Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9b3e79ac
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9b3e79ac
编写于
3月 22, 2019
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick mem op to release/1.3
test=release/1.3
上级
e0bb8cce
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
578 addition
and
74 deletion
+578
-74
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+25
-15
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+13
-4
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+207
-37
paddle/fluid/operators/cross_entropy_op.cu
paddle/fluid/operators/cross_entropy_op.cu
+10
-0
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+120
-0
paddle/fluid/operators/expand_op.cc
paddle/fluid/operators/expand_op.cc
+24
-3
paddle/fluid/operators/expand_op.cu
paddle/fluid/operators/expand_op.cu
+6
-2
paddle/fluid/operators/math.h
paddle/fluid/operators/math.h
+56
-0
paddle/fluid/operators/recurrent_op.cc
paddle/fluid/operators/recurrent_op.cc
+6
-2
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+18
-0
python/paddle/fluid/tests/unittests/test_cross_entropy2_op.py
...on/paddle/fluid/tests/unittests/test_cross_entropy2_op.py
+82
-0
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+10
-10
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
9b3e79ac
...
...
@@ -14,6 +14,10 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <deque>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
...
...
@@ -74,11 +78,11 @@ static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
ExecutorPrepareContext
::
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{
if
(
GetEagerDeletionThreshold
()
>=
0
)
{
global_ref_cnts_
=
GetNonPersistableReferenceCounts
(
prog
.
Block
(
block_id
),
skip_ref_cnt
_vars
);
const
std
::
vector
<
std
::
string
>&
keep_vars
,
bool
force_disable_gc
)
:
prog_
(
prog
),
block_id_
(
block_id
)
,
force_disable_gc_
(
force_disable_gc
)
{
if
(
GetEagerDeletionThreshold
()
>=
0
&&
!
force_disable_gc_
)
{
global_ref_cnts_
=
GetNonPersistableReferenceCounts
(
prog
.
Block
(
block_id
),
keep
_vars
);
}
}
...
...
@@ -183,13 +187,15 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
}
void
Executor
::
Run
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
,
bool
create_vars
)
{
bool
create_local_scope
,
bool
create_vars
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
,
bool
force_disable_gc
)
{
platform
::
RecordBlock
b
(
block_id
);
if
(
FLAGS_use_mkldnn
)
EnableMKLDNN
(
pdesc
);
#ifdef PADDLE_WITH_NGRAPH
if
(
FLAGS_use_ngraph
)
operators
::
NgraphEngine
::
EnableNgraph
(
pdesc
);
#endif
auto
ctx
=
Prepare
(
pdesc
,
block_id
);
auto
ctx
=
Prepare
(
pdesc
,
block_id
,
skip_ref_cnt_vars
,
force_disable_gc
);
RunPreparedContext
(
ctx
.
get
(),
scope
,
create_local_scope
,
create_vars
);
}
...
...
@@ -356,9 +362,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
{
std
::
unique_ptr
<
ExecutorPrepareContext
>
ctx
(
new
ExecutorPrepareContext
(
program
,
block_id
,
skip_ref_cnt_vars
));
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
,
bool
force_disable_gc
)
{
std
::
unique_ptr
<
ExecutorPrepareContext
>
ctx
(
new
ExecutorPrepareContext
(
program
,
block_id
,
skip_ref_cnt_vars
,
force_disable_gc
));
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
block_id
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
block_id
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
...
...
@@ -369,7 +375,8 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
)
{
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
,
bool
force_disable_gc
)
{
PADDLE_ENFORCE
(
skip_ref_cnt_vars
.
empty
()
||
skip_ref_cnt_vars
.
size
()
==
block_ids
.
size
(),
"skip_ref_cnt_vars should be either empty or equals to block number %d"
,
...
...
@@ -379,9 +386,11 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
for
(
auto
&
bid
:
block_ids
)
{
ExecutorPrepareContext
*
ctx
;
if
(
skip_ref_cnt_vars
.
empty
())
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
,
std
::
vector
<
std
::
string
>
(),
force_disable_gc
);
}
else
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
,
skip_ref_cnt_vars
[
idx
]);
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
,
skip_ref_cnt_vars
[
idx
],
force_disable_gc
);
}
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
bid
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
bid
);
...
...
