diff --git a/.gitignore b/.gitignore
index 2badc3bdaa52f2608183fa34393719be66630654..9e3a0b499f9f42856429f3a42bef313ea3df3699 100644
--- a/.gitignore
+++ b/.gitignore
@@ -25,12 +25,3 @@ third_party/
# clion workspace.
cmake-build-*
-
-# generated while compiling
-paddle/pybind/pybind.h
-CMakeFiles
-cmake_install.cmake
-paddle/.timestamp
-python/paddlepaddle.egg-info/
-paddle/fluid/pybind/pybind.h
-python/paddle/version.py
diff --git a/benchmark/cluster/README.md b/benchmark/cluster/README.md
index b619613ea7a5b6e940ec735314e8e47338b2c600..64816098a524f064ec12474a736cd4c721227a70 100644
--- a/benchmark/cluster/README.md
+++ b/benchmark/cluster/README.md
@@ -36,11 +36,41 @@
- Trainer Count: 100
- Metrics: mini-batch / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure the Performance for Different PServer Count
@@ -48,11 +78,41 @@
- Batch Size: 64
- Metrics: mini-batch / sec
-| PServer Count | 10 | 20 | 40 | 60 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+PServer Count |
+10 |
+20 |
+40 |
+60 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure Parallel Efficiency By Increasing Trainer Count
@@ -67,11 +127,69 @@ The parallel efficiency is:
$E = \div(S, N)$
-| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
-| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - |
-| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - |
+
+
+
+Trainer Counter |
+1 |
+10 |
+20 |
+30 |
+40 |
+50 |
+60 |
+70 |
+80 |
+90 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+
+
## Reproduce the benchmark
diff --git a/benchmark/cluster/vgg16/README.md b/benchmark/cluster/vgg16/README.md
index cd681a1a282d9a26eac1c267bfa26967f8c3c9fd..d56a912b9b03986e32693363f82df05a34b779e9 100644
--- a/benchmark/cluster/vgg16/README.md
+++ b/benchmark/cluster/vgg16/README.md
@@ -16,11 +16,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 |
-| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 |
-| TensorFlow | 9.09 | 9.10 | 9.24 | 8.66 |
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 15.44 |
+ 16.32 |
+ 16.74 |
+ 16.79 |
+
+
+PaddlePaddle v2 |
+ 15.97 |
+ 17.04 |
+ 17.60 |
+ 17.83 |
+
+
+TensorFlow |
+ 9.09 |
+ 9.10 |
+ 9.24 |
+ 8.66 |
+
+
+
+
### Different Batch Size
@@ -28,12 +58,40 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Trainer Count: 20
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 |
-| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 |
-| TensorFlow | - | - | - | - |
-
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 190.20 |
+ 222.15 |
+ 247.40 |
+ 258.18 |
+
+
+PaddlePaddle v2 |
+ 170.96 |
+ 233.71 |
+ 256.14 |
+ 329.23 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
### Accelerate Rate
@@ -41,11 +99,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples / sec
-| Trainer Count | 20 | 40 | 80 | 100 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) |
-| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) |
-| TensorFlow | - | - | - | - |
+
+
+
+Trainer Count |
+20 |
+40 |
+80 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 263.29 (78.64%) |
+ 518.80 (77.47%) |
+ 836.26 (62.44%) |
+ 1019.29 (60.89%) |
+
+
+PaddlePaddle v2 (need more tests) |
+ 326.85 (92.85%) |
+ 534.58 (75.93%) |
+ 853.30 (60.60%) |
+ 1041.99 (59.20%) |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
### Different Pserver Count
@@ -53,11 +141,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples/ sec
-| PServer Count | 3 | 6 |10 | 20 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 |
-| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 |
-| TensorFlow | - | - | - | - |
+
+
+
+PServer Count |
+3 |
+6 |
+10 |
+20 |
+
+
+
+
+ PaddlePaddle Fluid(should fix in next PR) |
+ 589.1 |
+ 592.6 |
+ 656.4 |
+ 655.8 |
+
+
+PaddlePaddle v2 (need more tests) |
+ 593.4 |
+ 791.3 |
+ 729.7 |
+ 821.7 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
*The performance gap between Fuild and v2 comes from the network interference.*
diff --git a/benchmark/fluid/machine_translation.py b/benchmark/fluid/machine_translation.py
new file mode 100644
index 0000000000000000000000000000000000000000..d7a421c10979c3b9d6865a8c0b99a6410e0f46a8
--- /dev/null
+++ b/benchmark/fluid/machine_translation.py
@@ -0,0 +1,379 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""seq2seq model for fluid."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import argparse
+import time
+import distutils.util
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import paddle.fluid.framework as framework
+from paddle.fluid.executor import Executor
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ "--embedding_dim",
+ type=int,
+ default=512,
+ help="The dimension of embedding table. (default: %(default)d)")
+parser.add_argument(
+ "--encoder_size",
+ type=int,
+ default=512,
+ help="The size of encoder bi-rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--decoder_size",
+ type=int,
+ default=512,
+ help="The size of decoder rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--batch_size",
+ type=int,
+ default=16,
+ help="The sequence number of a mini-batch data. (default: %(default)d)")
+parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test')
+parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+parser.add_argument(
+ "--dict_size",
+ type=int,
+ default=30000,
+ help="The dictionary capacity. Dictionaries of source sequence and "
+ "target dictionary have same capacity. (default: %(default)d)")
+parser.add_argument(
+ "--pass_num",
+ type=int,
+ default=2,
+ help="The pass number to train. (default: %(default)d)")
+parser.add_argument(
+ "--learning_rate",
+ type=float,
+ default=0.0002,
+ help="Learning rate used to train the model. (default: %(default)f)")
+parser.add_argument(
+ "--infer_only", action='store_true', help="If set, run forward only.")
