diff --git a/python/paddle/distribution/uniform.py b/python/paddle/distribution/uniform.py index 9b41dd026709f43326c1de44f6a8310d29b4e9da..706ff73ee83ff5a887dfe66dd642cce07c060e1d 100644 --- a/python/paddle/distribution/uniform.py +++ b/python/paddle/distribution/uniform.py @@ -23,7 +23,7 @@ from paddle.fluid.framework import ( _non_static_mode, in_dygraph_mode, ) -from paddle.fluid.layers import nn, tensor +from paddle.fluid.layers import tensor from paddle.tensor import random @@ -187,7 +187,7 @@ class Uniform(distribution.Distribution): return output else: output_shape = shape + batch_shape - output = nn.uniform_random( + output = paddle.uniform( output_shape, dtype=self.dtype, min=0.0, max=1.0, seed=seed ) * ( tensor.zeros(output_shape, dtype=self.dtype) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index bf5853fad88d258166193ad94fdace43b717fe63..e470d2f13f17742eccd62dfac738bd38846561bb 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -90,13 +90,6 @@ __all__ = [ 'mul', 'merge_selected_rows', 'get_tensor_from_selected_rows', - 'unfold', - 'deformable_roi_pooling', - 'shard_index', - 'hard_swish', - 'mish', - 'uniform_random', - 'unbind', ] OP_NAMEMAPPING = { @@ -3564,667 +3557,3 @@ def get_tensor_from_selected_rows(x, name=None): attrs={}, ) return out - - -def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None): - r""" - - This op returns a col buffer of sliding local blocks of input x, also known - as im2col for batched 2D image tensors. For each block under the convolution filter, - all element will be rearranged as a column. While the convolution filter sliding over - the input feature map, a series of such columns will be formed. - - For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout] - can be calculated as following. - - .. math:: - - dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1 - - dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1 - - hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1 - - wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1 - - Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1] - - Lout &= hout \times wout - - - Parameters: - x(Tensor): 4-D Tensor, input tensor of format [N, C, H, W], - data type can be float32 or float64 - kernel_sizes(int|list): The size of convolution kernel, should be [k_h, k_w] - or an integer k treated as [k, k]. - strides(int|list): The strides, should be [stride_h, stride_w] - or an integer stride treated as [sride, stride]. - For default, strides will be [1, 1]. - paddings(int|list): The paddings of each dimension, should be - [padding_top, padding_left, padding_bottom, padding_right] - or [padding_h, padding_w] or an integer padding. - If [padding_h, padding_w] was given, it will expanded to - [padding_h, padding_w, padding_h, padding_w]. If an integer - padding was given, [padding, padding, padding, padding] will - be used. For default, paddings will be [0, 0, 0, 0] - dilations(int|list): the dilations of convolution kernel, should be - [dilation_h, dilation_w], or an integer dilation treated as - [dilation, dilation]. For default, it will be [1, 1]. - name(str, optional): The default value is None. - Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` - - - Returns: - The tensor corresponding to the sliding local blocks. - The output shape is [N, Cout, Lout] as decriabled above. - Cout is the total number of values within each block, - and Lout is the total number of such blocks. - The data type of output is the same as the input :math:`x` - - Return Type: - Tensor - - Examples: - - .. code-block:: python - - import paddle - import paddle.nn.functional as F - - x = paddle.randn((100,3,224,224)) - y = F.unfold(x, [3, 3], 1, 1, 1) - """ - - return paddle.nn.functional.unfold( - x, kernel_sizes, strides, paddings, dilations, name - ) - - -def deformable_roi_pooling( - input, - rois, - trans, - no_trans=False, - spatial_scale=1.0, - group_size=[1, 1], - pooled_height=1, - pooled_width=1, - part_size=None, - sample_per_part=1, - trans_std=0.1, - position_sensitive=False, - name=None, -): - r""" - - Deformable ROI Pooling Layer - - Performs deformable region-of-interest pooling on inputs. As described - in `Deformable Convolutional Networks `_, it will get offset for each bin after - roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling. - - The operation has three steps: - - 1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height. - - 2. Add offset to pixel in ROI to get new location and the new value which are computed directly through - bilinear interpolation with four nearest pixel. - - 3. Sample several points in each bin to get average values as output. - - - Args: - input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is - [N, C, H, W]. Where N is batch size, C is number of input channels, - H is height of the feature, and W is the width of the feature. - rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be - a 2-D LoDTensor of shape (num_rois, 4), and the lod level - is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is - the top left coordinates, and (x2, y2) is the bottom - right coordinates, which value type is float32. - trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where - N is number of ROIs, C is number of channels, which indicate the offset distance - in the x and y directions, H is pooled height, and W is pooled width. - no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False. - If value is True, no offset will be added in operation. Default: False. - spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32. - Equals the reciprocal of total stride in convolutional layers, Default: 1.0. - group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels - is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output - channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1]. - pooled_height (int): The pooled output height which value type is int32. Default: 1. - pooled_width (int): The pooled output width which value type is int32. Default: 1. - part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \ - and pooled_width. Default: if None, default value is [pooled_height, pooled_width]. - sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1. - trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1. - position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \ - If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False. - name (str|None): Name of layer. Default: None. - Returns: - Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\ - input dimension should be the result of output dimension divided by pooled height and pooled width. - - Examples: - .. code-block:: python - - # position_sensitive=True - import paddle.fluid as fluid - input = fluid.data(name="input", - shape=[2, 192, 64, 64], - dtype='float32') - rois = fluid.data(name="rois", - shape=[-1, 4], - dtype='float32', - lod_level=1) - trans = fluid.data(name="trans", - shape=[2, 384, 64, 64], - dtype='float32') - x = fluid.layers.deformable_roi_pooling(input=input, - rois=rois, - trans=trans, - no_trans=False, - spatial_scale=1.0, - group_size=(1, 1), - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - trans_std=0.1, - position_sensitive=True) - - # position_sensitive=False - import