@@ -408,8 +417,9 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
>
gc
;
// skip while_op and while_grad_op temporarily
if
(
max_memory_size
>=
0
&&
!
keep_kids
)
{
// FIXME(zjl): recurrent_op is rather complex, we would
// disable gc forcely in recurrent_op
if
(
!
ctx
->
force_disable_gc_
&&
max_memory_size
>=
0
&&
!
keep_kids
)
{
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
9b3e79ac
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
...
...
@@ -30,7 +32,8 @@ namespace framework {
struct
ExecutorPrepareContext
{
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
std
::
vector
<
std
::
string
>
(),
bool
force_disable_gc
=
false
);
~
ExecutorPrepareContext
();
...
...
@@ -38,6 +41,7 @@ struct ExecutorPrepareContext {
const
framework
::
ProgramDesc
&
prog_
;
size_t
block_id_
;
bool
force_disable_gc_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
global_ref_cnts_
;
...
...
@@ -66,7 +70,10 @@ class Executor {
* Scope
*/
void
Run
(
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
=
true
,
bool
create_vars
=
true
);
bool
create_local_scope
=
true
,
bool
create_vars
=
true
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
(),
bool
force_disable_gc
=
false
);
// This API is very slow.
void
Run
(
const
ProgramDesc
&
program
,
Scope
*
scope
,
...
...
@@ -79,12 +86,14 @@ class Executor {
static
std
::
unique_ptr
<
ExecutorPrepareContext
>
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
std
::
vector
<
std
::
string
>
(),
bool
force_disable_gc
=
false
);
static
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
vector
<
std
::
string
>>
());
std
::
vector
<
std
::
vector
<
std
::
string
>>
(),
bool
force_disable_gc
=
false
);
void
CreateVariables
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
);
...
...
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
9b3e79ac
...
...
@@ -13,18 +13,21 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy_op.h"
#include <memory>
#include <string>
#include <unordered_map>
namespace
paddle
{
namespace
operators
{
class
CrossEntropyOp
:
public
framework
::
OperatorWithKernel
{
class
CrossEntropyOp
Base
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -32,14 +35,24 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
"Input(X) and Input(Label) shall have the same rank."
);
bool
check
=
true
;
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
x_dims
)
<=
0
||
framework
::
product
(
label_dims
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
}
if
(
IsSoftLabel
(
ctx
))
{
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal."
);
}
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1UL
,
"If Attr(softLabel) == false, the last dimension of "
...
...
@@ -60,21 +73,24 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
virtual
bool
IsSoftLabel
(
framework
::
InferShapeContext
*
ctx
)
const
{
return
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
);
}
};
class
CrossEntropyGradientOp
:
public
framework
::
OperatorWithKernel
{
class
CrossEntropyGradientOp
Base
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) shoudl be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@GRAD) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
GetXDim
(
ctx
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
int
rank
=
x_dims
.
size
();
...
...
@@ -82,6 +98,14 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
rank
,
"Input(Label) and Input(X) should have the same rank."
);
bool
check
=
true
;
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
x_dims
)
<=
0
||
framework
::
product
(
label_dims
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Label) should have the same "
...
...
@@ -90,19 +114,24 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
}
if
(
IsSoftLabel
(
ctx
))
{
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"When Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal."
);
}
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1
,
"When Attr(soft_label) == false, the last dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
VarNameWithXLoD
(),
framework
::
GradVarName
(
"X"
));
}
protected:
...
...
@@ -110,9 +139,29 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
// is determined by its input "X".
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
type
(),
ctx
.
device_context
());
}
virtual
framework
::
DDim
GetXDim
(
framework
::
InferShapeContext
*
ctx
)
const
{
return
ctx
->
GetInputDim
(
"X"
);
}
virtual
const
char
*
VarNameWithXLoD
()
const
{
return
"X"
;
}
virtual
bool
IsSoftLabel
(
framework
::
InferShapeContext
*
ctx
)
const
{
return
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
);
}
};
class
CrossEntropyOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{{
"X"
,
/*->*/
"Y"
}};
}
};
class
CrossEntropyOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -179,22 +228,132 @@ or not. But the output only shares the LoD information with input X.