+parser.add_argument(
+ "--beam_size",
+ type=int,
+ default=3,
+ help="The width for beam searching. (default: %(default)d)")
+parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help="The device type.")
+parser.add_argument(
+ "--max_length",
+ type=int,
+ default=250,
+ help="The maximum length of sequence when doing generation. "
+ "(default: %(default)d)")
+parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+
+
+def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
+ def linear(inputs):
+ return fluid.layers.fc(input=inputs, size=size, bias_attr=True)
+
+ forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))
+
+ cell_t = fluid.layers.sums(input=[
+ fluid.layers.elementwise_mul(
+ x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
+ x=input_gate, y=cell_tilde)
+ ])
+
+ hidden_t = fluid.layers.elementwise_mul(
+ x=output_gate, y=fluid.layers.tanh(x=cell_t))
+
+ return hidden_t, cell_t
+
+
+def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
+ target_dict_dim, is_generating, beam_size, max_length):
+ """Construct a seq2seq network."""
+
+ def bi_lstm_encoder(input_seq, gate_size):
+ # Linear transformation part for input gate, output gate, forget gate
+ # and cell activation vectors need be done outside of dynamic_lstm.
+ # So the output size is 4 times of gate_size.
+ input_forward_proj = fluid.layers.fc(input=input_seq,
+ size=gate_size * 4,
+ act=None,
+ bias_attr=False)
+ forward, _ = fluid.layers.dynamic_lstm(
+ input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
+ input_reversed_proj = fluid.layers.fc(input=input_seq,
+ size=gate_size * 4,
+ act=None,
+ bias_attr=False)
+ reversed, _ = fluid.layers.dynamic_lstm(
+ input=input_reversed_proj,
+ size=gate_size * 4,
+ is_reverse=True,
+ use_peepholes=False)
+ return forward, reversed
+
+ src_word_idx = fluid.layers.data(
+ name='source_sequence', shape=[1], dtype='int64', lod_level=1)
+
+ src_embedding = fluid.layers.embedding(
+ input=src_word_idx,
+ size=[source_dict_dim, embedding_dim],
+ dtype='float32')
+
+ src_forward, src_reversed = bi_lstm_encoder(
+ input_seq=src_embedding, gate_size=encoder_size)
+
+ encoded_vector = fluid.layers.concat(
+ input=[src_forward, src_reversed], axis=1)
+
+ encoded_proj = fluid.layers.fc(input=encoded_vector,
+ size=decoder_size,
+ bias_attr=False)
+
+ backward_first = fluid.layers.sequence_pool(
+ input=src_reversed, pool_type='first')
+
+ decoder_boot = fluid.layers.fc(input=backward_first,
+ size=decoder_size,
+ bias_attr=False,
+ act='tanh')
+
+ def lstm_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
+ decoder_boot, decoder_size):
+ def simple_attention(encoder_vec, encoder_proj, decoder_state):
+ decoder_state_proj = fluid.layers.fc(input=decoder_state,
+ size=decoder_size,
+ bias_attr=False)
+ decoder_state_expand = fluid.layers.sequence_expand(
+ x=decoder_state_proj, y=encoder_proj)
+ concated = fluid.layers.concat(
+ input=[encoder_proj, decoder_state_expand], axis=1)
+ attention_weights = fluid.layers.fc(input=concated,
+ size=1,
+ act='tanh',
+ bias_attr=False)
+ attention_weights = fluid.layers.sequence_softmax(
+ input=attention_weights)
+ weigths_reshape = fluid.layers.reshape(
+ x=attention_weights, shape=[-1])
+ scaled = fluid.layers.elementwise_mul(
+ x=encoder_vec, y=weigths_reshape, axis=0)
+ context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
+ return context
+
+ rnn = fluid.layers.DynamicRNN()
+
+ cell_init = fluid.layers.fill_constant_batch_size_like(
+ input=decoder_boot,
+ value=0.0,
+ shape=[-1, decoder_size],
+ dtype='float32')
+ cell_init.stop_gradient = False
+
+ with rnn.block():
+ current_word = rnn.step_input(target_embedding)
+ encoder_vec = rnn.static_input(encoder_vec)
+ encoder_proj = rnn.static_input(encoder_proj)
+ hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
+ cell_mem = rnn.memory(init=cell_init)
+ context = simple_attention(encoder_vec, encoder_proj, hidden_mem)
+ decoder_inputs = fluid.layers.concat(
+ input=[context, current_word], axis=1)
+ h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
+ rnn.update_memory(hidden_mem, h)
+ rnn.update_memory(cell_mem, c)
+ out = fluid.layers.fc(input=h,
+ size=target_dict_dim,
+ bias_attr=True,
+ act='softmax')
+ rnn.output(out)
+ return rnn()
+
+ if not is_generating:
+ trg_word_idx = fluid.layers.data(
+ name='target_sequence', shape=[1], dtype='int64', lod_level=1)
+
+ trg_embedding = fluid.layers.embedding(
+ input=trg_word_idx,
+ size=[target_dict_dim, embedding_dim],
+ dtype='float32')
+
+ prediction = lstm_decoder_with_attention(trg_embedding, encoded_vector,
