未验证 提交 9a600df3 编写于 作者: G Guo Sheng 提交者: GitHub

Add rnn_op (#28197)

* Add rnn_op.
test=develop

* Fix rnn_op grad maker's drop_empty_grad.
test=develop
上级 0f4b6247
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {
class RNNOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "RNN");
OP_INOUT_CHECK(ctx->HasInputs("PreState"), "Input", "PreState", "RNN");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "RNN");
OP_INOUT_CHECK(ctx->HasOutputs("State"), "Output", "State", "RNN");
auto in_dims = ctx->GetInputDim("Input");
auto pre_state_dims = ctx->GetInputsDim("PreState");
PADDLE_ENFORCE_EQ(in_dims.size(), 3,
platform::errors::InvalidArgument(
"The rank of Input in RNN must be 3. But "
"received Input's rank is %d.",
in_dims.size()));
if (ctx->HasInput("SequenceLength")) {
auto seq_dims = ctx->GetInputDim("SequenceLength");
PADDLE_ENFORCE_EQ(
in_dims[1], seq_dims[0],
platform::errors::InvalidArgument(
"The size of SequenceLength has to equal the batch_size. But "
"received batch_size is %d and the size of SequenceLength is %d.",
in_dims[1], seq_dims[0]));
}
PADDLE_ENFORCE_EQ(pre_state_dims[0].size(), 3,
platform::errors::InvalidArgument(
"The rank of PreState in RNN must be 3. But "
"the received rank is %d.",
pre_state_dims[0].size()));
size_t i = 0;
for (; i < pre_state_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(
in_dims[1], pre_state_dims[i][1],
platform::errors::InvalidArgument(
"The second dimension size (representing for batch size) of "
"Input and PreState should be equal. But received %d and %d.",
in_dims[1], pre_state_dims[i][1]));
PADDLE_ENFORCE_EQ(
pre_state_dims[0], pre_state_dims[i],
platform::errors::InvalidArgument(
"The dims of all tensors in PreState should be same. But "
"received PreState[0] is %s and PreState[%d] is %s.",
pre_state_dims[0], i, pre_state_dims[i]));
}
auto mode = ctx->Attrs().Get<std::string>("mode");
size_t num_state = mode == "LSTM" ? 2 : 1;
PADDLE_ENFORCE_EQ(
i, num_state,
platform::errors::InvalidArgument(
"The number of tensors in PreState of %s should be %d, "
"but received %d.",
mode, 2, i));
auto out_dims = in_dims;
auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
ctx->SetOutputDim("Out", out_dims);
ctx->SetOutputsDim("State", pre_state_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
ctx.device_context());
}
};
class RNNOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"Input",
"(Tensor) RNN input tensor, which support variable-time length input "
"sequence."
"The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
"seq_len is the total time step in this mini-batch (CAN be change in "
"different batch)"
"batch_size is the instance number of this batch"
"input_size is the hidden size of the input."
"input_size and the hidden_size in the next may not be same");
AddInput("PreState",
"(Tensor) the initial hidden state of the LSTM"
"input. This is a tensor with shape (num_layers x batch_size x "
"hidden_size)"
"and When is_bidirec is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size)")
.AsDuplicable();
AddInput("WeightList",
"(vector<Tensor>), stores weight and bias data when the weight "
"use the list format. ")
.AsDuplicable();
AddInput("SequenceLength",
"(Tensor) When the input data is padding, "
"set this parameter. This parameter represents "
"the variable sequence lengths in a batch. "
"The size of the vector has to equal the batch_size.")
.AsDispensable();
AddOutput("DropoutState",
"Store the global drop state when training, needed by cudnn rnn.")
.AsDispensable();
// maybe need add intermediate outputs for cpu kernel
AddOutput("Reserve",
"(Tensor, a temporary output Tensor to store the reserve_data "
"of cudnn kernel.")