}
};
class
CrossEntropyOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
class
CrossEntropyGradientOp
:
public
CrossEntropyGradientOpBase
{
public:
using
CrossEntropyGradientOpBase
::
CrossEntropyGradientOpBase
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
CrossEntropyGradientOpBase
::
InferShape
(
ctx
);
}
};
class
CrossEntropyOp2
:
public
CrossEntropyOpBase
{
public:
using
CrossEntropyOpBase
::
CrossEntropyOpBase
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
CrossEntropyOpBase
::
InferShape
(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MatchX"
),
"Output(MatchX) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims_vec
=
framework
::
vectorize
(
x_dims
);
x_dims_vec
.
push_back
(
0
);
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
x_dims_vec
));
x_dims
[
x_dims
.
size
()
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"MatchX"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{{
"X"
,
/*->*/
"Y"
}};
bool
IsSoftLabel
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
return
false
;
}
};
class
CrossEntropyGradientOp2
:
public
CrossEntropyGradientOpBase
{
public:
using
CrossEntropyGradientOpBase
::
CrossEntropyGradientOpBase
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchX"
),
"Input(MatchX) must exist"
);
CrossEntropyGradientOpBase
::
InferShape
(
ctx
);
}
protected:
virtual
framework
::
DDim
GetXDim
(
framework
::
InferShapeContext
*
ctx
)
const
{
auto
x_shape
=
ctx
->
GetInputDim
(
"XShape"
);
return
framework
::
DDim
(
x_shape
.
Get
(),
x_shape
.
size
()
-
1
);
}
virtual
const
char
*
VarNameWithXLoD
()
const
{
return
"XShape"
;
}
virtual
bool
IsSoftLabel
(
framework
::
InferShapeContext
*
ctx
)
const
{
return
false
;
}
};
class
CrossEntropyOpMaker2
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. One hot Tensor."
);
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss."
);
AddOutput
(
"XShape"
,
"Temporaily variable to save shape and LoD of X."
);
AddOutput
(
"MatchX"
,
"X value that matches label, used for gradient computation."
);
AddAttr
<
int
>
(
"ignore_index"
,
"(int, default -100), Specifies a target value that is"
"ignored and does not contribute to the input gradient."
"Only valid if soft_label is set to False"
)
.
SetDefault
(
-
100
);
AddComment
(
R"DOC(
Hard-label CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
Only support hard label.
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC"
);
}
};
class
CrossEntropyGradOpDescMaker2
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"cross_entropy_grad2"
);
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
"MatchX"
,
Output
(
"MatchX"
));
op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CPUCtx
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
cross_entropy
,
ops
::
CrossEntropyOp
,
ops
::
CrossEntropyOpMaker
,
ops
::
CrossEntropyOpInferVarType
,
REGISTER_OPERATOR
(
cross_entropy
,
ops
::
CrossEntropyOp
Base
,
ops
::
CrossEntropyOp
Maker
,
ops
::
CrossEntropyOp
InferVarType
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
CPUCtx
,
float
>
,
...
...
@@ -202,3 +361,14 @@ REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
REGISTER_OP_CPU_KERNEL
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOpKernel
<
CPUCtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
CPUCtx
,
double
>
);
REGISTER_OPERATOR
(
cross_entropy2
,
ops
::
CrossEntropyOp2
,
ops
::
CrossEntropyOpMaker2
,
ops
::
CrossEntropyOpInferVarType
,
ops
::
CrossEntropyGradOpDescMaker2
);
REGISTER_OPERATOR
(
cross_entropy_grad2
,
ops
::
CrossEntropyGradientOp2
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy2
,
ops
::
CrossEntropyOpKernel2
<
CPUCtx
,
float
>
,
ops
::
CrossEntropyOpKernel2
<
CPUCtx
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy_grad2
,
ops
::
CrossEntropyGradientOpKernel2
<
CPUCtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel2
<
CPUCtx
,
double
>
);
paddle/fluid/operators/cross_entropy_op.cu
浏览文件 @
9b3e79ac
...
...
@@ -27,3 +27,13 @@ REGISTER_OP_CUDA_KERNEL(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
double
>
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
cross_entropy2
,
ops
::
CrossEntropyOpKernel2
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyOpKernel2
<
CUDACtx
,
double
>
,
ops
::
CrossEntropyOpKernel2
<
CUDACtx
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
cross_entropy_grad2
,
ops
::
CrossEntropyGradientOpKernel2
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel2
<
CUDACtx
,
double
>
,
ops
::
CrossEntropyGradientOpKernel2
<
CUDACtx
,
plat
::
float16
>
);
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
9b3e79ac
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
...