+ encoded_proj, decoder_boot,
+ decoder_size)
+ label = fluid.layers.data(
+ name='label_sequence', shape=[1], dtype='int64', lod_level=1)
+ cost = fluid.layers.cross_entropy(input=prediction, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ feeding_list = ["source_sequence", "target_sequence", "label_sequence"]
+
+ return avg_cost, feeding_list
+
+
+def to_lodtensor(data, place):
+ seq_lens = [len(seq) for seq in data]
+ cur_len = 0
+ lod = [cur_len]
+ for l in seq_lens:
+ cur_len += l
+ lod.append(cur_len)
+ flattened_data = np.concatenate(data, axis=0).astype("int64")
+ flattened_data = flattened_data.reshape([len(flattened_data), 1])
+ lod_t = core.LoDTensor()
+ lod_t.set(flattened_data, place)
+ lod_t.set_lod([lod])
+ return lod_t, lod[-1]
+
+
+def lodtensor_to_ndarray(lod_tensor):
+ dims = lod_tensor.get_dims()
+ ndarray = np.zeros(shape=dims).astype('float32')
+ for i in xrange(np.product(dims)):
+ ndarray.ravel()[i] = lod_tensor.get_float_element(i)
+ return ndarray
+
+
+def train():
+ avg_cost, feeding_list = seq_to_seq_net(
+ args.embedding_dim,
+ args.encoder_size,
+ args.decoder_size,
+ args.dict_size,
+ args.dict_size,
+ False,
+ beam_size=args.beam_size,
+ max_length=args.max_length)
+
+ # clone from default main program
+ inference_program = fluid.default_main_program().clone()
+
+ optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
+ optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ train_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ test_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
+ exe = Executor(place)
+ exe.run(framework.default_startup_program())
+
+ def do_validation():
+ total_loss = 0.0
+ count = 0
+ for batch_id, data in enumerate(test_batch_generator()):
+ src_seq = to_lodtensor(map(lambda x: x[0], data), place)[0]
+ trg_seq = to_lodtensor(map(lambda x: x[1], data), place)[0]
+ lbl_seq = to_lodtensor(map(lambda x: x[2], data), place)[0]
+
+ fetch_outs = exe.run(inference_program,
+ feed={
+ feeding_list[0]: src_seq,
+ feeding_list[1]: trg_seq,
+ feeding_list[2]: lbl_seq
+ },
+ fetch_list=[avg_cost],
+ return_numpy=False)
+
+ total_loss += lodtensor_to_ndarray(fetch_outs[0])[0]
+ count += 1
+
+ return total_loss / count
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in xrange(args.pass_num):
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_batch_generator()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
+ num_samples += word_num
+ trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
+ num_samples += word_num
+ lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)
+
+ fetch_outs = exe.run(framework.default_main_program(),
+ feed={
+ feeding_list[0]: src_seq,
+ feeding_list[1]: trg_seq,
+ feeding_list[2]: lbl_seq
+ },
+ fetch_list=[avg_cost])
+
+ iters += 1
+ loss = np.array(fetch_outs[0])
+ print(
+ "Pass = %d, Iter = %d, Loss = %f" % (pass_id, iters, loss)
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+
+ train_elapsed = time.time() - start_time
+ examples_per_sec = num_samples / train_elapsed
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+ # evaluation
+ if args.with_test:
+ test_loss = do_validation()
+ exit(0)
+
+
+def infer():
+ pass
+
+
+def print_arguments(args):
+ print('----------- seq2seq Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ args = parser.parse_args()
+ print_arguments(args)
+ if args.infer_only:
+ infer()
+ else:
+ train()
diff --git a/benchmark/fluid/mnist.py b/benchmark/fluid/mnist.py
new file mode 100644
index 0000000000000000000000000000000000000000..43866da9cb113e9d49fc1c51f67da94cbc6bfd8e
--- /dev/null
+++ b/benchmark/fluid/mnist.py
@@ -0,0 +1,227 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import argparse
+import time
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.profiler as profiler
+
+SEED = 1
+DTYPE = "float32"
+
+# random seed must set before configuring the network.
+# fluid.default_startup_program().random_seed = SEED
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("mnist model benchmark.")
+ parser.add_argument(
+ '--batch_size', type=int, default=128, help='The minibatch size.')
+ parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test'
+ )
+ parser.add_argument(
+ '--iterations', type=int, default=35, help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=5, help='The number of passes.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ parser.add_argument(
+ '--use_cprof', action='store_true', help='If set, use cProfile.')
+ parser.add_argument(
+ '--use_nvprof',
+ action='store_true',
+ help='If set, use nvprof for CUDA.')
+ parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+ args = parser.parse_args()
+ return args
+
+
+def cnn_model(data):
+ conv_pool_1 = fluid.nets.simple_img_conv_pool(
+ input=data,
+ filter_size=5,
+ num_filters=20,
+ pool_size=2,
+ pool_stride=2,
+ act="relu")
+ conv_pool_2 = fluid.nets.simple_img_conv_pool(
+ input=conv_pool_1,
+ filter_size=5,
+ num_filters=50,
+ pool_size=2,
+ pool_stride=2,
+ act="relu")
+
+ # TODO(dzhwinter) : refine the initializer and random seed settting
+ SIZE = 10
+ input_shape = conv_pool_2.shape
+ param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
+ scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
+
+ predict = fluid.layers.fc(
+ input=conv_pool_2,
+ size=SIZE,
+ act="softmax",
+ param_attr=fluid.param_attr.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(
+ loc=0.0, scale=scale)))
+ return predict
+
+
+def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
+ test_reader = paddle.batch(
+ paddle.dataset.mnist.test(), batch_size=args.batch_size)
+ test_pass_acc = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
+ data)).astype(DTYPE)
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([len(y_data), 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_pass_acc.add(value=acc, weight=weight)
+ pass_acc = test_pass_acc.eval()
+ return pass_acc
+
+
+def run_benchmark(model, args):
+ if args.use_cprof:
+ pr = cProfile.Profile()
+ pr.enable()
+ start_time = time.time()
+ # Input data
+ images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+
+ # Train program
+ predict = model(images)
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ # Evaluator
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ # inference program
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ # Optimization
+ opt = fluid.optimizer.AdamOptimizer(
+ learning_rate=0.001, beta1=0.9, beta2=0.999)
+ opt.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ # Initialize executor
+ place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
+ exe = fluid.Executor(place)
+
+ # Parameter initialization
+ exe.run(fluid.default_startup_program())
+
+ # Reader
+ train_reader = paddle.batch(
+ paddle.dataset.mnist.train(), batch_size=args.batch_size)
+
+ accuracy = fluid.average.WeightedAverage()
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ img_data = np.array(
+ map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([len(y_data), 1])
+
+ outs = exe.run(
+ fluid.default_main_program(),
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor]
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+ accuracy.add(value=outs[1], weight=outs[2])
+ iters += 1
+ num_samples += len(y_data)
+ loss = np.array(outs[0])
+ acc = np.array(outs[1])
+ train_losses.append(loss)
+ train_accs.append(acc)
+ print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
+ (pass_id, iters, loss, acc))
+
+ print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+ train_elapsed = time.time() - start_time
+ examples_per_sec = num_samples / train_elapsed
+
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+ # evaluation
+ if args.with_test:
+ test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
+ inference_program)
+ exit(0)
+
+
+def print_arguments(args):
+ vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
+ vars(args)['device'] == 'GPU')
+ print('----------- mnist Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+ if args.use_nvprof and args.device == 'GPU':
+ with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
+ run_benchmark(cnn_model, args)
+ else:
+ run_benchmark(cnn_model, args)
diff --git a/benchmark/fluid/resnet.py b/benchmark/fluid/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..1af5eaf6b46be47cb6b778cedcf53830c201ef39
--- /dev/null
+++ b/benchmark/fluid/resnet.py
@@ -0,0 +1,313 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import functools
+import numpy as np
+import time
+
+import cProfile, pstats, StringIO
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import paddle.fluid.profiler as profiler
+
+
+def parse_args():
+ parser = argparse.ArgumentParser('Convolution model benchmark.')
+ parser.add_argument(
+ '--model',
+ type=str,
+ choices=['resnet_imagenet', 'resnet_cifar10'],
+ default='resnet_imagenet',
+ help='The model architecture.')
+ parser.add_argument(
+ '--batch_size', type=int, default=32, help='The minibatch size.')
+ parser.add_argument(
+ '--use_fake_data',
+ action='store_true',
+ help='use real data or fake data')
+ parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test'
+ )
+ parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=100, help='The number of passes.')
+ parser.add_argument(
+ '--data_format',
+ type=str,
+ default='NCHW',
+ choices=['NCHW', 'NHWC'],
+ help='The data data_format, now only support NCHW.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--data_set',
+ type=str,
+ default='flowers',
+ choices=['cifar10', 'flowers'],
+ help='Optional dataset for benchmark.')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ parser.add_argument(
+ '--use_cprof', action='store_true', help='If set, use cProfile.')
+ parser.add_argument(
+ '--use_nvprof',
+ action='store_true',
+ help='If set, use nvprof for CUDA.')
+ parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+ args = parser.parse_args()
+ return args
+
+
+def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
+ conv1 = fluid.layers.conv2d(
+ input=input,
+ filter_size=filter_size,
+ num_filters=ch_out,
+ stride=stride,
+ padding=padding,
+ act=None,
+ bias_attr=False)
+ return fluid.layers.batch_norm(input=conv1, act=act)
+
+
+def shortcut(input, ch_out, stride):
+ ch_in = input.shape[1] if args.data_format == 'NCHW' else input.shape[-1]
+ if ch_in != ch_out:
+ return conv_bn_layer(input, ch_out, 1, stride, 0, None)
+ else:
+ return input
+
+
+def basicblock(input, ch_out, stride):
+ short = shortcut(input, ch_out, stride)
+ conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
+ return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
+
+
+def bottleneck(input, ch_out, stride):
+ short = shortcut(input, ch_out * 4, stride)
+ conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
+ conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
+ return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
+
+
+def layer_warp(block_func, input, ch_out, count, stride):
+ res_out = block_func(input, ch_out, stride)
+ for i in range(1, count):
+ res_out = block_func(res_out, ch_out, 1)
+ return res_out
+
+
+def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):
+
+ cfg = {
+ 18: ([2, 2, 2, 1], basicblock),