.AsIntermediate();
AddOutput("Out",
"(Tensor) the hidden state of LSTM operator. "
"The shape is ( seq_len x batch_size x hidden_size) if "
"is_bidirec is False"
"and When is_bidirec is True, the shape will be ( seq_len x "
"batch_size x hidden_size * 2) ");
AddOutput("State",
"(Tensor) the hidden state of the last step. "
"The shape is ( num_layers x batch_size x hidden_size) if "
"is_bidirec is False"
"and When is_bidirec is True, the shape will be (num_layers*2 x "
"batch_size x hidden_size)")
.AsDuplicable();
AddAttr<float>(
"dropout_prob",
"dropout prob of the dropout op"
"the dropout ONLY work between rnn layers, not between time steps"
"There is no dropout work on the Out tensor")
.SetDefault(0.0);
AddAttr<bool>("is_bidirec", "whether it is bidirectional rnn")
.SetDefault(false);
AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
AddAttr<int>("hidden_size", "hidden size of rnn").SetDefault(100);
AddAttr<int>("num_layers", "the total layer number").SetDefault(1);
AddAttr<std::string>(
"mode",
"(string) rnn types, including: LSTM, GRU, RNN_RELU, RNN_TANH.");
AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
AddComment(R"DOC(
)DOC");
}
};
class RNNGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "RNN");
OP_INOUT_CHECK(ctx->HasInputs("PreState"), "Input", "PreState", "RNN");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "RNN");
// OP_INOUT_CHECK(ctx->HasInputs("State"), "Input", "State", "RNN");
auto SetOutGradDim = [&ctx](const std::string& name) {
auto g_name = framework::GradVarName(name);
if (ctx->HasOutput(g_name)) {
ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
}
};
SetOutGradDim("Input");
if (ctx->HasOutputs(framework::GradVarName("WeightList"))) {
ctx->SetOutputsDim(framework::GradVarName("WeightList"),
ctx->GetInputsDim("WeightList"));
}
if (ctx->HasOutputs(framework::GradVarName("PreState"))) {
ctx->SetOutputsDim(framework::GradVarName("PreState"),
ctx->GetInputsDim("PreState"));
}
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
template <typename T>
class RNNGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("rnn_grad");
op->SetInput("Input", this->Input("Input"));
op->SetInput("PreState", this->Input("PreState"));
op->SetInput("WeightList", this->Input("WeightList"));
if (this->HasInput("SequenceLength")) {
op->SetInput("SequenceLength", this->Input("SequenceLength"));
}
op->SetInput("DropoutState", this->Output("DropoutState"));
op->SetInput("Reserve", this->Output("Reserve"));
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetInput(framework::GradVarName("State"), this->OutputGrad("State"));
op->SetOutput(framework::GradVarName("WeightList"),
this->InputGrad("WeightList", false));
op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
op->SetOutput(framework::GradVarName("PreState"),
this->InputGrad("PreState", false));
op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"CPU is not support for this kernel now. Will be add in the future"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(rnn, ops::RNNOp, ops::RNNOpMaker,
ops::RNNGradOpMaker<paddle::framework::OpDesc>,
ops::RNNGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(rnn_grad, ops::RNNGradOp);
REGISTER_OP_CPU_KERNEL(rnn, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(rnn_grad, ops::NotImpleKernel<float>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
namespace paddle {
namespace platform {
class CUDADeviceContext;
struct CUDAPlace;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
class RNNDescriptors {
public:
RNNDescriptors(int seq_length, int batch_size, int input_size,
int hidden_size, int num_layers, float dropout_prob, int seed,
int weight_numel, cudnnRNNMode_t mode, bool is_bidirec,
bool is_test)
: seq_length_(seq_length),
batch_size_(batch_size),
input_size_(input_size),
hidden_size_(hidden_size),
num_layers_(num_layers),
dropout_prob_(dropout_prob),
seed_(seed),
weight_numel_(weight_numel),
mode_(mode),
is_bidirec_(is_bidirec),
is_test_(is_test) {}
template <typename T>
void Create(const cudnnHandle_t &handle, const platform::Place &place,
const std::vector<int> &sequence_length, size_t *workspace_size,
size_t *reserve_size, framework::Tensor *dropout_state) {
int numDirections = is_bidirec_ ? 2 : 1;
cudnnDataType_t cudnn_type = platform::CudnnDataType<T>::type;
// ------------------- cudnn x, y descriptors ---------------------
std::vector<int> dims_x = {batch_size_, input_size_, 1};
std::vector<int> strides_x = {input_size_, 1, 1};
std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
for (int i = 0; i < seq_length_; ++i) {
x_descs_.emplace_back(x_desc_.descriptor<T>(dims_x, strides_x));
y_descs_.emplace_back(y_desc_.descriptor<T>(dims_y, strides_y));
}
#if CUDNN_VERSION >= 7201
if (!sequence_length.empty()) {
x_seq_desc_.descriptor<T>(seq_length_, batch_size_, input_size_, true,
sequence_length);
y_seq_desc_.descriptor<T>(seq_length_, batch_size_,
hidden_size_ * numDirections, true,