...
@@ -137,5 +138,124 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
struct
HardLabelCrossEntropyForwardFunctor
{
HardLabelCrossEntropyForwardFunctor
(
const
T
*
x
,
T
*
y
,
T
*
match_x
,
const
int64_t
*
label
,
int64_t
ignore_index
,
int64_t
feature_size
)
:
x_
(
x
),
y_
(
y
),
match_x_
(
match_x
),
label_
(
label
),
ignore_index_
(
ignore_index
),
feature_size_
(
feature_size
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
auto
label
=
label_
[
idx
];
if
(
label
!=
ignore_index_
)
{
auto
match_x
=
x_
[
idx
*
feature_size_
+
label
];
y_
[
idx
]
=
-
math
::
TolerableValue
<
T
>
()(
real_log
(
match_x
));
match_x_
[
idx
]
=
match_x
;
}
else
{
y_
[
idx
]
=
0
;
match_x_
[
idx
]
=
0
;
// any value is ok
}
}
const
T
*
x_
;
T
*
y_
;
T
*
match_x_
;
const
int64_t
*
label_
;
int64_t
ignore_index_
;
int64_t
feature_size_
;
};
template
<
typename
T
>
struct
HardLabelCrossEntropyBackwardFunctor
{
HardLabelCrossEntropyBackwardFunctor
(
T
*
dx
,
const
T
*
dy
,
const
T
*
match_x
,
const
int64_t
*
label
,
int64_t
ignore_index
,
int64_t
feature_size
)
:
dx_
(
dx
),
dy_
(
dy
),
match_x_
(
match_x
),
label_
(
label
),
ignore_index_
(
ignore_index
),
feature_size_
(
feature_size
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
auto
row_idx
=
idx
/
feature_size_
;
auto
col_idx
=
idx
%
feature_size_
;
auto
label
=
label_
[
row_idx
];
if
(
label
==
col_idx
&&
label
!=
ignore_index_
)
{
dx_
[
idx
]
=
-
dy_
[
row_idx
]
/
match_x_
[
row_idx
];
}
else
{
dx_
[
idx
]
=
0
;
}
}
T
*
dx_
;
const
T
*
dy_
;
const
T
*
match_x_
;
const
int64_t
*
label_
;
int64_t
ignore_index_
;
int64_t
feature_size_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CrossEntropyOpKernel2
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
match_x
=
ctx
.
Output
<
Tensor
>
(
"MatchX"
);
auto
&
x_dims
=
x
->
dims
();
auto
feature_size
=
x_dims
[
x_dims
.
size
()
-
1
];
auto
batch_size
=
framework
::
product
(
x
->
dims
())
/
feature_size
;
auto
*
p_x
=
x
->
data
<
T
>
();
auto
*
p_label
=
label
->
data
<
int64_t
>
();
auto
*
p_y
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
p_match_x
=
match_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
ignore_index
=
ctx
.
Attr
<
int
>
(
"ignore_index"
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
.
template
device_context
<
DeviceContext
>(),
batch_size
);
for_range
(
HardLabelCrossEntropyForwardFunctor
<
T
>
(
p_x
,
p_y
,
p_match_x
,
p_label
,
ignore_index
,
feature_size
));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CrossEntropyGradientOpKernel2
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
match_x
=
ctx
.
Input
<
Tensor
>
(
"MatchX"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
p_dx
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
p_dy
=
dy
->
data
<
T
>
();
auto
*
p_match_x
=
match_x
->
data
<
T
>
();
auto
*
p_label
=
label
->
data
<
int64_t
>
();
int64_t
ignore_index
=
ctx
.
Attr
<
int
>
(
"ignore_index"
);
int
rank
=
dx
->
dims
().
size
();
int64_t
feature_size
=
dx
->
dims
()[
rank
-
1
];
int64_t
batch_size
=
framework
::
product
(
dx
->
dims
())
/
feature_size
;
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
.
template
device_context
<
DeviceContext
>(),
batch_size
*
feature_size
);
for_range
(
HardLabelCrossEntropyBackwardFunctor
<
T
>
(
p_dx
,
p_dy
,
p_match_x
,
p_label
,
ignore_index
,
feature_size
));
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/expand_op.cc
浏览文件 @
9b3e79ac
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/expand_op.h"
#include <memory>
#include <vector>
namespace
paddle
{
...