paddle.fluid as fluid - input = fluid.data(name="input", - shape=[2, 192, 64, 64], - dtype='float32') - rois = fluid.data(name="rois", - shape=[-1, 4], - dtype='float32', - lod_level=1) - trans = fluid.data(name="trans", - shape=[2, 384, 64, 64], - dtype='float32') - x = fluid.layers.deformable_roi_pooling(input=input, - rois=rois, - trans=trans, - no_trans=False, - spatial_scale=1.0, - group_size=(1, 1), - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - trans_std=0.1, - position_sensitive=False) - """ - - check_variable_and_dtype( - input, 'input', ['float32', 'float64'], 'deformable_roi_pooling' - ) - check_variable_and_dtype( - rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling' - ) - check_variable_and_dtype( - trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling' - ) - check_type( - group_size, 'group_size', (list, tuple), 'deformable_roi_pooling' - ) - if part_size is not None: - check_type( - part_size, 'part_size', (list, tuple), 'deformable_roi_pooling' - ) - - input_channels = input.shape[1] - if position_sensitive is False: - output_channels = input_channels - else: - output_channels = input_channels / pooled_height / pooled_width - - if part_size is None: - part_height = pooled_height - part_width = pooled_width - part_size = [part_height, part_width] - part_size = utils.convert_to_list(part_size, 2, 'part_size') - group_size = utils.convert_to_list(group_size, 2, 'group_size') - helper = LayerHelper('deformable_psroi_pooling', **locals()) - dtype = helper.input_dtype() - output = helper.create_variable_for_type_inference(dtype) - top_count = helper.create_variable_for_type_inference(dtype='int32') - helper.append_op( - type="deformable_psroi_pooling", - inputs={"Input": input, "ROIs": rois, "Trans": trans}, - outputs={"Output": output, "TopCount": top_count}, - attrs={ - "no_trans": no_trans, - "spatial_scale": spatial_scale, - "output_dim": output_channels, - "group_size": group_size, - "pooled_height": pooled_height, - "pooled_width": pooled_width, - "part_size": part_size, - "sample_per_part": sample_per_part, - "trans_std": trans_std, - }, - ) - return output - - -@deprecated(since="2.0.0", update_to="paddle.shard_index") -def shard_index(input, index_num, nshards, shard_id, ignore_value=-1): - """ - Reset the values of `input` according to the shard it beloning to. - Every value in `input` must be a non-negative integer, and - the parameter `index_num` represents the integer above the maximum - value of `input`. Thus, all values in `input` must be in the range - [0, index_num) and each value can be regarded as the offset to the beginning - of the range. The range is further split into multiple shards. Specifically, - we first compute the `shard_size` according to the following formula, - which represents the number of integers each shard can hold. So for the - i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size). - :: - - shard_size = (index_num + nshards - 1) // nshards - - For each value `v` in `input`, we reset it to a new value according to the - following formula: - :: - - v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value - - That is, the value `v` is set to the new offset within the range represented by the shard `shard_id` - if it in the range. Otherwise, we reset it to be `ignore_value`. - - Args: - input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1. - index_num (int): An integer represents the integer above the maximum value of `input`. - nshards (int): The number of shards. - shard_id (int): The index of the current shard. - ignore_value (int): An integer value out of sharded index range. - - Returns: - Tensor. - - Examples: - .. code-block:: python - - import paddle - label = paddle.to_tensor([[16], [1]], "int64") - shard_label = paddle.shard_index(input=label, - index_num=20, - nshards=2, - shard_id=0) - print(shard_label) - # [[-1], [1]] - """ - if in_dygraph_mode(): - return _C_ops.shard_index( - input, index_num, nshards, shard_id, ignore_value - ) - - check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index') - op_type = 'shard_index' - helper = LayerHelper(op_type, **locals()) - if shard_id < 0 or shard_id >= nshards: - raise ValueError( - 'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards) - ) - - out = helper.create_variable_for_type_inference(dtype=input.dtype) - helper.append_op( - type=op_type, - inputs={'X': [input]}, - outputs={'Out': out}, - attrs={ - 'index_num': index_num, - 'nshards': nshards, - 'shard_id': shard_id, - 'ignore_value': ignore_value, - }, - stop_gradient=True, - ) - return out - - -@templatedoc() -def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None): - r""" - This operator implements the hard_swish activation function. - Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function. - For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf - - The formula is as follows: - - .. math:: - - out = \\frac{x * (min(max(0, x+offset), threshold))}{scale} - - In the above equation: - - ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters. - - Args: - x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64. - threshold (float, optional): The threshold in Relu function. Default: 6.0 - scale (float, optional): The scale factor. Default: 6.0 - offset (float, optional): The offset factor. Default: 3.0 - name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` - - Returns: - Variable: The output tensor with the same shape and data type as input. - - - Examples: - - .. code-block:: python - - import paddle.fluid as fluid - import paddle - import numpy as np - paddle.enable_static() - - DATATYPE='float32' - - x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE) - - x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE) - y = fluid.layers.hard_swish(x) - - place = fluid.CPUPlace() - #place = fluid.CUDAPlace(0) - exe = fluid.Executor(place) - out, = exe.run(feed={'x':x_data}, fetch_list=[y.name]) - print(out) # [[0.66666667, 1.66666667,3., 4.]] - """ - if _non_static_mode(): - return _legacy_C_ops.hard_swish( - x, 'threshold', threshold, 'scale', scale, 'offset', offset - ) - - check_variable_and_dtype( - x, 'x', ['float16', 'float32', 'float64'], 'hard_swish' - ) - - helper = LayerHelper('hard_swish', **locals()) - out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='hard_swish', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'threshold': threshold, 'scale': scale, 'offset': offset}, - ) - return out - - -@templatedoc() -def mish(x, threshold=20, name=None): - r""" - This operator implements the mish activation function. - Refer to `Mish: A Self Regularized Non-Monotonic Neural - Activation Function `_ - - - The formula is as follows if :attr:`threshold` is :code:`None` or negative: - - .. math:: - - out = x * \\tanh(\\ln(1 + e^{x})) - - The formula is as follows if :attr:`threshold` is set as positive value: - - .. math:: - - out = \\begin{cases} - x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\ - x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\ - x \\ast \\tanh(\\ln(1 + e^{x})), \\text{otherwise} - \\end{cases} - - Args: - x (Variable): Input feature, multi-dimensional Tensor. The data type - should be float16, float32 or float64. - threshold (float|None): threshold for