sequence_length);
}
#endif
// ------------------- cudnn hx, hy, cx, cy descriptors----------
std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
hidden_size_};
std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
init_h_desc_.descriptor<T>(dims_hx, strides_hx);
init_c_desc_.descriptor<T>(dims_hx, strides_hx);
last_h_desc_.descriptor<T>(dims_hx, strides_hx);
last_c_desc_.descriptor<T>(dims_hx, strides_hx);
// ------------------- cudnn dropout descriptors ---------------------
size_t state_size;
if (!is_test_ && !dropout_state->IsInitialized()) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
dropout_state->mutable_data<uint8_t>({static_cast<int64_t>(state_size)},
place);
}
dropout_desc_.descriptor(handle, place, dropout_state->IsInitialized(),
dropout_prob_, is_test_ ? nullptr : dropout_state,
seed_, state_size);
// ------------------- cudnn rnn descriptors ---------------------
#if CUDNN_VERSION >= 6000
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
handle, rnn_desc_.desc(), hidden_size_, num_layers_,
dropout_desc_.desc(), CUDNN_LINEAR_INPUT,
is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, mode_,
CUDNN_RNN_ALGO_STANDARD, cudnn_type));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
rnn_desc_.desc(), hidden_size_, num_layers_, dropout_desc_.desc(),
CUDNN_LINEAR_INPUT,
is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, mode_,
cudnn_type));
#endif
#if CUDNN_VERSION >= 7201
if (!sequence_length.empty()) {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNPaddingMode(
rnn_desc_.desc(), CUDNN_RNN_PADDED_IO_ENABLED));
}
#endif
// ------------------- cudnn weights_size ---------------------
size_t weights_size_;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
PADDLE_ENFORCE_EQ(
weights_size_, sizeof(T) * weight_numel_,
platform::errors::InvalidArgument(
"The cudnn rnn and setting weight size should be same."));
// ------------------- cudnn weight descriptors ---------------------
platform::DataLayout layout = platform::DataLayout::kNCHW;
int dim_tmp = weights_size_ / sizeof(T);
std::vector<int> dim_w = {dim_tmp, 1, 1};
weight_desc_.descriptor<T>(layout, dim_w);
// ------------------- cudnn workspace, reserve size ---------------------
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
workspace_size));
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnGetRNNTrainingReserveSize(
handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
reserve_size));
}
cudnnTensorDescriptor_t *x_descs() { return x_descs_.data(); }
cudnnTensorDescriptor_t *y_descs() { return y_descs_.data(); }
#if CUDNN_VERSION >= 7201
cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_.desc(); }
cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_.desc(); }
#endif
cudnnTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
cudnnTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
cudnnTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
cudnnTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
cudnnFilterDescriptor_t weight_desc() { return weight_desc_.desc(); }
private:
int seq_length_;
int batch_size_;
int input_size_;
int hidden_size_;
int num_layers_;
float dropout_prob_;
int seed_;
int weight_numel_;
cudnnRNNMode_t mode_;
bool is_bidirec_;
bool is_test_;
std::vector<cudnnTensorDescriptor_t> x_descs_;
std::vector<cudnnTensorDescriptor_t> y_descs_;
platform::ScopedTensorDescriptor x_desc_;
platform::ScopedTensorDescriptor y_desc_;
#if CUDNN_VERSION >= 7201
platform::ScopedRNNTensorDescriptor x_seq_desc_;
platform::ScopedRNNTensorDescriptor y_seq_desc_;
#endif
platform::ScopedTensorDescriptor init_h_desc_;
platform::ScopedTensorDescriptor init_c_desc_;
platform::ScopedTensorDescriptor last_h_desc_;
platform::ScopedTensorDescriptor last_c_desc_;
platform::ScopedDropoutDescriptor dropout_desc_;
platform::ScopedFilterDescriptor weight_desc_;
platform::ScopedRNNDescriptor rnn_desc_;
};
template <typename T, typename Type>
bool is_continuous(const Type &weight_list) {
bool continuous = true;
for (size_t i = 0; i < weight_list.size() - 1; ++i) {
auto *in_data = weight_list[i]->template data<T>();
auto *in_after_data = weight_list[i + 1]->template data<T>();
auto in_size = weight_list[i]->numel();
bool temp = in_data + in_size == in_after_data;
continuous = continuous && temp;
}
return continuous;
}
template <typename T>
void weight_to_tensor(const platform::Place &place, cudaStream_t stream,
const std::vector<const Tensor *> &weight_list,
Tensor *weight) {
auto weight_data = weight->data<T>();
int weight_offset = 0;
for (size_t i = 0; i < weight_list.size(); ++i) {
const T *in_data = weight_list[i]->data<T>();
auto in_size = weight_list[i]->numel();
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
weight_data + weight_offset,
BOOST_GET_CONST(platform::CUDAPlace, weight_list[i]->place()),
in_data, in_size * sizeof(T), stream);
weight_offset += in_size;
}
}
template <typename T>
