提交 9aee7aa0 编写于 作者: T Travis CI

Deploy to GitHub Pages: 43f7d7b7

上级 c95d5490
......@@ -371,6 +371,12 @@ ctc_layer
:members: ctc_layer
:noindex:
nce_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
:members: nce_layer
:noindex:
hsigmoid
---------
.. automodule:: paddle.trainer_config_helpers.layers
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
......@@ -7794,7 +7794,8 @@ Hierarchical Probabilistic Neural Network Language Model.&#8221;</p>
<dl class="class">
<dt id="_CPPv2N6paddle8NCELayerE">
<span id="paddle::NCELayer"></span><span class="target" id="paddleclasspaddle_1_1NCELayer"></span><em class="property">class </em><code class="descclassname">paddle::</code><code class="descname">NCELayer</code><a class="headerlink" href="#_CPPv2N6paddle8NCELayerE" title="Permalink to this definition">¶</a></dt>
<dd><p>Noise-contrastive estimation Implements the method in the following paper: A fast and simple algorithm for training neural probabilistic language models </p>
<dd><p>Noise-contrastive estimation. Implements the method in the following paper: A fast and simple algorithm for training neural probabilistic language models.</p>
<p>The config file api is nce_layer. </p>
<p>Inherits from <a class="reference internal" href="#paddleclasspaddle_1_1Layer"><span class="std std-ref">paddle::Layer</span></a></p>
<div class="breathe-sectiondef container">
<p class="breathe-sectiondef-title rubric">Public Functions</p>
......
......@@ -129,7 +129,7 @@ reasons.</p>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer output name.</li>
<li><strong>layer_type</strong> (<em>basestring</em>) &#8211; Current Layer Type. One of LayerType enumeration.</li>
<li><strong>activation</strong> (<em>BaseActivation.</em>) &#8211; Layer Activation.</li>
<li><strong>parents</strong> (<em>list|tuple|collection.Sequence</em>) &#8211; Layer&#8217;s parents.</li>
<li><strong>parents</strong> (<em>list|tuple|collections.Sequence</em>) &#8211; Layer&#8217;s parents.</li>
</ul>
</td>
</tr>
......@@ -1524,13 +1524,17 @@ SumPooling, SquareRootNPooling.</li>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">concat_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Concat all input vector into one huge vector.
Inputs can be list of LayerOutput or list of projection.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">concat</span> <span class="o">=</span> <span class="n">concat_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>input</strong> (<em>list|tuple|collection.Sequence</em>) &#8211; input layers or projections</li>
<li><strong>input</strong> (<em>list|tuple|collections.Sequence</em>) &#8211; input layers or projections</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
......@@ -2468,6 +2472,49 @@ should also be num_classes + 1.</p>
</table>
</dd></dl>
</div>
<div class="section" id="nce-layer">
<h2>nce_layer<a class="headerlink" href="#nce-layer" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">nce_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Noise-contrastive estimation.
Implements the method in the following paper:
A fast and simple algorithm for training neural probabilistic language models.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">nce_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer3</span><span class="p">,</span>
<span class="n">num_classes</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">neg_distribution</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.3</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
<li><strong>input</strong> (<em>LayerOutput|list|tuple|collections.Sequence</em>) &#8211; input layers. It could be a LayerOutput of list/tuple of LayerOutput.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; label layer</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) &#8211; number of classes.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) &#8211; number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) &#8211; The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias parameter attribute. True if no bias.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">layer name.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="hsigmoid">
<h2>hsigmoid<a class="headerlink" href="#hsigmoid" title="Permalink to this headline"></a></h2>
......@@ -2655,6 +2702,7 @@ It is used by recurrent layer group.</p>
<li><a class="reference internal" href="#crf-layer">crf_layer</a></li>
<li><a class="reference internal" href="#crf-decoding-layer">crf_decoding_layer</a></li>
<li><a class="reference internal" href="#ctc-layer">ctc_layer</a></li>
<li><a class="reference internal" href="#nce-layer">nce_layer</a></li>
<li><a class="reference internal" href="#hsigmoid">hsigmoid</a></li>
</ul>
</li>
......
......@@ -169,6 +169,7 @@ var _hmt = _hmt || [];
<li class="toctree-l2"><a class="reference internal" href="layers.html#crf-layer">crf_layer</a></li>
<li class="toctree-l2"><a class="reference internal" href="layers.html#crf-decoding-layer">crf_decoding_layer</a></li>
<li class="toctree-l2"><a class="reference internal" href="layers.html#ctc-layer">ctc_layer</a></li>
<li class="toctree-l2"><a class="reference internal" href="layers.html#nce-layer">nce_layer</a></li>
<li class="toctree-l2"><a class="reference internal" href="layers.html#hsigmoid">hsigmoid</a></li>
</ul>
</li>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册