softplus in Mish operator. - Approximate value of softplus will be used if absolute value - of input is greater than :attr:threshold and :attr:threshold - is set as positive value. For none or negative threshold, - approximate value is not used. Default 20. - name (str, optional): The default value is None. Normally there is no - need for user to set this property. For more information, please - refer to :ref:`api_guide_Name` - - Returns: - Variable: The output tensor with the same shape and data type as input. - - - Examples: - - .. code-block:: python - - import paddle - import paddle.fluid as fluid - import numpy as np - - paddle.enable_static() - DATATYPE='float32' - - x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE) - - x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE) - y = fluid.layers.mish(x) - - place = fluid.CPUPlace() - # place = fluid.CUDAPlace(0) - exe = fluid.Executor(place) - out, = exe.run(feed={'x':x_data}, fetch_list=[y.name]) - print(out) # [[0.66666667, 1.66666667, 3., 4.]] - """ - if in_dygraph_mode(): - return _C_ops.mish(x, threshold) - if _in_legacy_dygraph(): - return _legacy_C_ops.mish(x, 'threshold', threshold) - - check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish') - check_type(threshold, 'threshold', (float, int), 'mish') - assert ( - threshold > 0 - ), "threshold of mish should be greater than 0, " "but got {}".format( - threshold - ) - - helper = LayerHelper('mish', **locals()) - out = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type='mish', - inputs={'X': x}, - outputs={'Out': out}, - attrs={'threshold': threshold}, - ) - return out - - -@deprecated(since="2.0.0", update_to="paddle.uniform") -@templatedoc() -def uniform_random( - shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None -): - """ - This OP returns a Tensor filled with random values sampled from a uniform - distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. - - Examples: - :: - - Input: - shape = [1, 2] - - Output: - result=[[0.8505902, 0.8397286]] - - Args: - shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape`` - is a list or tuple, the elements of it should be integers or Tensors - (with the shape [1], and the data type int32 or int64). If ``shape`` - is a Tensor, it should be a 1-D Tensor(with the data type int32 or - int64). - dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of - the output Tensor. Supported data types: float32, float64. - Default is float32. - min(float|int, optional): The lower bound on the range of random values - to generate, ``min`` is included in the range. Default is -1.0. - max(float|int, optional): The upper bound on the range of random values - to generate, ``max`` is excluded in the range. Default is 1.0. - seed(int, optional): Random seed used for generating samples. 0 means - use a seed generated by the system. Note that if seed is not 0, - this operator will always generate the same random numbers every - time. Default is 0. - name(str, optional): The default value is None. Normally there is no - need for user to set this property. For more information, please - refer to :ref:`api_guide_Name`. - - Returns: - Tensor: A Tensor filled with random values sampled from a uniform - distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. - - Raises: - TypeError: If ``shape`` is not list, tuple, Tensor. - TypeError: If ``dtype`` is not float32, float64. - - Examples: - .. code-block:: python - - import paddle - import paddle.fluid as fluid - paddle.enable_static() - - # example 1: - # attr shape is a list which doesn't contain Tensor. - result_1 = fluid.layers.uniform_random(shape=[3, 4]) - # [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357], - # [-0.34646994, -0.45116323, -0.09902662, -0.11397249], - # [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] - - # example 2: - # attr shape is a list which contains Tensor. - dim_1 = fluid.layers.fill_constant([1], "int64", 2) - dim_2 = fluid.layers.fill_constant([1], "int32", 3) - result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2]) - # [[-0.9951253, 0.30757582, 0.9899647 ], - # [ 0.5864527, 0.6607096, -0.8886161 ]] - - # example 3: - # attr shape is a Tensor, the data type must be int64 or int32. - var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") - result_3 = fluid.layers.uniform_random(var_shape) - # if var_shape's value is [2, 3] - # result_3 is: - # [[-0.8517412, -0.4006908, 0.2551912 ], - # [ 0.3364414, 0.36278176, -0.16085452]] - - """ - if not isinstance(dtype, core.VarDesc.VarType): - dtype = convert_np_dtype_to_dtype_(dtype) - - if in_dygraph_mode(): - shape = utils.convert_shape_to_list(shape) - return _C_ops.uniform( - shape, - dtype, - float(min), - float(max), - seed, - _current_expected_place(), - ) - elif _in_legacy_dygraph(): - shape = utils.convert_shape_to_list(shape) - return _legacy_C_ops.uniform_random( - 'shape', - shape, - 'min', - float(min), - 'max', - float(max), - 'seed', - seed, - 'dtype', - dtype, - ) - - check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand') - check_dtype( - dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand' - ) - check_type(min, 'min', (float, int, Variable), 'uniform_random/rand') - check_type(max, 'max', (float, int, Variable), 'uniform_random/rand') - - inputs = dict() - attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype} - utils.get_shape_tensor_inputs( - inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand' - ) - - helper = LayerHelper("uniform_random", **locals()) - out = helper.create_variable_for_type_inference(dtype) - helper.append_op( - type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out} - ) - utils.try_set_static_shape_tensor(out, shape) - return out - - -def unbind(input, axis=0): - """ - Removes a tensor dimension, then split the input tensor into multiple sub-Tensors. - Args: - input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64. - - axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the - dimension to unbind along is :math:`rank(input) + axis`. Default is 0. - Returns: - list(Variable): The list of segmented Tensor variables. - - Example: - .. code-block:: python - import paddle - # input is a variable which shape is [3, 4, 5] - input = paddle.fluid.data( - name="input", shape=[3, 4, 5], dtype="float32") - [x0, x1, x2] = paddle.tensor.unbind(input, axis=0) - # x0.shape [4, 5] - # x1.shape [4, 5] - # x2.shape [4, 5] - [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1) - # x0.shape [3, 5] - # x1.shape [3, 5] - # x2.shape [3, 5] - # x3.shape [3, 5] - - """ - helper = LayerHelper("unbind", **locals()) - check_type(input, 'input', (Variable), 'unbind') - dtype = helper.input_dtype() - check_dtype( - dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind' - ) - if not isinstance(axis, (int)): - raise TypeError( - "The type of 'axis' must be int, but received %s." % (type(axis)) - ) - if isinstance(axis, np.generic): - axis = np.asscalar(axis) - input_shape = input.shape - axis_ = axis if axis >= 0 else len(input_shape) + axis - num = input_shape[axis_] - outs = [ - helper.create_variable_for_type_inference(dtype=helper.input_dtype()) - for i in range(num) - ] - - helper.append_op( - type="unbind", - inputs={"X": input}, - outputs={"Out": outs}, - attrs={"axis": axis}, - ) - return