void weight_to_tensor_list(const platform::Place &place, cudaStream_t stream,
std::vector<Tensor *> *weight_grad,
const std::vector<const Tensor *> &weight_input,
const Tensor *weight) {
int weight_offset = 0;
auto *weight_data = weight->data<T>();
for (size_t i = 0; i < weight_input.size(); ++i) {
auto in_size = weight_input[i]->numel();
T *weight_grad_data = (*weight_grad)[i]->mutable_data<T>(place);
const T *src = weight_data + weight_offset;
memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, (*weight_grad)[i]->place()),
weight_grad_data, BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
src, in_size * sizeof(T), stream);
weight_offset += in_size;
}
}
template <typename T>
class RNNCudnnKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const Tensor *x = ctx.Input<Tensor>("Input");
auto pre_state = ctx.MultiInput<Tensor>("PreState");
Tensor *out = ctx.Output<Tensor>("Out");
auto state = ctx.MultiOutput<Tensor>("State");
Tensor *reserve = ctx.Output<Tensor>("Reserve");
Tensor *state_out = ctx.Output<Tensor>("DropoutState");
float dropout_prob = ctx.Attr<float>("dropout_prob");
bool is_bidirec = ctx.Attr<bool>("is_bidirec");
int hidden_size = ctx.Attr<int>("hidden_size");
int num_layers = ctx.Attr<int>("num_layers");
auto mode = ctx.Attr<std::string>("mode");
cudnnRNNMode_t rnn_mode = CUDNN_LSTM;
if (mode == "LSTM")
rnn_mode = CUDNN_LSTM;
else if (mode == "GRU")
rnn_mode = CUDNN_GRU;
else if (mode == "RNN_RELU")
rnn_mode = CUDNN_RNN_RELU;
else if (mode == "RNN_TANH")
rnn_mode = CUDNN_RNN_TANH;
else
PADDLE_THROW(platform::errors::InvalidArgument(
"rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
"%s.",
mode));
bool is_test = ctx.Attr<bool>("is_test");
int seed = ctx.Attr<int>("seed");
if (!is_test) {
int device_id =
BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
if (gen_cuda->GetIsInitPy() && seed == 0) {
// If perform `manual_seed` in python and inner seed is not specified
// (equals 0), use global generator generated seed.
seed = static_cast<int>(gen_cuda->Random64());
} else if (seed == 0) {
// use random generated seed
std::random_device rd;
seed = rd();
} // else use `ctx.Attr<int>("seed")` specified seed
}
const T *x_data = x->data<T>();
const T *init_h_data = pre_state[0]->data<T>();
const T *init_c_data = nullptr;
T *out_data = out->mutable_data<T>(ctx.GetPlace());
T *last_h_data = state[0]->mutable_data<T>(ctx.GetPlace());
T *last_c_data = nullptr;
if (rnn_mode == CUDNN_LSTM) {
init_c_data = pre_state[1]->data<T>();
last_c_data = state[1]->mutable_data<T>(ctx.GetPlace());
}
bool has_seq_length = ctx.HasInput("SequenceLength");
std::vector<int> SequenceLength;
if (has_seq_length) {
auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
}
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
int seq_length = x->dims()[0];
int batch_size = x->dims()[1];
int input_size = x->dims()[2];
size_t workspace_size;
size_t reserve_size;
Tensor weight_whole;
T *w_data = nullptr;
auto place = ctx.GetPlace();
auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
ctx.device_context())
.stream();
auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
auto weight_numel = std::accumulate(
weight_list.begin(), weight_list.end(), 0,
[](int64_t num, const Tensor *t) { return num + t->numel(); });
bool continuous =
is_continuous<T, std::vector<const Tensor *>>(weight_list);
if (!continuous) {
LOG_FIRST_N(WARNING, 2)
<< "If the memory space of the Input WeightList is not continuous, "
"less efficient calculation will be called. Please call "
"flatten_parameters() to make the input memory continuous.";
weight_whole.mutable_data<T>({weight_numel}, place);
weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
w_data = weight_whole.data<T>();
if (is_test) { // maybe also reset small weights' ptr for training
int offset = 0;
for (size_t i = 0; i < weight_list.size(); ++i) {
size_t len = weight_list[i]->numel();
auto dim = weight_list[i]->dims();
const_cast<Tensor *>(weight_list[i])
->ShareDataWith(
weight_whole.Slice(static_cast<int64_t>(offset),
static_cast<int64_t>(offset + len)))
.Resize(dim);
offset += len;
}
}
} else {
w_data = const_cast<T *>(weight_list[0]->data<T>());
}
RNNDescriptors rnn(seq_length, batch_size, input_size, hidden_size,
num_layers, dropout_prob, seed, weight_numel, rnn_mode,
is_bidirec, is_test);
rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
&reserve_size, state_out);
framework::Tensor workspace_data_;
workspace_data_.mutable_data<uint8_t>(
{static_cast<int64_t>(workspace_size)}, ctx.GetPlace());
auto *reserve_data = reserve->mutable_data<uint8_t>(
{static_cast<int64_t>(reserve_size)}, ctx.GetPlace());
if (is_test) {
RNNInferece(has_seq_length, handle, seq_length, &rnn, x_data, init_h_data,
init_c_data, w_data, out_data, last_h_data, last_c_data,
&workspace_data_, workspace_size);
} else {
if (!has_seq_length) {
// for train
// This interface is used when the input/output is unpadded.