+ 34: ([3, 4, 6, 3], basicblock),
+ 50: ([3, 4, 6, 3], bottleneck),
+ 101: ([3, 4, 23, 3], bottleneck),
+ 152: ([3, 8, 36, 3], bottleneck)
+ }
+ stages, block_func = cfg[depth]
+ conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
+ pool1 = fluid.layers.pool2d(
+ input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
+ res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
+ res2 = layer_warp(block_func, res1, 128, stages[1], 2)
+ res3 = layer_warp(block_func, res2, 256, stages[2], 2)
+ res4 = layer_warp(block_func, res3, 512, stages[3], 2)
+ pool2 = fluid.layers.pool2d(
+ input=res4,
+ pool_size=7,
+ pool_type='avg',
+ pool_stride=1,
+ global_pooling=True)
+ out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
+ return out
+
+
+def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
+ assert (depth - 2) % 6 == 0
+
+ n = (depth - 2) // 6
+
+ conv1 = conv_bn_layer(
+ input=input, ch_out=16, filter_size=3, stride=1, padding=1)
+ res1 = layer_warp(basicblock, conv1, 16, n, 1)
+ res2 = layer_warp(basicblock, res1, 32, n, 2)
+ res3 = layer_warp(basicblock, res2, 64, n, 2)
+ pool = fluid.layers.pool2d(
+ input=res3, pool_size=8, pool_type='avg', pool_stride=1)
+ out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
+ return out
+
+
+def run_benchmark(model, args):
+ if args.use_cprof:
+ pr = cProfile.Profile()
+ pr.enable()
+
+ if args.data_set == "cifar10":
+ class_dim = 10
+ if args.data_format == 'NCHW':
+ dshape = [3, 32, 32]
+ else:
+ dshape = [32, 32, 3]
+ else:
+ class_dim = 102
+ if args.data_format == 'NCHW':
+ dshape = [3, 224, 224]
+ else:
+ dshape = [224, 224, 3]
+
+ input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+ predict = model(input, class_dim)
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
+ opts = optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.cifar.test10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
+ batch_size=args.batch_size)
+
+ def test(exe):
+ test_accuracy = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape(dshape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"data": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_accuracy.add(value=acc, weight=weight)
+
+ return test_accuracy.eval()
+
+ place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
+ exe = fluid.Executor(place)
+ exe.run(fluid.default_startup_program())
+ accuracy = fluid.average.WeightedAverage()
+ if args.use_fake_data:
+ data = train_reader().next()
+ image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype(
+ 'float32')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+ label = label.reshape([-1, 1])
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ if not args.use_fake_data:
+ image = np.array(map(lambda x: x[0].reshape(dshape),
+ data)).astype('float32')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+ label = label.reshape([-1, 1])
+ loss, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={'data': image,
+ 'label': label},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor])
+ iters += 1
+ num_samples += len(label)
+ accuracy.add(value=acc, weight=weight)
+ train_losses.append(loss)
+ train_accs.append(acc)
+ print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
+ (pass_id, iters, loss, acc))
+ print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+ train_elapsed = time.time() - start_time
+ examples_per_sec = num_samples / train_elapsed
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+ # evaluation
+ if args.with_test:
+ pass_test_acc = test(exe)
+ exit(0)
+
+
+def print_arguments(args):
+ vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
+ vars(args)['device'] == 'GPU')
+ print('----------- resnet Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ model_map = {
+ 'resnet_imagenet': resnet_imagenet,
+ 'resnet_cifar10': resnet_cifar10
+ }
+ args = parse_args()
+ print_arguments(args)
+ if args.data_format == 'NHWC':
+ raise ValueError('Only support NCHW data_format now.')
+ if args.use_nvprof and args.device == 'GPU':
+ with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
+ run_benchmark(model_map[args.model], args)
+ else:
+ run_benchmark(model_map[args.model], args)
diff --git a/benchmark/fluid/run.sh b/benchmark/fluid/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..f6dfd20bf2ee0b668b6d4238d4511253b2233035
--- /dev/null
+++ b/benchmark/fluid/run.sh
@@ -0,0 +1,105 @@
+#!/bin/bash
+# This script benchmarking the PaddlePaddle Fluid on
+# single thread single GPU.
+
+#export FLAGS_fraction_of_gpu_memory_to_use=0.0
+export CUDNN_PATH=/paddle/cudnn_v5
+
+# disable openmp and mkl parallel
+#https://github.com/PaddlePaddle/Paddle/issues/7199
+export MKL_NUM_THREADS=1
+export OMP_NUM_THREADS=1
+ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs`
+if [ $ht -eq 1 ]; then # HT is OFF
+ if [ -z "$KMP_AFFINITY" ]; then
+ export KMP_AFFINITY="granularity=fine,compact,0,0"
+ fi
+ if [ -z "$OMP_DYNAMIC" ]; then
+ export OMP_DYNAMIC="FALSE"
+ fi
+else # HT is ON
+ if [ -z "$KMP_AFFINITY" ]; then
+ export KMP_AFFINITY="granularity=fine,compact,1,0"
+ fi
+fi
+# disable multi-gpu if have more than one
+export CUDA_VISIBLE_DEVICES=0
+export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
+export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH
+
+# only query the gpu used
+nohup stdbuf -oL nvidia-smi \
+ --id=${CUDA_VISIBLE_DEVICES} \
+ --query-gpu=timestamp \
+ --query-compute-apps=pid,process_name,used_memory \
+ --format=csv \
+ --filename=mem.log \
+ -l 1 &
+# mnist
+# mnist gpu mnist 128
+FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \
+ --device=GPU \
+ --batch_size=128 \
+ --skip_batch_num=5 \
+ --iterations=500 \
+ 2>&1 | tee -a mnist_gpu_128.log
+
+# vgg16
+# gpu cifar10 128
+FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
+ --device=GPU \
+ --batch_size=128 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 | tee -a vgg16_gpu_128.log
+
+# flowers gpu 128
+FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
+ --device=GPU \
+ --batch_size=32 \
+ --data_set=flowers \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 | tee -a vgg16_gpu_flowers_32.log
+
+# resnet50
+# resnet50 gpu cifar10 128
+FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
+ --device=GPU \
+ --batch_size=128 \
+ --data_set=cifar10 \
+ --model=resnet_cifar10 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 | tee -a resnet50_gpu_128.log
+
+# resnet50 gpu flowers 64
+FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
+ --device=GPU \
+ --batch_size=64 \
+ --data_set=flowers \