outs diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index 9fff40e1685c13fc47a7bf6553111cdae4d3d0f0..613f696f12adec41a7667b8e41e01e04e6bd4430 100755 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -1097,7 +1097,6 @@ set_tests_properties(test_bilinear_interp_v2_op PROPERTIES TIMEOUT 120) set_tests_properties(test_svd_op PROPERTIES TIMEOUT 80) set_tests_properties(test_einsum_op PROPERTIES TIMEOUT 120) set_tests_properties(test_qr_op PROPERTIES TIMEOUT 60) -set_tests_properties(test_deformable_psroi_pooling PROPERTIES TIMEOUT 120) set_tests_properties(test_trilinear_interp_v2_op PROPERTIES TIMEOUT 120) set_tests_properties(test_imperative_static_runner_mnist PROPERTIES TIMEOUT 120) set_tests_properties(test_masked_select_op PROPERTIES TIMEOUT 120) diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_elt_act_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_elt_act_fuse_pass.py index 2026a54116c23d5b144a21321ca4cbe58c563c6a..e8329c48c2a2b554969911f04cdcdb38151f00bd 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_elt_act_fuse_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_elt_act_fuse_pass.py @@ -102,7 +102,7 @@ class ElementwiseActivationMkldnnFusePassTest_Add_HardSwish( ): def set_params(self): self.operand = paddle.add - self.act = fluid.layers.hard_swish + self.act = paddle.nn.functional.hardswish class ElementwiseActivationMkldnnFusePassTest_Add_SQRT( @@ -202,7 +202,7 @@ class ElementwiseActivationMkldnnFusePassTest_Sub_HardSwish( ): def set_params(self): self.operand = paddle.subtract - self.act = fluid.layers.hard_swish + self.act = paddle.nn.functional.hardswish class ElementwiseActivationMkldnnFusePassTest_Sub_ABS( @@ -294,7 +294,7 @@ class ElementwiseActivationMkldnnFusePassTest_Mul_HardSwish( ): def set_params(self): self.operand = paddle.multiply - self.act = fluid.layers.hard_swish + self.act = paddle.nn.functional.hardswish class ElementwiseActivationMkldnnFusePassTest_Mul_SQRT( diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py index abc96d262e04e75db2d226555a67d323879254d9..4134f421e9e4b25632b4a1d9227f54e3830462a7 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_activation_pass.py @@ -88,7 +88,7 @@ class TensorRTSubgraphPassSigmoidTest(TensorRTSubgraphPassActivationTest): class TensorRTSubgraphPassHardSwishTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): - return fluid.layers.hard_swish(x) + return paddle.nn.functional.hardswish(x) class TensorRTSubgraphPassHardSigmoidTest(TensorRTSubgraphPassActivationTest): @@ -100,7 +100,7 @@ class TensorRTSubgraphPassHardSwishPluginTest( TensorRTSubgraphPassActivationTest ): def append_act(self, x): - return fluid.layers.hard_swish(x, threshold=4.0, scale=8.0) + return paddle.nn.functional.hardswish(x) class TensorRTSubgraphPassClipTest(TensorRTSubgraphPassActivationTest): @@ -166,7 +166,7 @@ class TensorRTSubgraphPassMishTest(TensorRTSubgraphPassActivationTest): ) def append_act(self, x): - return fluid.layers.mish(x) + return paddle.nn.functional.mish(x) class TensorRTSubgraphPassMishFp16SerializeTest( @@ -179,7 +179,7 @@ class TensorRTSubgraphPassMishFp16SerializeTest( ) def append_act(self, x): - return fluid.layers.mish(x) + return paddle.nn.functional.mish(x) class TensorRTSubgraphPassDynamicMishFp16SerializeTest( @@ -200,7 +200,7 @@ class TensorRTSubgraphPassDynamicMishFp16SerializeTest( ) def append_act(self, x): - return fluid.layers.mish(x) + return paddle.nn.functional.mish(x) class TensorRTSubgraphPassPreluAllTest(TensorRTSubgraphPassActivationTest): diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index 2479312a51ef54f9c51d2b167b49b1f022f71338..db3bb976b865e8f452b9b84fd2d45b67fefbfd6c 100755 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -2073,7 +2073,7 @@ class TestHardswishAPI(unittest.TestCase): def test_fluid_api(self): with fluid.program_guard(fluid.Program()): x = fluid.data('X', self.x_np.shape, self.x_np.dtype) - out = fluid.layers.hard_swish(x) + out = paddle.nn.functional.hardswish(x) exe = fluid.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out]) out_ref = ref_hardswish(self.x_np) @@ -2081,7 +2081,7 @@ class TestHardswishAPI(unittest.TestCase): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) - out = paddle.fluid.layers.hard_swish(x) + out = paddle.nn.functional.hardswish(x) np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05) paddle.enable_static() @@ -3414,7 +3414,7 @@ def ref_mish(x, threshold=20.0): class TestMish(TestActivation): def setUp(self): self.op_type = "mish" - self.python_api = paddle.fluid.layers.nn.mish + self.python_api = paddle.nn.functional.mish self.init_dtype() self.init_shape() @@ -3480,7 +3480,7 @@ class TestMishAPI(unittest.TestCase): paddle.enable_static() with fluid.program_guard(fluid.Program()): x = fluid.data('X', self.x_np.shape, self.x_np.dtype) - out = fluid.layers.mish(x) + out = paddle.nn.functional.mish(x) exe = fluid.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out]) out_ref = ref_mish(self.x_np) diff --git a/python/paddle/fluid/tests/unittests/test_cuda_random_seed.py b/python/paddle/fluid/tests/unittests/test_cuda_random_seed.py index 7c3ba6add03122109d8bb5e4c9a7ac847756d4a1..07263731e1ff23dfa72bb5151b7d7595d34c5f9e 100644 --- a/python/paddle/fluid/tests/unittests/test_cuda_random_seed.py +++ b/python/paddle/fluid/tests/unittests/test_cuda_random_seed.py @@ -41,15 +41,9 @@ class TestGeneratorSeed(unittest.TestCase): gen.manual_seed(111111111) st = paddle.get_cuda_rng_state() - x = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) - x_again = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) - x_third = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) + x = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) + x_again = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) + x_third = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) print("x: {}".format(x.numpy())) print("x_again: {}".format(x_again.numpy())) x = x + x_again + x_third @@ -57,15 +51,9 @@ class TestGeneratorSeed(unittest.TestCase): paddle.set_cuda_rng_state(st) - x1 = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) - x1_again = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) - x1_third = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) + x1 = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) + x1_again = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) + x1_third = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) x1 = x1 + x1_again + x1_third y1 = fluid.layers.dropout(x1, 0.5) y_np = y.numpy() @@ -128,7 +116,7 @@ class TestGeneratorSeed(unittest.TestCase): with fluid.program_guard(train_program, startup_program): # example 1: # attr shape is a list which doesn't contain tensor Variable. - x = fluid.layers.uniform_random(shape=[2, 10]) + x = paddle.uniform(shape=[2, 10]) result_1 = fluid.layers.fc( input=x, size=10, diff --git a/python/paddle/fluid/tests/unittests/test_deformable_psroi_pooling.py b/python/paddle/fluid/tests/unittests/test_deformable_psroi_pooling.py deleted file mode 100644 index d73ef732da81460b9ca642e703e5805ab2901ee1..0000000000000000000000000000000000000000 --- a/python/paddle/fluid/tests/unittests/test_deformable_psroi_pooling.py +++ /dev/null @@ -1,596 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import numpy as np -from op_test import OpTest - -import paddle.fluid as fluid -from paddle.fluid import Program, program_guard - - -def set_input(input, rois, trans): - inputs = {'Input': input, "ROIs": rois, "Trans": trans} - return inputs - - -def set_attrs( - no_trans, - spatial_scale, - output_channels, - group_size, - pooled_height, - pooled_width, - part_size, - sample_per_part, - trans_std, -): - attrs = { - 'no_trans': no_trans, - 'spatial_scale': spatial_scale, - 'output_dim': output_channels, - 'group_size': group_size, - 'pooled_height': pooled_height, - 'pooled_width': pooled_width, - 'part_size': part_size, - 'sample_per_part': sample_per_part, - 'trans_std': trans_std, - } - return attrs - - -def set_outputs(output, top_count): - outputs = { - 'Output': output.astype('float32'), - 'TopCount': top_count.astype('float32'), - } - return outputs - - -class TestDeformablePSROIPoolOp(OpTest): - def set_data(self): - self.start_test1() - self.start_test2() - self.start_test3() - self.start_test4() - - def start_test1(self): - self.init_test_case1() - self.make_rois() - self.calc_deformable_psroi_pooling() - - inputs = self.input - rois = (self.rois[:, 1:5], self.rois_lod) - trans = self.trans - self.inputs = set_input(inputs, rois, trans) - - no_trans = self.no_trans - spatial_scale = self.spatial_scale - output_channels = self.output_channels - group_size = self.group_size - pooled_height = self.pooled_height - pooled_width = self.pooled_width - part_size = self.part_size - sample_per_part = self.sample_per_part - trans_std = self.trans_std - - self.attrs = set_attrs( - no_trans, - spatial_scale, - output_channels, - group_size, - pooled_height, - pooled_width, - part_size, - sample_per_part, - trans_std, - ) - - output = self.out.astype('float32') - top_count = self.top_count.astype('float32') - self.outputs = set_outputs(output, top_count) - - def start_test2(self): - self.init_test_case2() - self.make_rois() - self.calc_deformable_psroi_pooling() - - inputs = self.input - rois = (self.rois[:, 1:5], self.rois_lod) - trans = self.trans - self.inputs = set_input(inputs, rois, trans) - - no_trans = self.no_trans - spatial_scale = self.spatial_scale - output_channels = self.output_channels - group_size = self.group_size - pooled_height = self.pooled_height - pooled_width = self.pooled_width - part_size = self.part_size - sample_per_part = self.sample_per_part - trans_std = self.trans_std - - self.attrs = set_attrs( - no_trans, - spatial_scale, - output_channels, - group_size, - pooled_height, - pooled_width, - part_size, - sample_per_part, - trans_std, - ) - - output = self.out.astype('float32') - top_count = self.top_count.astype('float32') - self.outputs = set_outputs(output, top_count) - - def start_test3(self): - self.init_test_case3() - self.make_rois() - self.calc_deformable_psroi_pooling() - - inputs = self.input - rois = (self.rois[:, 1:5], self.rois_lod) - trans = self.trans - self.inputs = set_input(inputs, rois, trans) - - no_trans = self.no_trans - spatial_scale = self.spatial_scale - output_channels = self.output_channels - group_size = self.group_size - pooled_height = self.pooled_height - pooled_width = self.pooled_width - part_size = self.part_size - sample_per_part = self.sample_per_part - trans_std = self.trans_std - - self.attrs = set_attrs( - no_trans, - spatial_scale, - output_channels, - group_size, - pooled_height, - pooled_width, - part_size, - sample_per_part, - trans_std, - ) - - output = self.out.astype('float32') - top_count = self.top_count.astype('float32') - self.outputs = set_outputs(output, top_count) - - def start_test4(self): - self.init_test_case4() - self.make_rois() - self.calc_deformable_psroi_pooling() - - inputs = self.input - rois = (self.rois[:, 1:5], self.rois_lod) - trans = self.trans - self.inputs = set_input(inputs, rois, trans) - - no_trans = self.no_trans - spatial_scale = self.spatial_scale - output_channels = self.output_channels - group_size = self.group_size - pooled_height = self.pooled_height - pooled_width = self.pooled_width - part_size = self.part_size - sample_per_part = self.sample_per_part - trans_std = self.trans_std - - self.attrs = set_attrs( - no_trans, - spatial_scale, - output_channels, - group_size, - pooled_height, - pooled_width, - part_size, - sample_per_part, - trans_std, - ) - - output = self.out.astype('float32') - top_count = self.top_count.astype('float32') - self.outputs = set_outputs(output, top_count) - - def init_test_case1(self): - self.batch_size = 3 - self.channels = 3 * 2 * 2 - self.height = 12 - self.width = 12 - self.input_dim = [ - self.batch_size, - self.channels, - self.height, - self.width, - ] - self.no_trans = False - self.spatial_scale = 1.0 / 4.0 - self.output_channels = 12 - self.group_size = [1, 1] - self.pooled_height = 4 - self.pooled_width = 4 - self.part_size = [4, 4] - self.sample_per_part = 2 - self.trans_std = 0.1 - self.input = np.random.random(self.input_dim).astype('float32') - - def init_test_case2(self): - self.batch_size = 2 - self.channels = 3 * 2 * 2 - self.height = 12 - self.width = 12 - self.input_dim = [ - self.batch_size, - self.channels, - self.height, - self.width, - ] - self.no_trans = True - self.spatial_scale = 1.0 / 2.0 - self.output_channels = 12 - self.group_size = [1, 1] - self.pooled_height = 7 - self.pooled_width = 7 - self.part_size = [7, 7] - self.sample_per_part = 4 - self.trans_std = 0.1 - self.input = np.random.random(self.input_dim).astype('float32') - - def init_test_case3(self): - self.batch_size = 2 - self.channels = 3 * 2 * 2 - self.height = 12 - self.width = 12 - self.input_dim = [ - self.batch_size, - self.channels, - self.height, - self.width, - ] - self.no_trans = False - self.spatial_scale = 1.0 / 4.0 - self.output_channels = 12 - self.group_size = [1, 1] - self.pooled_height = 3 - self.pooled_width = 3 - self.part_size = [3, 3] - self.sample_per_part = 3 - self.trans_std = 0.2 - self.input = np.random.random(self.input_dim).astype('float32') - - def init_test_case4(self): - self.batch_size = 2 - self.channels = 3 * 2 * 2 - self.height = 12 - self.width = 12 - self.input_dim = [ - self.batch_size, - self.channels, - self.height, - self.width, - ] - self.no_trans = True - self.spatial_scale = 1.0 / 2.0 - self.output_channels = 12 - self.group_size = [1, 1] - self.pooled_height = 6 - self.pooled_width = 2 - self.part_size = [6, 6] - self.sample_per_part = 6 - self.trans_std = 0.4 - self.input = np.random.random(self.input_dim).astype('float32') - - def make_rois(self): - rois = [] - self.rois_lod = [[]] - for bno in range(self.batch_size): - self.rois_lod[0].append(bno + 1) - for i in range(bno + 1): - x_1 = np.random.randint( - 0, self.width // self.spatial_scale - self.pooled_width - ) - y_1 = np.random.randint( - 0, self.height // self.spatial_scale - self.pooled_height - ) - x_2 = np.random.randint( - x_1 + self.pooled_width, self.width // self.spatial_scale - ) - y_2 = np.random.randint( - y_1 + self.pooled_height, self.height // self.spatial_scale - ) - roi = [bno, x_1, y_1, x_2, y_2] - rois.append(roi) - self.rois_num = len(rois) - self.rois = np.array(rois).astype("float32") - - def