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardTraining(
handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), x_data,
rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
rnn.weight_desc(), w_data, rnn.y_descs(), out_data,
rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
workspace_data_.data<uint8_t>(), workspace_size, reserve_data,
reserve_size));
} else {
#if CUDNN_VERSION >= 7201
// for train
// This interface is used when the input/output is padded.
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnRNNForwardTrainingEx(
handle, rnn.rnn_desc(), rnn.x_seq_desc(), x_data,
rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
rnn.weight_desc(), w_data, rnn.y_seq_desc(), out_data,
rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, workspace_data_.data<uint8_t>(), workspace_size,
reserve_data, reserve_size));
#else
PADDLE_THROW(platform::errors::Unavailable(
"The padded input is supported by "
"cudnnRNNForwardTrainingEx, but it only works when "
"the version of cudnn is larger than 7.2.1"));
#endif
}
}
}
void RNNInferece(const bool &has_seq_length, const cudnnHandle_t &handle,
const int &seq_length, RNNDescriptors *rnn, const T *x_data,
const T *init_h_data, const T *init_c_data, const T *w_data,
T *out_data, T *last_h_data, T *last_c_data,
framework::Tensor *workspace_data,
const size_t &workspace_size) const {
if (!has_seq_length) {
// for inference
// This interface is used when the input/output is unpadded.
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardInference(
handle, rnn->rnn_desc(), seq_length, rnn->x_descs(), x_data,
rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
rnn->weight_desc(), w_data, rnn->y_descs(), out_data,
rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
workspace_data->data<uint8_t>(), workspace_size));
} else {
#if CUDNN_VERSION >= 7201
// for inference
// This interface is used when the input/output is padded.
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardInferenceEx(
handle, rnn->rnn_desc(), rnn->x_seq_desc(), x_data,
rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
rnn->weight_desc(), w_data, rnn->y_seq_desc(), out_data,
rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, workspace_data->data<uint8_t>(), workspace_size));
#else
// CUDNN VERSION has to >=7.2.1
PADDLE_THROW(platform::errors::Unavailable(
"The padded input is supported by "
"cudnnRNNForwardInferenceEx, but it only works when "
"the version of cudnn is larger than 7.2.1"));
#endif
}
}
};
template <typename T>
class RNNGradCudnnKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *input = ctx.Input<Tensor>("Input");
auto pre_state = ctx.MultiInput<Tensor>("PreState");
auto weight_list = ctx.MultiInput<Tensor>("WeightList");
auto *state_out = ctx.Input<Tensor>("DropoutState");
auto *reserve = ctx.Input<Tensor>("Reserve");
auto *out = ctx.Input<Tensor>("Out");
// auto state = ctx.MultiInput<Tensor>("State");
auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto state_grad = ctx.MultiInput<Tensor>(framework::GradVarName("State"));
auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto pre_state_grad =
ctx.MultiOutput<Tensor>(framework::GradVarName("PreState"));
auto weight_grad_list =
ctx.MultiOutput<Tensor>(framework::GradVarName("WeightList"));
float dropout_prob = ctx.Attr<float>("dropout_prob");
bool is_bidirec = ctx.Attr<bool>("is_bidirec");
int hidden_size = ctx.Attr<int>("hidden_size");
int num_layers = ctx.Attr<int>("num_layers");
auto mode = ctx.Attr<std::string>("mode");
cudnnRNNMode_t rnn_mode = CUDNN_LSTM;
if (mode == "LSTM")
rnn_mode = CUDNN_LSTM;
else if (mode == "GRU")
rnn_mode = CUDNN_GRU;
else if (mode == "RNN_RELU")
rnn_mode = CUDNN_RNN_RELU;
else if (mode == "RNN_TANH")
rnn_mode = CUDNN_RNN_TANH;
else
PADDLE_THROW(platform::errors::InvalidArgument(
"rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
"%s.",
mode));
bool is_test = ctx.Attr<bool>("is_test");
int seed = ctx.Attr<int>("seed");
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
auto place = ctx.GetPlace();
auto weight_numel = std::accumulate(
weight_list.begin(), weight_list.end(), 0,
[](int64_t num, const Tensor *t) { return num + t->numel(); });
bool continuous =
is_continuous<T, std::vector<const Tensor *>>(weight_list);
auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
ctx.device_context())
.stream();
Tensor weight_whole;
T *weight_data = nullptr;
if (!continuous) {
weight_whole.mutable_data<T>({weight_numel}, place);
weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
weight_data = weight_whole.data<T>();
} else {
weight_data = const_cast<T *>(weight_list[0]->data<T>());
}
Tensor weight_grad;
math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
weight_grad.mutable_data<T>({weight_numel}, ctx.GetPlace());
zero(dev_ctx, &weight_grad, static_cast<T>(0.0));
T *weight_grad_data = weight_grad.data<T>();
int offset = 0;
for (size_t i = 0; i < weight_grad_list.size(); ++i) {