...
@@ -138,15 +139,35 @@ class ExpandGradOp : public framework::OperatorWithKernel {
}
};
class
ExpandGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"expand_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
expand
,
ops
::
ExpandOp
,
ops
::
ExpandOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
ExpandGradOpDescMaker
);
REGISTER_OPERATOR
(
expand_grad
,
ops
::
ExpandGradOp
);
REGISTER_OP_CPU_KERNEL
(
expand
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
expand
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
);
REGISTER_OP_CPU_KERNEL
(
expand_grad
,
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/expand_op.cu
浏览文件 @
9b3e79ac
...
...
@@ -15,7 +15,11 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
expand
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
expand
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ExpandKernel
<
paddle
::
platform
::
CUDADeviceContext
,
bool
>
);
REGISTER_OP_CUDA_KERNEL
(
expand_grad
,
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ExpandGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/math.h
0 → 100644
浏览文件 @
9b3e79ac
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/hostdevice.h"
#include "math.h" // NOLINT
namespace
paddle
{
namespace
operators
{
inline
HOSTDEVICE
platform
::
float16
real_exp
(
platform
::
float16
x
)
{
return
static_cast
<
platform
::
float16
>
(
::
expf
(
static_cast
<
float
>
(
x
)));
}
inline
HOSTDEVICE
float
real_exp
(
float
x
)
{
return
::
expf
(
x
);
}
inline
HOSTDEVICE
double
real_exp
(
double
x
)
{
return
::
exp
(
x
);
}
inline
HOSTDEVICE
platform
::
float16
real_log
(
platform
::
float16
x
)
{
return
static_cast
<
platform
::
float16
>
(
::
logf
(
static_cast
<
float
>
(
x
)));
}
inline
HOSTDEVICE
float
real_log
(
float
x
)
{
return
::
logf
(
x
);
}
inline
HOSTDEVICE
double
real_log
(
double
x
)
{
return
::
log
(
x
);
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/recurrent_op.cc
浏览文件 @
9b3e79ac
...
...
@@ -270,7 +270,9 @@ class RecurrentOp : public RecurrentBase {
// Every inputs are linked now, execute!
executor
.
Run
(
*
program
,
&
cur_scope
,
block
->
ID
(),
false
/*create_local_scope*/
);
false
/*create_local_scope*/
,
true
/*create_vars*/
,
std
::
vector
<
std
::
string
>
()
/*skip_ref_cnt_vars*/
,
true
/*force_disable_gc*/
);
// get device context from pool
platform
::
DeviceContextPool
&
pool
=
...
...
@@ -385,7 +387,9 @@ class RecurrentGradOp : public RecurrentBase {
VLOG
(
5
)
<<
"Recurrent memory linking finished "
;
// Run step block with cur_scope
executor
.
Run
(
*
program
,
&
cur_scope
,
block
->
ID
(),
false
/*create_local_scope*/
);
false
/*create_local_scope*/
,
true
/*create_vars*/
,
std
::
vector
<
std
::
string
>
()
/*skip_ref_cnt_vars*/
,
true
/*force_disable_gc*/
);
VLOG
(
5
)
<<
"executor.Run finished "
;
...
...
python/paddle/fluid/executor.py
浏览文件 @
9b3e79ac
...
...
@@ -588,7 +588,7 @@ class Executor(object):
fetch_var_name
=
fetch_var_name
)
self
.
_feed_data
(
program
,
feed
,
feed_var_name
,
scope
)
exe
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
)
exe
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
,
fetch_var_name
)
outs
=
self
.
_fetch_data
(
fetch_list
,
fetch_var_name
,
scope
)
if
return_numpy
:
outs
=
as_numpy
(
outs
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
9b3e79ac
...
...
@@ -1398,6 +1398,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
if
not
soft_label
:
return
cross_entropy2
(
input
,
label
,
ignore_index
)
helper
=
LayerHelper
(
'cross_entropy'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
...
...
@@ -1410,6 +1412,22 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
return
out
def
cross_entropy2
(
input
,
label
,
ignore_index
=
kIgnoreIndex
):
helper
=
LayerHelper
(
'cross_entropy2'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
xshape
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
match_x
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'cross_entropy2'
,
inputs
=
{
'X'
:
[
input
],
'Label'
:
[
label
]},
outputs
=
{
'Y'
:
[
out
],
'MatchX'
:
[
match_x
],
'XShape'
:
[
xshape
]},
attrs
=
{
'ignore_index'
:
ignore_index
})
return
out
def
bpr_loss
(
input
,
label
,
name
=
None
):
"""
Bayesian Personalized Ranking Loss Operator.