+ --model=resnet_imagenet \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 | tee -a resnet50_gpu_flowers_64.log
+
+# lstm
+# lstm gpu imdb 32 # tensorflow only support batch=32
+FLAGS_benchmark=true stdbuf -oL python fluid/stacked_dynamic_lstm.py \
+ --device=GPU \
+ --batch_size=32 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ --hidden_dim=512 \
+ --emb_dim=512 \
+ --crop_size=1500 \
+ 2>&1 | tee -a lstm_gpu_32.log
+
+# seq2seq
+# seq2seq gpu wmb 128
+FLAGS_benchmark=true stdbuf -oL python fluid/machine_translation.py \
+ --device=GPU \
+ --batch_size=128 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 | tee -a lstm_gpu_128.log
diff --git a/benchmark/fluid/stacked_dynamic_lstm.py b/benchmark/fluid/stacked_dynamic_lstm.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fcbdd64af9dc196c9d5b2b82ce4213478ea1418
--- /dev/null
+++ b/benchmark/fluid/stacked_dynamic_lstm.py
@@ -0,0 +1,236 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import cPickle
+import os
+import random
+import time
+
+import numpy
+import paddle.v2 as paddle
+import paddle.v2.dataset.imdb as imdb
+import paddle.fluid as fluid
+from paddle.v2 import batch
+import paddle.fluid.profiler as profiler
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("Understand Sentiment by Dynamic RNN.")
+ parser.add_argument(
+ '--batch_size',
+ type=int,
+ default=32,
+ help='The sequence number of a batch data. (default: %(default)d)')
+ parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test'
+ )
+ parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+ parser.add_argument(
+ '--emb_dim',
+ type=int,
+ default=512,
+ help='Dimension of embedding table. (default: %(default)d)')
+ parser.add_argument(
+ '--hidden_dim',
+ type=int,
+ default=512,
+ help='Hidden size of lstm unit. (default: %(default)d)')
+ parser.add_argument(
+ '--pass_num',
+ type=int,
+ default=100,
+ help='Epoch number to train. (default: %(default)d)')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='CPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--crop_size',
+ type=int,
+ default=int(os.environ.get('CROP_SIZE', '1500')),
+ help='The max sentence length of input. Since this model use plain RNN,'
+ ' Gradient could be explored if sentence is too long')
+ parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+ args = parser.parse_args()
+ return args
+
+
+word_dict = imdb.word_dict()
+
+
+def crop_sentence(reader, crop_size):
+ unk_value = word_dict['']
+
+ def __impl__():
+ for item in reader():
+ if len([x for x in item[0] if x != unk_value]) < crop_size:
+ yield item
+
+ return __impl__
+
+
+def main():
+ args = parse_args()
+ lstm_size = args.hidden_dim
+
+ data = fluid.layers.data(
+ name="words", shape=[1], lod_level=1, dtype='int64')
+ sentence = fluid.layers.embedding(
+ input=data, size=[len(word_dict), args.emb_dim])
+
+ sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')
+
+ rnn = fluid.layers.DynamicRNN()
+ with rnn.block():
+ word = rnn.step_input(sentence)
+ prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
+ prev_cell = rnn.memory(value=0.0, shape=[lstm_size])
+
+ def gate_common(
+ ipt,
+ hidden,
+ size, ):
+ gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
+ gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
+ gate = fluid.layers.sums(input=[gate0, gate1])
+ return gate
+
+ forget_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ input_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ output_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ cell_gate = fluid.layers.tanh(
+ x=gate_common(word, prev_hidden, lstm_size))
+
+ cell = fluid.layers.sums(input=[
+ fluid.layers.elementwise_mul(
+ x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
+ x=input_gate, y=cell_gate)
+ ])
+
+ hidden = fluid.layers.elementwise_mul(
+ x=output_gate, y=fluid.layers.tanh(x=cell))
+
+ rnn.update_memory(prev_cell, cell)
+ rnn.update_memory(prev_hidden, hidden)
+ rnn.output(hidden)
+
+ last = fluid.layers.sequence_pool(rnn(), 'last')
+ logit = fluid.layers.fc(input=last, size=2, act='softmax')
+ loss = fluid.layers.cross_entropy(
+ input=logit,
+ label=fluid.layers.data(
+ name='label', shape=[1], dtype='int64'))
+ loss = fluid.layers.mean(x=loss)
+
+ # add acc
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
+ shape=[1], dtype='int64'), total=batch_size_tensor)
+
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ adam = fluid.optimizer.Adam()
+ adam.minimize(loss)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
+ exe = fluid.Executor(place)
+ exe.run(fluid.default_startup_program())
+
+ train_reader = batch(
+ paddle.reader.shuffle(
+ crop_sentence(imdb.train(word_dict), args.crop_size),
+ buf_size=25000),
+ batch_size=args.batch_size)
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in range(args.pass_num):
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ tensor_words = to_lodtensor([x[0] for x in data], place)
+ label = numpy.array([x[1] for x in data]).astype("int64")
+ label = label.reshape((-1, 1))
+ loss_np, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={"words": tensor_words,
+ "label": label},
+ fetch_list=[loss, batch_acc, batch_size_tensor])
+ iters += 1
+ for x in data:
+ num_samples += len(x[0])
+ print(
+ "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
+ (pass_id, iters, loss_np, acc)
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+
+ train_elapsed = time.time() - start_time
+ examples_per_sec = num_samples / train_elapsed
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+ exit(0)
+
+
+def to_lodtensor(data, place):
+ seq_lens = [len(seq) for seq in data]
+ cur_len = 0
+ lod = [cur_len]
+ for l in seq_lens:
+ cur_len += l
+ lod.append(cur_len)
+ flattened_data = numpy.concatenate(data, axis=0).astype("int64")
+ flattened_data = flattened_data.reshape([len(flattened_data), 1])
+ res = fluid.LoDTensor()
+ res.set(flattened_data, place)
+ res.set_lod([lod])
+ return res
+
+
+def print_arguments(args):
+ print('----------- lstm Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+ main()
diff --git a/benchmark/fluid/vgg.py b/benchmark/fluid/vgg.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d990eff62ec368dc7033f55cc0862fa974a64e0
--- /dev/null
+++ b/benchmark/fluid/vgg.py
@@ -0,0 +1,224 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""VGG16 benchmark in Fluid"""
+from __future__ import print_function
+
+import sys
+import time
+import numpy as np
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import argparse
+import functools
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ '--batch_size', type=int, default=128, help="Batch size for training.")
+parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test')
+parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+parser.add_argument(
+ '--learning_rate',
+ type=float,
+ default=1e-3,
+ help="Learning rate for training.")
+parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.")
+parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help="The device type.")
+parser.add_argument(
+ '--data_format',
+ type=str,
+ default='NCHW',
+ choices=['NCHW', 'NHWC'],
+ help='The data order, now only support NCHW.')
+parser.add_argument(
+ '--data_set',
+ type=str,
+ default='cifar10',
+ choices=['cifar10', 'flowers'],
+ help='Optional dataset for benchmark.')
+parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+args = parser.parse_args()
+
+
+def vgg16_bn_drop(input):
+ def conv_block(input, num_filter, groups, dropouts):
+ return fluid.nets.img_conv_group(
+ input=input,
+ pool_size=2,
+ pool_stride=2,
+ conv_num_filter=[num_filter] * groups,
+ conv_filter_size=3,
+ conv_act='relu',
+ conv_with_batchnorm=True,
+ conv_batchnorm_drop_rate=dropouts,
+ pool_type='max')
+
+ conv1 = conv_block(input, 64, 2, [0.3, 0])
+ conv2 = conv_block(conv1, 128, 2, [0.4, 0])
+ conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
+ conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
+ conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
+
+ drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
+ fc1 = fluid.layers.fc(input=drop, size=512, act=None)
+ bn = fluid.layers.batch_norm(input=fc1, act='relu')
+ drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
+ fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
+ return fc2
+
+
+def main():
+ if args.data_set == "cifar10":
+ classdim = 10
+ if args.data_format == 'NCHW':
+ data_shape = [3, 32, 32]
+ else:
+ data_shape = [32, 32, 3]
+ else:
+ classdim = 102
+ if args.data_format == 'NCHW':
+ data_shape = [3, 224, 224]
+ else:
+ data_shape = [224, 224, 3]
+
+ # Input data
+ images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+
+ # Train program
+ net = vgg16_bn_drop(images)
+ predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ # Evaluator
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ # inference program
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ # Optimization
+ optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
+ opts = optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ # Initialize executor
+ place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
+ exe = fluid.Executor(place)
+
+ # Parameter initialization
+ exe.run(fluid.default_startup_program())
+
+ # data reader
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.cifar.test10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
+ batch_size=args.batch_size)
+
+ # test
+ def test(exe):
+ test_accuracy = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape(data_shape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_accuracy.add(value=acc, weight=weight)
+ return test_accuracy.eval()
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ accuracy = fluid.average.WeightedAverage()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ img_data = np.array(map(lambda x: x[0].reshape(data_shape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ loss, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor])
+ accuracy.add(value=acc, weight=weight)
+ iters += 1
+ num_samples += len(y_data)
+ print(
+ "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
+ (pass_id, iters, loss, acc)
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+
+ # pass_train_acc = accuracy.eval()
+ train_losses.append(loss)
+ train_accs.append(acc)
+ print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+ train_elapsed = time.time() - start_time
+ examples_per_sec = num_samples / train_elapsed
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+ # evaluation
+ if args.with_test:
+ pass_test_acc = test(exe)
+ exit(0)
+
+
+def print_arguments():
+ print('----------- vgg Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == "__main__":
+ print_arguments()
+ main()
diff --git a/benchmark/tensorflow/machine_translation.py b/benchmark/tensorflow/machine_translation.py
new file mode 100644
index 0000000000000000000000000000000000000000..8f77dce98353af53803246be8dc61063836b7867
--- /dev/null
+++ b/benchmark/tensorflow/machine_translation.py
@@ -0,0 +1,626 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import tensorflow as tf
+from tensorflow.python.framework import dtypes
+from tensorflow.python.layers.core import Dense
+from tensorflow.python.ops import check_ops
+from tensorflow.python.ops import math_ops
+from tensorflow.python.framework import ops
+from tensorflow.python.ops import rnn_cell_impl
+from tensorflow.python.ops.rnn_cell_impl import RNNCell, BasicLSTMCell
+from tensorflow.python.ops.rnn_cell_impl import LSTMStateTuple
+from tensorflow.contrib.rnn.python.ops import core_rnn_cell
+from tensorflow.python.ops import array_ops
+from tensorflow.python.util import nest
+import tensorflow.contrib.seq2seq as seq2seq
+from tensorflow.contrib.seq2seq.python.ops import beam_search_decoder
+import numpy as np
+import os
+import argparse
+import time
+
+import paddle.v2 as paddle
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ "--embedding_dim",
+ type=int,
+ default=512,
+ help="The dimension of embedding table. (default: %(default)d)")
+parser.add_argument(
+ "--encoder_size",
+ type=int,
+ default=512,
+ help="The size of encoder bi-rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--decoder_size",
+ type=int,
+ default=512,
+ help="The size of decoder rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--batch_size",
+ type=int,
+ default=128,
+ help="The sequence number of a mini-batch data. (default: %(default)d)")
+parser.add_argument(
+ "--dict_size",
+ type=int,
+ default=30000,
+ help="The dictionary capacity. Dictionaries of source sequence and "
+ "target dictionary have same capacity. (default: %(default)d)")
+parser.add_argument(
+ "--max_time_steps",
+ type=int,
+ default=81,
+ help="Max number of time steps for sequence. (default: %(default)d)")
+parser.add_argument(
+ "--pass_num",
+ type=int,
+ default=10,
+ help="The pass number to train. (default: %(default)d)")
+parser.add_argument(
+ "--learning_rate",
+ type=float,
+ default=0.0002,
+ help="Learning rate used to train the model. (default: %(default)f)")
+parser.add_argument(
+ "--infer_only", action='store_true', help="If set, run forward only.")