size_t len = weight_grad_list[i]->numel();
auto dim = weight_grad_list[i]->dims();
weight_grad_list[i]
->ShareDataWith(weight_grad.Slice(static_cast<int64_t>(offset),
static_cast<int64_t>(offset + len)))
.Resize(dim);
offset += len;
}
auto *init_h_data = pre_state[0]->data<T>();
// auto *last_h_data = state[0]->data<T>();
auto *last_h_grad_data = state_grad[0]->data<T>();
const T *init_c_data = nullptr;
// const T *last_c_data = nullptr;
const T *last_c_grad_data = nullptr;
T *init_h_grad_data =
pre_state_grad.size() != 0 && pre_state_grad[0]
? pre_state_grad[0]->mutable_data<T>(ctx.GetPlace())
: nullptr;
T *init_c_grad_data = nullptr;
if (rnn_mode == CUDNN_LSTM) {
init_c_data = pre_state[1]->data<T>();
// last_c_data = state[1]->data<T>();
last_c_grad_data = state_grad[1]->data<T>();
init_c_grad_data =
pre_state_grad.size() != 0 && pre_state_grad[1]
? pre_state_grad[1]->mutable_data<T>(ctx.GetPlace())
: nullptr;
}
auto *out_data = out->data<T>();
auto *out_grad_data = out_grad->data<T>();
// maybe need check exist
auto *in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
bool has_seq_length = ctx.HasInput("SequenceLength");
std::vector<int> SequenceLength;
if (has_seq_length) {
auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
}
auto input_dims = input->dims();
int seq_length = input_dims[0];
int batch_size = input_dims[1];
int input_size = input_dims[2];
size_t workspace_size;
size_t reserve_size;
RNNDescriptors rnn(seq_length, batch_size, input_size, hidden_size,
num_layers, dropout_prob, seed, weight_numel, rnn_mode,
is_bidirec, is_test);
rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
&reserve_size, const_cast<Tensor *>(state_out));
framework::Tensor workspace_data_;
workspace_data_.mutable_data<uint8_t>(
{static_cast<int64_t>(workspace_size)}, ctx.GetPlace());
const uint8_t *reserve_data = reserve->data<uint8_t>();
if (!has_seq_length) {
// This interface is used when the input/output is unpadded.
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardData(
handle, rnn.rnn_desc(), seq_length, rnn.y_descs(), out_data,
rnn.y_descs(), out_grad_data, rnn.last_h_desc(), last_h_grad_data,
rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
rnn.x_descs(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
rnn.init_c_desc(), init_c_grad_data, workspace_data_.data<uint8_t>(),
workspace_size, const_cast<uint8_t *>(reserve_data), reserve_size));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardWeights(
handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), input->data<T>(),
rnn.init_h_desc(), init_h_data, rnn.y_descs(), out->data<T>(),
workspace_data_.data<uint8_t>(), workspace_size, rnn.weight_desc(),
weight_grad_data, const_cast<uint8_t *>(reserve_data), reserve_size));
} else {
#if CUDNN_VERSION >= 7201
// for train
// This interface is used when the input/output is padded.
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardDataEx(
handle, rnn.rnn_desc(), rnn.y_seq_desc(), out_data, rnn.y_seq_desc(),
out_grad_data, nullptr, nullptr, rnn.last_h_desc(), last_h_grad_data,
rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
rnn.x_seq_desc(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
rnn.init_c_desc(), init_c_grad_data, nullptr, nullptr,
workspace_data_.data<uint8_t>(), workspace_size,
const_cast<uint8_t *>(reserve_data), reserve_size));
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardWeightsEx(
handle, rnn.rnn_desc(), rnn.x_seq_desc(), input->data<T>(),
rnn.init_h_desc(), init_h_data, rnn.y_seq_desc(), out->data<T>(),
workspace_data_.data<uint8_t>(), workspace_size, rnn.weight_desc(),
weight_grad_data, const_cast<uint8_t *>(reserve_data), reserve_size));
#else
PADDLE_THROW(platform::errors::Unavailable(
"The padded input of rnn is supported by cudnnRNNBackwardDataEx, "
"cudnnRNNBackwardWeightsEx, but it only works when the version "
"of cudnn is larger than 7.2.1"));
#endif
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(rnn, ops::RNNCudnnKernel<float>,
ops::RNNCudnnKernel<double>);
REGISTER_OP_CUDA_KERNEL(rnn_grad, ops::RNNGradCudnnKernel<float>,
ops::RNNGradCudnnKernel<double>);
...@@ -361,6 +361,12 @@ class ScopedDropoutDescriptor { ...@@ -361,6 +361,12 @@ class ScopedDropoutDescriptor {
float dropout_prob_, float dropout_prob_,
framework::Tensor* dropout_state_, framework::Tensor* dropout_state_,
int seed, size_t state_size) { int seed, size_t state_size) {
if (dropout_state_ == nullptr) { // for no dropout or test
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetDropoutDescriptor(
desc_, handle, 0 /* dropout */, nullptr, 0 /* state_size */,
0 /* seed */));
return desc_;
}
auto* dropout_state_data = dropout_state_->data<uint8_t>(); auto* dropout_state_data = dropout_state_->data<uint8_t>();
if (!initialized) { if (!initialized) {
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetDropoutDescriptor( PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetDropoutDescriptor(
......