dmc_bilinear(self, data_im, p_h, p_w): - h_low = int(np.floor(p_h)) - w_low = int(np.floor(p_w)) - h_high = h_low + 1 - w_high = w_low + 1 - l_h = p_h - h_low - l_w = p_w - w_low - h_h = 1 - l_h - h_w = 1 - l_w - v_1 = 0 - if h_low >= 0 and w_low >= 0: - v_1 = data_im[h_low, w_low] - v_2 = 0 - if h_low >= 0 and w_high <= self.width - 1: - v_2 = data_im[h_low, w_high] - v_3 = 0 - if h_high <= self.height - 1 and w_low >= 0: - v_3 = data_im[h_high, w_low] - v_4 = 0 - if h_high <= self.height - 1 and w_high <= self.width - 1: - v_4 = data_im[h_high, w_high] - w_1, w_2, w_3, w_4 = h_h * h_w, h_h * l_w, l_h * h_w, l_h * l_w - val = w_1 * v_1 + w_2 * v_2 + w_3 * v_3 + w_4 * v_4 - return val - - def calc_deformable_psroi_pooling(self): - output_shape = ( - self.rois_num, - self.output_channels, - self.pooled_height, - self.pooled_width, - ) - self.out = np.zeros(output_shape) - self.trans = np.random.rand( - self.rois_num, 2, self.part_size[0], self.part_size[1] - ).astype('float32') - self.top_count = np.random.random((output_shape)).astype('float32') - count = ( - self.rois_num - * self.output_channels - * self.pooled_height - * self.pooled_width - ) - for index in range(count): - p_w = int(index % self.pooled_width) - p_h = int(index / self.pooled_width % self.pooled_height) - ctop = int( - index - / self.pooled_width - / self.pooled_height - % self.output_channels - ) - n_out = int( - index - / self.pooled_width - / self.pooled_height - / self.output_channels - ) - roi = self.rois[n_out] - roi_batch_id = int(roi[0]) - roi_start_w = int(np.round(roi[1])) * self.spatial_scale - 0.5 - roi_start_h = int(np.round(roi[2])) * self.spatial_scale - 0.5 - roi_end_w = int(np.round(roi[3] + 1)) * self.spatial_scale - 0.5 - roi_end_h = int(np.round(roi[4] + 1)) * self.spatial_scale - 0.5 - roi_width = max(roi_end_w - roi_start_w, 0.1) - roi_height = max(roi_end_h - roi_start_h, 0.1) - bin_size_h = float(roi_height) / float(self.pooled_height) - bin_size_w = float(roi_width) / float(self.pooled_width) - sub_bin_size_h = bin_size_h / self.sample_per_part - sub_bin_size_w = bin_size_w / self.sample_per_part - part_h = int(np.floor(p_h) / self.pooled_height * self.part_size[0]) - part_w = int(np.floor(p_w) / self.pooled_width * self.part_size[1]) - if self.no_trans: - trans_x = 0 - trans_y = 0 - else: - trans_x = self.trans[n_out][0][part_h][part_w] * self.trans_std - trans_y = self.trans[n_out][1][part_h][part_w] * self.trans_std - wstart = p_w * bin_size_w + roi_start_w - wstart = wstart + trans_x * roi_width - hstart = p_h * bin_size_h + roi_start_h - hstart = hstart + trans_y * roi_height - sum = 0 - num_sample = 0 - g_w = np.floor(p_w * self.group_size[0] / self.pooled_height) - g_h = np.floor(p_h * self.group_size[1] / self.pooled_width) - g_w = min(max(g_w, 0), self.group_size[0] - 1) - g_h = min(max(g_h, 0), self.group_size[1] - 1) - input_i = self.input[roi_batch_id] - for i_w in range(self.sample_per_part): - for i_h in range(self.sample_per_part): - w_sample = wstart + i_w * sub_bin_size_w - h_sample = hstart + i_h * sub_bin_size_h - if ( - w_sample < -0.5 - or w_sample > self.width - 0.5 - or h_sample < -0.5 - or h_sample > self.height - 0.5 - ): - continue - w_sample = min(max(w_sample, 0.0), self.width - 1.0) - h_sample = min(max(h_sample, 0.0), self.height - 1.0) - c_sample = int( - (ctop * self.group_size[0] + g_h) * self.group_size[1] - + g_w - ) - val = self.dmc_bilinear( - input_i[c_sample], h_sample, w_sample - ) - sum = sum + val - num_sample = num_sample + 1 - if num_sample == 0: - self.out[n_out][ctop][p_h][p_w] = 0 - else: - self.out[n_out][ctop][p_h][p_w] = sum / num_sample - self.top_count[n_out][ctop][p_h][p_w] = num_sample - - def setUp(self): - self.op_type = "deformable_psroi_pooling" - self.set_data() - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(['Input'], 'Output') - - -class TestDeformablePSROIPoolOpError(unittest.TestCase): - def test_errors(self): - with program_guard(Program(), Program()): - input1 = fluid.data( - name="input1", shape=[2, 192, 64, 64], dtype='float32' - ) - rois1 = fluid.data( - name="rois1", shape=[-1, 4], dtype='float32', lod_level=1 - ) - trans1 = fluid.data( - name="trans1", shape=[2, 384, 64, 64], dtype='float32' - ) - - # The `input` must be Variable and the data type of `input` Tensor must be one of float32 and float64. - def test_input_type(): - fluid.layers.deformable_roi_pooling( - input=[3, 4], - rois=rois1, - trans=trans1, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_input_type) - - def test_input_tensor_dtype(): - input2 = fluid.data( - name="input2", shape=[2, 192, 64, 64], dtype='int32' - ) - fluid.layers.deformable_roi_pooling( - input=input2, - rois=rois1, - trans=trans1, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_input_tensor_dtype) - - # The `rois` must be Variable and the data type of `rois` Tensor must be one of float32 and float64. - def test_rois_type(): - fluid.layers.deformable_roi_pooling( - input=input1, - rois=2, - trans=trans1, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_rois_type) - - def test_rois_tensor_dtype(): - rois2 = fluid.data( - name="rois2", shape=[-1, 4], dtype='int32', lod_level=1 - ) - fluid.layers.deformable_roi_pooling( - input=input1, - rois=rois2, - trans=trans1, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_rois_tensor_dtype) - - # The `trans` must be Variable and the data type of `trans` Tensor must be one of float32 and float64. - def test_trans_type(): - fluid.layers.deformable_roi_pooling( - input=input1, - rois=rois1, - trans=[2], - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_trans_type) - - def test_trans_tensor_dtype(): - trans2 = fluid.data( - name="trans2", shape=[2, 384, 64, 64], dtype='int32' - ) - fluid.layers.deformable_roi_pooling( - input=input1, - rois=rois1, - trans=trans2, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_trans_tensor_dtype) - - # The `group_size` must be one of list and tuple. - # Each element must be int. - def test_group_size_type(): - fluid.layers.deformable_roi_pooling( - input=input1, - rois=rois1, - trans=trans1, - group_size=1, - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_group_size_type) - - # The `part_size` must be one of list, tuple and None. - # Each element must be int. - def test_part_size_type(): - fluid.layers.deformable_roi_pooling( - input=input1, - rois=rois1, - trans=trans1, - pooled_height=8, - pooled_width=8, - part_size=8, - sample_per_part=4, - position_sensitive=True, - ) - - self.assertRaises(TypeError, test_part_size_type) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_gradient_clip.py b/python/paddle/fluid/tests/unittests/test_gradient_clip.py index 4aa064921fe5cce111ccc7b86dd3afba436663af..0c89e000538d6e5fd8cd28d7806dc80e1edc9934 100644 --- a/python/paddle/fluid/tests/unittests/test_gradient_clip.py +++ b/python/paddle/fluid/tests/unittests/test_gradient_clip.py @@ -408,9 +408,7 @@ class TestDygraphGradientClip(unittest.TestCase): def test_gradient_clip(self): with fluid.dygraph.guard(): linear = paddle.nn.Linear(5, 5) - inputs = fluid.layers.uniform_random( - [16, 5], min=-10, max=10 - ).astype('float32') + inputs = paddle.uniform([16, 5], min=-10, max=10).astype('float32') out = linear(fluid.dygraph.to_variable(inputs)) loss = paddle.mean(out) loss.backward() @@ -552,9 +550,9 @@ class TestDygraphGradientClipFP16(unittest.TestCase): models=model, optimizers=sgd_optimizer, level='O2' ) scaler = paddle.amp.GradScaler(init_loss_scaling=1024) - inputs = fluid.layers.uniform_random( - [1, 5], min=-10, max=10 - ).astype('float32') + inputs = paddle.uniform([1, 5], min=-10, max=10).astype( + 'float32' + ) with paddle.amp.auto_cast(level='O2'): out = model(fluid.dygraph.to_variable(inputs)) loss = paddle.mean(out) @@ -600,9 +598,7 @@ class TestDygraphGradientClipFP16(unittest.TestCase): class TestDygraphGradientClipFP64(unittest.TestCase): def test_gradient_clip(self): with fluid.dygraph.guard(): - inputs = fluid.layers.uniform_random( - [16, 5], min=-10, max=10 - ).astype('float32') + inputs = paddle.uniform([16, 5], min=-10, max=10).astype('float32') linear = paddle.nn.Linear(5, 5) out = linear(fluid.dygraph.to_variable(inputs)) loss = paddle.mean(out) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index e39ed15e28c16eb955d1c9586ae80bd782ca85a0..409fdbbbdc5ad3f99eb208605fb4094abd52a40e 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -1843,7 +1843,7 @@ class TestLayer(LayerTest): def test_shard_index(self): with self.static_graph(): x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64') - shard_label = fluid.layers.shard_index( + shard_label = paddle.shard_index( input=x, index_num=20, nshards=2, shard_id=0 ) @@ -2342,7 +2342,7 @@ class TestBook(LayerTest): fluid.default_main_program(), fluid.default_startup_program() ): input = self._get_data(name="input", shape=[16], dtype="float32") - out = layers.mish(input, name='mish') + out = paddle.nn.functional.mish(input, name='mish') return out def make_cross_entropy(self): @@ -2794,7 +2794,7 @@ class TestBook(LayerTest): def test_unfold(self): with self.static_graph(): x = layers.data(name='x', shape=[3, 20, 20], dtype='float32') - out = layers.unfold(x, [3, 3], 1, 1, 1) + out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1) return out def test_partial_concat(self): @@ -2809,40 +2809,6 @@ class TestBook(LayerTest): ) return concat1, concat2 - def test_deform_roi_pooling(self): - with program_guard( - fluid.default_main_program(), fluid.default_startup_program() - ): - input = layers.data( - name='input', - shape=[2, 3, 32, 32], - dtype='float32', - append_batch_size=False, - ) - rois = layers.data( - name="rois", shape=[4], dtype='float32', lod_level=1 - ) - trans = layers.data( - name="trans", - shape=[2, 3, 32, 32], - dtype='float32', - append_batch_size=False, - ) - out = layers.deformable_roi_pooling( - input=input, - rois=rois, - trans=trans, - no_trans=False, - spatial_scale=1.0, - group_size=(1, 1), - pooled_height=8, - pooled_width=8, - part_size=(8, 8), - sample_per_part=4, - trans_std=0.1, - ) - return out - def test_addmm(self): with program_guard( fluid.default_main_program(), fluid.default_startup_program() diff --git a/python/paddle/fluid/tests/unittests/test_random_seed.py b/python/paddle/fluid/tests/unittests/test_random_seed.py index 1c3c280d2fcbc359f201c45c05b4f8bacac27553..420109b3a3880452f8bd403aaf88dc5703ed734c 100644 --- a/python/paddle/fluid/tests/unittests/test_random_seed.py +++ b/python/paddle/fluid/tests/unittests/test_random_seed.py @@ -35,23 +35,17 @@ class TestGeneratorSeed(unittest.TestCase): fluid.enable_dygraph() gen = paddle.seed(12312321111) - x = fluid.layers.uniform_random([10], dtype="float32", min=0.0, max=1.0) + x = paddle.uniform([10], dtype="float32", min=0.0, max=1.0) st1 = gen.get_state() - x1 = fluid.layers.uniform_random( - [10], dtype="float32", min=0.0, max=1.0 - ) + x1 = paddle.uniform([10], dtype="float32", min=0.0, max=1.0) gen.set_state(st1) print(gen.get_state()) - x2 = fluid.layers.uniform_random( - [10], dtype="float32", min=0.0, max=1.0 - ) + x2 = paddle.uniform([10], dtype="float32", min=0.0, max=1.0) paddle.seed(12312321111) - x3 = fluid.layers.uniform_random( - [10], dtype="float32", min=0.0, max=1.0 - ) + x3 = paddle.uniform([10], dtype="float32", min=0.0, max=1.0) x_np = x.numpy() x1_np = x1.numpy() @@ -72,8 +66,8 @@ class TestGeneratorSeed(unittest.TestCase): with fluid.program_guard(train_program, startup_program): # example 1: # attr shape is a list which doesn't contain tensor Variable. - result_1 = fluid.layers.uniform_random(shape=[3, 4]) - result_2 = fluid.layers.uniform_random(shape=[3, 4]) + result_1 = paddle.uniform(shape=[3, 4]) + result_2 = paddle.uniform(shape=[3, 4]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) @@ -102,15 +96,11 @@ class TestGeneratorSeed(unittest.TestCase): gen = paddle.seed(111111111) st = gen.get_state() # x = np.arange(1,101).reshape(2,50).astype("float32") - x = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) + x = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) y = fluid.layers.dropout(x, 0.5) gen.manual_seed(111111111) # gen.set_state(st) - x1 = fluid.layers.uniform_random( - [2, 10], dtype="float32", min=0.0, max=1.0 - ) + x1 = paddle.uniform([2, 10], dtype="float32", min=0.0, max=1.0) y1 = fluid.layers.dropout(x1, 0.5) y_np = y.numpy() y1_np = y1.numpy() @@ -129,7 +119,7 @@ class TestGeneratorSeed(unittest.TestCase): with fluid.program_guard(train_program, startup_program): # example 1: # attr shape is a list which doesn't contain tensor Variable. - x_1 = fluid.layers.uniform_random(shape=[2, 10]) + x_1 = paddle.uniform(shape=[2, 10]) y_1 = fluid.layers.dropout(x_1, 0.5) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) @@ -235,8 +225,8 @@ class TestGeneratorSeed(unittest.TestCase): with fluid.program_guard(train_program, startup_program): # example 1: # attr shape is a list which doesn't contain tensor Variable. - result_1 = fluid.layers.uniform_random(shape=[3, 4]) - result_2 = fluid.layers.uniform_random(shape=[3, 4]) + result_1 = paddle.uniform(shape=[3, 4]) + result_2 = paddle.uniform(shape=[3, 4]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) @@ -384,7 +374,7 @@ class TestGeneratorSeed(unittest.TestCase): with fluid.program_guard(train_program, startup_program): # example 1: # attr shape is a list which doesn't contain tensor Variable. - x = fluid.layers.uniform_random(shape=[2, 10]) + x = paddle.uniform(shape=[2, 10]) result_1 = fluid.layers.fc( input=x, size=10, diff --git a/python/paddle/fluid/tests/unittests/test_regularizer.py b/python/paddle/fluid/tests/unittests/test_regularizer.py index f162a8e829fe8164ddcf0b136400371f88e9d9f7..27031d97090b56abf077ee1d005b2b12ec16fca2 100644 --- a/python/paddle/fluid/tests/unittests/test_regularizer.py +++ b/python/paddle/fluid/tests/unittests/test_regularizer.py @@ -263,7 +263,7 @@ class TestRegularizer(unittest.TestCase): regularizer=paddle.regularizer.L1Decay() ) with fluid.program_guard(fluid.Program(), fluid.Program()): - x = fluid.layers.uniform_random([2, 2, 3]) + x = paddle.uniform([2, 2, 3]) out = fluid.layers.fc(x, 5, param_attr=fc_param_attr) loss = paddle.sum(out) sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2) diff --git a/python/paddle/fluid/tests/unittests/test_regularizer_api.py b/python/paddle/fluid/tests/unittests/test_regularizer_api.py index c3adc0cf0b359165cd5528b02bbab4232d52b16b..d125d61feb774ffb69289bd891dd5681c65c0694 100644 --- a/python/paddle/fluid/tests/unittests/test_regularizer_api.py +++ b/python/paddle/fluid/tests/unittests/test_regularizer_api.py @@ -173,7 +173,7 @@ class TestRegularizer(unittest.TestCase): regularizer=paddle.regularizer.L1Decay() ) with fluid.program_guard(fluid.Program(), fluid.Program()): - x = fluid.layers.uniform_random([2, 2, 3]) + x = paddle.uniform([2, 2, 3]) out = fluid.layers.fc(x, 5, param_attr=fc_param_attr) loss = paddle.sum(out) sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2) diff --git a/python/paddle/fluid/tests/unittests/test_static_shape_inferrence_for_shape_tensor.py b/python/paddle/fluid/tests/unittests/test_static_shape_inferrence_for_shape_tensor.py index 6f70e553cc2bc54064c7aa74f3cc265928f70911..5ba3bcbbc110866da51f61f5b2a6ccd3398a936d 100644 --- a/python/paddle/fluid/tests/unittests/test_static_shape_inferrence_for_shape_tensor.py +++ b/python/paddle/fluid/tests/unittests/test_static_shape_inferrence_for_shape_tensor.py @@ -15,6 +15,7 @@ import unittest import paddle +from paddle.fluid.layers.utils import try_set_static_shape_tensor class StaticShapeInferrenceTest(unittest.TestCase): @@ -24,7 +25,8 @@ class StaticShapeInferrenceTest(unittest.TestCase): name="x", shape=[-1, 2], dtype='float32' ) shape = paddle.shape(data) # shape should be [-1, 2] - x = paddle.fluid.layers.uniform_random(shape) + x = paddle.uniform(shape) + try_set_static_shape_tensor(x, shape) self.assertEqual(x.shape, data.shape) paddle.disable_static() diff --git a/python/paddle/fluid/tests/unittests/test_unbind_op.py b/python/paddle/fluid/tests/unittests/test_unbind_op.py index 82cec33d59e685a2c0f517e6a69102b12746e7f8..6f49d66b1aca60bb78184c66e47c86761a64e979 100644 --- a/python/paddle/fluid/tests/unittests/test_unbind_op.py +++ b/python/paddle/fluid/tests/unittests/test_unbind_op.py @@ -66,7 +66,7 @@ class TestLayersUnbind(unittest.TestCase): def test_layers_unbind(self): x_1 = fluid.data(shape=[2, 3], dtype='float32', name='x_1') - [out_0, out_1] = fluid.layers.unbind(input=x_1, axis=0) + [out_0, out_1] = paddle.unbind(input=x_1, axis=0) input_1 = np.random.random([2, 3]).astype("float32") axis = fluid.data(shape=[1], dtype='int32', name='axis') exe = fluid.Executor(place=fluid.CPUPlace()) diff --git a/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py b/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py index 81529828020ef075803d4edd26d1f518db6bb826..0dcdf0cc2502dc7b56cdef188207644462ca152b 100644 --- a/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py +++ b/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py @@ -162,23 +162,6 @@ class TestUniformRandomOpBF16SelectedRowsWithDiagInit( np.testing.assert_allclose(hist, prob, rtol=0, atol=0.01) -class TestUniformRandomOpBF16AttrTensorAPI(unittest.TestCase): - def test_attr_tensor_API(self): - startup_program = fluid.Program() - train_program = fluid.Program() - with fluid.program_guard(train_program, startup_program): - dim_tensor = fluid.layers.fill_constant([1], "int64", 3) - ret = fluid.layers.nn.uniform_random( - [1, dim_tensor, 2], dtype=np.uint16 - ) - - place = fluid.CPUPlace() - exe = fluid.Executor(place) - - exe.run(startup_program) - outs = exe.run(train_program, fetch_list=[ret]) - - class TestUniformRandomOpAPISeed(unittest.TestCase): def test_attr_tensor_API(self): _seed = 10 @@ -189,12 +172,8 @@ class TestUniformRandomOpAPISeed(unittest.TestCase): _min = 5 _max = 10 - ret = fluid.layers.nn.uniform_random( - [2, 3, 2], min=_min, max=_max, seed=_seed - ) - ret_2 = fluid.layers.nn.uniform_random( - [2, 3, 2], min=_min, max=_max, seed=_seed - ) + ret = paddle.uniform([2, 3, 2], min=_min, max=_max, seed=_seed) + ret_2 = paddle.uniform([2, 3, 2], min=_min, max=_max, seed=_seed) res = paddle.equal(ret, ret_2) place = fluid.CPUPlace() exe = fluid.Executor(place) diff --git a/python/paddle/fluid/tests/unittests/test_uniform_random_op.py b/python/paddle/fluid/tests/unittests/test_uniform_random_op.py index 58078cbd71b8ad7d9c9a937947660defa0701f02..86e932d25bf03807330c815189990f2e35ff0ea3 100644 --- a/python/paddle/fluid/tests/unittests/test_uniform_random_op.py +++ b/python/paddle/fluid/tests/unittests/test_uniform_random_op.py @@ -199,26 +199,18 @@ class TestUniformRandomOpError(unittest.TestCase): x1 = fluid.create_lod_tensor( np.zeros((4, 784)), [[1, 1, 1, 1]], fluid.CPUPlace() ) - fluid.layers.uniform_random(x1) + paddle.uniform(x1) self.assertRaises(TypeError, test_Variable) def test_Variable2(): x1 = np.zeros((4, 784)) - fluid.layers.uniform_random(x1) + paddle.uniform(x1) self.assertRaises(TypeError, test_Variable2) - def test_dtype(): - x2 = fluid.layers.data( - name='x2', shape=[4, 784], dtype='float32' - ) - fluid.layers.uniform_random(x2, 'int32') - - self.assertRaises(TypeError, test_dtype) - def test_out_dtype(): - out = fluid.layers.uniform_random(shape=[3, 4], dtype='float64') + out = paddle.uniform(shape=[3, 4], dtype='float64') self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64) test_out_dtype() @@ -323,7 +315,7 @@ class TestUniformRandomOp_attr_tensor_API(unittest.TestCase): train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): dim_tensor = fluid.layers.fill_constant([1], "int64", 3) - ret = fluid.layers.nn.uniform_random([1, dim_tensor, 2]) + ret = paddle.uniform([1, dim_tensor, 2]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): @@ -339,7 +331,7 @@ class TestUniformRandomOp_attr_tensor_API(unittest.TestCase): with fluid.program_guard(train_program, startup_program): dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 2) - ret = fluid.layers.nn.uniform_random([1, dim_1, dim_2]) + ret = paddle.uniform([1, dim_1, dim_2]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): @@ -354,7 +346,7 @@ class TestUniformRandomOp_attr_tensor_API(unittest.TestCase): train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): shape = fluid.data(name='shape_tensor', shape=[2], dtype="int32") - ret = fluid.layers.nn.uniform_random(shape) + ret = paddle.uniform(shape) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): @@ -377,12 +369,8 @@ class TestUniformRandomOp_API_seed(unittest.TestCase): _min = 5 _max = 10 - ret = fluid.layers.nn.uniform_random( - [2, 3, 2], min=_min, max=_max, seed=_seed - ) - ret_2 = fluid.layers.nn.uniform_random( - [2, 3, 2], min=_min, max=_max, seed=_seed - ) + ret = paddle.uniform([2, 3, 2], min=_min, max=_max, seed=_seed) + ret_2 = paddle.uniform([2, 3, 2], min=_min, max=_max, seed=_seed) res = paddle.equal(ret, ret_2) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): @@ -464,9 +452,7 @@ class TestUniformRandomOpSelectedRowsShapeTensorList(unittest.TestCase): class TestUniformRandomDygraphMode(unittest.TestCase): def test_check_output(self): with fluid.dygraph.guard(): - x = fluid.layers.uniform_random( - [10], dtype="float32", min=0.0, max=1.0 - ) + x = paddle.uniform([10], dtype="float32", min=0.0, max=1.0) x_np = x.numpy() for i in range(10): self.assertTrue((x_np[i] > 0 and x_np[i] < 1.0)) @@ -698,9 +684,7 @@ class TestUniformMinMaxTensor(UnittestBase): min_v = paddle.to_tensor([0.1]) max_v = paddle.to_tensor([0.9]) y = paddle.uniform([2, 3, 10], min=min_v, max=max_v) - z = paddle.fluid.layers.uniform_random( - [2, 3, 10], min=min_v, max=max_v - ) + z = paddle.uniform([2, 3, 10], min=min_v, max=max_v) out = feat + y + z