@ -611,12 +607,12 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
...
@@ -611,12 +607,12 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out
_c
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
out
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
}
else
{
}
else
{
T
v
=
x
>
s
?
s
:
x
;
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
*
inv_s
*
v
;
v
=
bin_cnt
*
inv_s
*
v
;
out
_c
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
out
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
}
}
}
}
}
}
...
@@ -627,19 +623,16 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
...
@@ -627,19 +623,16 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
const
T
*
scale
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
bin_cnt
,
const
int
round_type
,
const
int
round_type
,
const
int
n
,
const
int
wh_size
,
const
int
cin
,
const
int
num
,
const
int
cout
,
const
int
cout
,
T
*
out
)
{
T
*
out
)
{
T
s
=
scale
[
blockIdx
.
x
%
cout
];
int64_t
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
T
inv_s
=
inverse
(
s
);
int
wh_size
=
n
/
(
cin
*
cout
);
const
T
*
in_c
=
in
+
blockIdx
.
x
*
wh_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
wh_size
;
for
(
int
i
=
threadIdx
.
x
;
i
<
wh_size
;
i
+=
blockDim
.
x
)
{
for
(
int64_t
i
=
idx
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
x
=
in_c
[
i
];
T
s
=
scale
[(
i
/
wh_size
)
%
cout
];
T
inv_s
=
inverse
(
s
);
T
x
=
in
[
i
];
if
(
round_type
==
0
)
{
if
(
round_type
==
0
)
{
x
=
bin_cnt
*
inv_s
*
x
;
x
=
bin_cnt
*
inv_s
*
x
;
x
=
roundWithTiesToEven
(
x
);
x
=
roundWithTiesToEven
(
x
);
...
@@ -647,12 +640,12 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
...
@@ -647,12 +640,12 @@ __global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
T
min_bound
=
-
bin_cnt
-
static_cast
<
T
>
(
1
);
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
>
max_bound
?
max_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
x
=
x
<
min_bound
?
min_bound
:
x
;
out
_c
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
out
[
i
]
=
(
x
*
s
)
/
bin_cnt
;
}
else
{
}
else
{
T
v
=
x
>
s
?
s
:
x
;
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
*
inv_s
*
v
;
v
=
bin_cnt
*
inv_s
*
v
;
out
_c
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
out
[
i
]
=
round
(
v
)
*
s
/
bin_cnt
;
}
}
}
}
}
}
...
@@ -682,28 +675,37 @@ struct ChannelClipFakeQuantDequantFunctor<phi::GPUContext, T> {
...
@@ -682,28 +675,37 @@ struct ChannelClipFakeQuantDequantFunctor<phi::GPUContext, T> {
const
T
*
scale_data
=
scale
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
block_size
=
std
::
min
(
static_cast
<
int64_t
>
(
num
),
static_cast
<
int64_t
>
(
ctx
.
GetMaxThreadsPerBlock
()
/
4
));
int64_t
max_threads
=
ctx
.
GetMaxPhysicalThreadCount
();
// SM * block_per_SM
const
int64_t
max_blocks
=
std
::
max
(((
max_threads
-
1
)
/
block_size
+
1
),
static_cast
<
int64_t
>
(
1
));
const
int64_t
grid_size
=
std
::
min
(
max_blocks
,
(
num
+
block_size
-
1
)
/
block_size
);
if
(
quant_axis
==
0
)
{
if
(
quant_axis
==
0
)
{
int
grid
=
in_dims
[
0
];
const
int
window_size
=
num
/
in_dims
[
0
];
int
block
=
1024
;
ChannelClipAndQuantDequantKernelQuantAxis0
<
T
>
ChannelClipAndQuantDequantKernelQuantAxis0
<
T
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
<<<
grid
_size
,
block_size
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
scale_data
,
bin_cnt
,
bin_cnt
,
round_type
,
round_type
,
window_size
,
num
,
num
,
in_dims
[
0
],
in_dims
[
0
],
out_data
);
out_data
);
}
else
if
(
quant_axis
==
1
)
{
}
else
if
(
quant_axis
==
1
)
{
int
grid
=
in_dims
[
0
]
*
in_dims
[
1
];
const
int
window_size
=
num
/
(
in_dims
[
0
]
*
in_dims
[
1
]);
int
block
=
1024
;
ChannelClipAndQuantDequantKernelQuantAxis1
<
T
>
ChannelClipAndQuantDequantKernelQuantAxis1
<
T
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
<<<
grid
_size
,
block_size
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
scale_data
,
bin_cnt
,
bin_cnt
,
round_type
,
round_type
,
window_size
,
num
,
num
,
in_dims
[
0
],
in_dims
[
1
],
in_dims
[
1
],
out_data
);
out_data
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录