...@@ -93,10 +93,14 @@ class TestSimpleRNN(unittest.TestCase): ...@@ -93,10 +93,14 @@ class TestSimpleRNN(unittest.TestCase):
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
def test_predict(self):
predict_test_util(self.place, "SimpleRNN")
def runTest(self): def runTest(self):
self.test_with_initial_state() self.test_with_initial_state()
self.test_with_zero_state() self.test_with_zero_state()
self.test_with_input_lengths() self.test_with_input_lengths()
self.test_predict()
class TestGRU(unittest.TestCase): class TestGRU(unittest.TestCase):
...@@ -175,10 +179,14 @@ class TestGRU(unittest.TestCase): ...@@ -175,10 +179,14 @@ class TestGRU(unittest.TestCase):
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
def test_predict(self):
predict_test_util(self.place, "GRU")
def runTest(self): def runTest(self):
self.test_with_initial_state() self.test_with_initial_state()
self.test_with_zero_state() self.test_with_zero_state()
self.test_with_input_lengths() self.test_with_input_lengths()
self.test_predict()
class TestLSTM(unittest.TestCase): class TestLSTM(unittest.TestCase):
...@@ -258,61 +266,7 @@ class TestLSTM(unittest.TestCase): ...@@ -258,61 +266,7 @@ class TestLSTM(unittest.TestCase):
np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)
def test_predict(self): def test_predict(self):
place = paddle.set_device(self.place) predict_test_util(self.place, "LSTM")
paddle.seed(123)
np.random.seed(123)
class Net(paddle.nn.Layer):
def __init__(self):
super(Net, self).__init__()
self.rnn1 = paddle.nn.LSTM(
16, 32, 2, direction="bidirectional", dropout=0.1)
def forward(self, input):
return self.rnn1(input)
x = paddle.randn((4, 10, 16))
x.stop_gradient = False
seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
mask = paddle.unsqueeze(mask, [2])
rnn = Net()
y, (h, c) = rnn(x)
y = y * mask
loss = paddle.mean(y)
loss.backward()
optimizer = paddle.optimizer.Adam(
learning_rate=0.1, parameters=rnn.parameters())
optimizer.step()
rnn.eval()
y, (h, c) = rnn(x)
# `jit.to_static` would include a train_program, eval mode might cause
# some errors currently, such as dropout grad op gets `is_test == True`.
rnn.train()
rnn = paddle.jit.to_static(
rnn,
[paddle.static.InputSpec(
shape=[None, None, 16], dtype=x.dtype)])
paddle.jit.save(rnn, "./inference/lstm_infer")
paddle.enable_static()
new_scope = paddle.static.Scope()
with paddle.static.scope_guard(new_scope):
exe = paddle.static.Executor(place)
[inference_program, feed_target_names,
fetch_targets] = paddle.static.load_inference_model(
dirname="./inference",
executor=exe,
model_filename="lstm_infer.pdmodel",
params_filename="lstm_infer.pdiparams")
results = exe.run(inference_program,
feed={feed_target_names[0]: x.numpy()},
fetch_list=fetch_targets)
np.testing.assert_equal(
y.numpy(), results[0]) # eval results equal predict results
paddle.disable_static()
def runTest(self): def runTest(self):
self.test_with_initial_state() self.test_with_initial_state()
...@@ -321,6 +275,66 @@ class TestLSTM(unittest.TestCase): ...@@ -321,6 +275,66 @@ class TestLSTM(unittest.TestCase):
self.test_predict() self.test_predict()
def predict_test_util(place, mode):
place = paddle.set_device(place)
paddle.seed(123)
np.random.seed(123)
class Net(paddle.nn.Layer):
def __init__(self):
super(Net, self).__init__()
self.rnn = getattr(paddle.nn, mode)(16,
32,
2,
direction="bidirectional",
dropout=0.1)
def forward(self, input):
return self.rnn(input)
x = paddle.randn((4, 10, 16))
x.stop_gradient = False
seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
mask = paddle.unsqueeze(mask, [2])
rnn = Net()
y, _ = rnn(x)
y = y * mask
loss = paddle.mean(y)
loss.backward()
optimizer = paddle.optimizer.Adam(
learning_rate=0.1, parameters=rnn.parameters())
optimizer.step()
rnn.eval()
y, _ = rnn(x)