...
...
python/paddle/fluid/tests/unittests/test_cross_entropy2_op.py
0 → 100644
浏览文件 @
9b3e79ac
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
op_test
import
OpTest
import
unittest
import
numpy
as
np
import
six
class
CrossEntropy2OpTestBase
(
OpTest
):
def
initParameters
(
self
):
return
[
32
,
64
],
'float32'
,
-
100
def
calc_output
(
self
,
logits
,
label
,
ignore_index
):
ret
=
np
.
zeros
(
shape
=
label
.
shape
,
dtype
=
logits
.
dtype
)
match_x
=
np
.
zeros
(
shape
=
label
.
shape
,
dtype
=
logits
.
dtype
)
for
idx
in
six
.
moves
.
range
(
label
.
shape
[
0
]):
if
label
[
idx
]
==
ignore_index
:
continue
match_x
[
idx
]
=
logits
[
idx
][
label
[
idx
]]
ret
[
idx
]
=
-
np
.
log
(
match_x
[
idx
])
return
ret
,
match_x
def
setUp
(
self
):
self
.
shape
,
self
.
dtype
,
self
.
ignore_index
=
self
.
initParameters
()
self
.
op_type
=
'cross_entropy2'
feature_size
=
int
(
self
.
shape
[
-
1
])
batch_size
=
int
(
np
.
prod
(
self
.
shape
)
/
feature_size
)
logits
=
(
np
.
random
.
random
(
size
=
self
.
shape
)
+
1
).
astype
(
self
.
dtype
)
label
=
np
.
random
.
random_integers
(
low
=
0
,
high
=
feature_size
-
1
,
size
=
self
.
shape
[
0
:
-
1
]
+
[
1
]).
astype
(
'int64'
)
outputs
,
match_x
=
self
.
calc_output
(
np
.
reshape
(
logits
,
[
batch_size
,
feature_size
]),
np
.
reshape
(
label
,
[
batch_size
,
1
]),
self
.
ignore_index
)
self
.
inputs
=
{
'X'
:
logits
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
np
.
reshape
(
outputs
,
label
.
shape
),
'MatchX'
:
np
.
reshape
(
match_x
,
label
.
shape
),
'XShape'
:
np
.
zeros
(
shape
=
logits
.
shape
,
dtype
=
logits
.
dtype
)
}
self
.
attrs
=
{
'ignore_index'
:
self
.
ignore_index
}
def
test_check_output
(
self
):
self
.
check_output
(
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
self
.
check_grad
(
inputs_to_check
=
[
'X'
],
output_names
=
[
'Y'
],
no_grad_set
=
[
'XShape'
,
'MatchX'
,
'Label'
])
class
CrossEntropy2OpTest2
(
CrossEntropy2OpTestBase
):
def
initParameters
(
self
):
return
[
32
,
64
],
'float64'
,
3
class
CrossEntropy2OpTest3
(
CrossEntropy2OpTestBase
):
def
initParameters
(
self
):
return
[
4
,
8
,
16
,
32
],
'float32'
,
-
100
class
CrossEntropy2OpTest4
(
CrossEntropy2OpTestBase
):
def
initParameters
(
self
):
return
[
4
,
8
,
16
,
32
],
'float32'
,
3
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
9b3e79ac
...
...
@@ -515,8 +515,8 @@ class TestLocalLookupTable(TestDistLookupTableBase):
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'cross_entropy
2
'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad
2
'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
...
...
@@ -555,8 +555,8 @@ class TestDistLookupTable(TestDistLookupTableBase):
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'elementwise_add'
,
'cross_entropy
2
'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad
2
'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
...
...
@@ -603,8 +603,8 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'cross_entropy
2
'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad
2
'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
...
...
@@ -643,8 +643,8 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'elementwise_add'
,
'cross_entropy
2
'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad
2
'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
...
...
@@ -831,8 +831,8 @@ class TestRemoteLookupTable(TestDistLookupTableBase):
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'cross_entropy
2
'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad
2
'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录