# `jit.to_static` would include a train_program, eval mode might cause
# some errors currently, such as dropout grad op gets `is_test == True`.
rnn.train()
rnn = paddle.jit.to_static(
rnn, [paddle.static.InputSpec(
shape=[None, None, 16], dtype=x.dtype)])
paddle.jit.save(rnn, "./inference/%s_infer" % mode)
paddle.enable_static()
new_scope = paddle.static.Scope()
with paddle.static.scope_guard(new_scope):
exe = paddle.static.Executor(place)
[inference_program, feed_target_names,
fetch_targets] = paddle.static.load_inference_model(
dirname="./inference",
executor=exe,
model_filename="%s_infer.pdmodel" % mode,
params_filename="%s_infer.pdiparams" % mode)
results = exe.run(inference_program,
feed={feed_target_names[0]: x.numpy()},
fetch_list=fetch_targets)
np.testing.assert_equal(
y.numpy(), results[0]) # eval results equal predict results
paddle.disable_static()
def load_tests(loader, tests, pattern): def load_tests(loader, tests, pattern):
suite = unittest.TestSuite() suite = unittest.TestSuite()
devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \ devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
......
...@@ -990,7 +990,6 @@ class RNNBase(LayerList): ...@@ -990,7 +990,6 @@ class RNNBase(LayerList):
self.could_use_cudnn &= direction != "backward" self.could_use_cudnn &= direction != "backward"
self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * ( self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
2 if direction == "bidirectional" else 1) 2 if direction == "bidirectional" else 1)
self.could_use_cudnn &= mode == "LSTM" # currently only support LSTM
# Expose params as RNN's attribute, which can make it compatible when # Expose params as RNN's attribute, which can make it compatible when
# replacing small ops composed rnn with cpp rnn kernel. # replacing small ops composed rnn with cpp rnn kernel.
...@@ -1062,22 +1061,18 @@ class RNNBase(LayerList): ...@@ -1062,22 +1061,18 @@ class RNNBase(LayerList):
def _cudnn_impl(self, inputs, initial_states, sequence_length): def _cudnn_impl(self, inputs, initial_states, sequence_length):
if not self.time_major: if not self.time_major:
inputs = paddle.tensor.transpose(inputs, [1, 0, 2]) inputs = paddle.tensor.transpose(inputs, [1, 0, 2])
# unify LSTM/GRU/SimpleRNN later, currently only support LSTM
# TODO(guosheng): use `core.ops.cudnn_lstm` in dygraph mode if support
# specify output, since `dropout_state` should be a persistable tensor
# rather than a temporary on.
out = self._helper.create_variable_for_type_inference(inputs.dtype) out = self._helper.create_variable_for_type_inference(inputs.dtype)
last_h = self._helper.create_variable_for_type_inference(inputs.dtype) state = [
last_c = self._helper.create_variable_for_type_inference(inputs.dtype) self._helper.create_variable_for_type_inference(inputs.dtype)
for i in range(self.state_components)
]
reserve = self._helper.create_variable_for_type_inference( reserve = self._helper.create_variable_for_type_inference(
dtype=fluid.core.VarDesc.VarType.UINT8, stop_gradient=True) dtype=fluid.core.VarDesc.VarType.UINT8, stop_gradient=True)
inputs = { inputs = {
'Input': inputs, 'Input': inputs,
# 'W': self._flat_weight, # would be unused_var
'WeightList': self._all_weights, 'WeightList': self._all_weights,
'InitH': initial_states[0], 'PreState': initial_states,
'InitC': initial_states[1],
'SequenceLength': sequence_length 'SequenceLength': sequence_length
} }
attrs = { attrs = {
...@@ -1086,23 +1081,22 @@ class RNNBase(LayerList): ...@@ -1086,23 +1081,22 @@ class RNNBase(LayerList):
'input_size': self.input_size, 'input_size': self.input_size,
'hidden_size': self.hidden_size, 'hidden_size': self.hidden_size,
'num_layers': self.num_layers, 'num_layers': self.num_layers,
'mode': self.mode,
'is_test': not self.training 'is_test': not self.training
} }
outputs = { outputs = {
'Out': out, 'Out': out,
'LastH': last_h, 'State': state,
'LastC': last_c,
'Reserve': reserve, 'Reserve': reserve,
'StateOut': self._dropout_state, 'DropoutState': self._dropout_state,
} }
self._helper.append_op( self._helper.append_op(
type="cudnn_lstm", inputs=inputs, outputs=outputs, attrs=attrs) type="rnn", inputs=inputs, outputs=outputs, attrs=attrs)
out = paddle.tensor.transpose(out, out = paddle.tensor.transpose(out,
[1, 0, 2]) if not self.time_major else out [1, 0, 2]) if not self.time_major else out
states = (last_h, last_c) return out, tuple(state) if len(state) > 1 else state[0]
return out, states
def forward(self, inputs, initial_states=None, sequence_length=None): def forward(self, inputs, initial_states=None, sequence_length=None):
batch_index = 1 if self.time_major else 0 batch_index = 1 if self.time_major else 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册