+parser.add_argument(
+ "--beam_size",
+ type=int,
+ default=3,
+ help="The width for beam searching. (default: %(default)d)")
+parser.add_argument(
+ "--max_generation_length",
+ type=int,
+ default=250,
+ help="The maximum length of sequence when doing generation. "
+ "(default: %(default)d)")
+parser.add_argument(
+ "--save_freq",
+ type=int,
+ default=500,
+ help="Save model checkpoint every this interation. (default: %(default)d)")
+parser.add_argument(
+ "--model_dir",
+ type=str,
+ default='./checkpoint',
+ help="Path to save model checkpoints. (default: %(default)d)")
+
+_Linear = core_rnn_cell._Linear # pylint: disable=invalid-name
+
+START_TOKEN_IDX = 0
+END_TOKEN_IDX = 1
+
+
+class LSTMCellWithSimpleAttention(RNNCell):
+ """Add attention mechanism to BasicLSTMCell.
+ This class is a wrapper based on tensorflow's `BasicLSTMCell`.
+ """
+
+ def __init__(self,
+ num_units,
+ encoder_vector,
+ encoder_proj,
+ source_sequence_length,
+ forget_bias=1.0,
+ state_is_tuple=True,
+ activation=None,
+ reuse=None):
+ super(LSTMCellWithSimpleAttention, self).__init__(_reuse=reuse)
+ if not state_is_tuple:
+ logging.warn("%s: Using a concatenated state is slower and will "
+ "soon be deprecated. Use state_is_tuple=True.", self)
+ self._num_units = num_units
+ # set padding part to 0
+ self._encoder_vector = self._reset_padding(encoder_vector,
+ source_sequence_length)
+ self._encoder_proj = self._reset_padding(encoder_proj,
+ source_sequence_length)
+ self._forget_bias = forget_bias
+ self._state_is_tuple = state_is_tuple
+ self._activation = activation or math_ops.tanh
+ self._linear = None
+
+ @property
+ def state_size(self):
+ return (LSTMStateTuple(self._num_units, self._num_units) \
+ if self._state_is_tuple else 2 * self._num_units)
+
+ @property
+ def output_size(self):
+ return self._num_units
+
+ def zero_state(self, batch_size, dtype):
+ state_size = self.state_size
+ if hasattr(self, "_last_zero_state"):
+ (last_state_size, last_batch_size, last_dtype,
+ last_output) = getattr(self, "_last_zero_state")
+ if (last_batch_size == batch_size and last_dtype == dtype and
+ last_state_size == state_size):
+ return last_output
+ with ops.name_scope(
+ type(self).__name__ + "ZeroState", values=[batch_size]):
+ output = _zero_state_tensors(state_size, batch_size, dtype)
+ self._last_zero_state = (state_size, batch_size, dtype, output)
+ return output
+
+ def call(self, inputs, state):
+ sigmoid = math_ops.sigmoid
+ # Parameters of gates are concatenated into one multiply for efficiency.
+ if self._state_is_tuple:
+ c, h = state
+ else:
+ c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
+
+ # get context from encoder outputs
+ context = self._simple_attention(self._encoder_vector,
+ self._encoder_proj, h)
+
+ if self._linear is None:
+ self._linear = _Linear([inputs, context, h], 4 * self._num_units,
+ True)
+ # i = input_gate, j = new_input, f = forget_gate, o = output_gate
+ i, j, f, o = array_ops.split(
+ value=self._linear([inputs, context, h]),
+ num_or_size_splits=4,
+ axis=1)
+
+ new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
+ self._activation(j))
+ new_h = self._activation(new_c) * sigmoid(o)
+
+ if self._state_is_tuple:
+ new_state = LSTMStateTuple(new_c, new_h)
+ else:
+ new_state = array_ops.concat([new_c, new_h], 1)
+ return new_h, new_state
+
+ def _simple_attention(self, encoder_vec, encoder_proj, decoder_state):
+ """Implement the attention function.
+ The implementation has the same logic to the fluid decoder.
+ """
+ decoder_state_proj = tf.contrib.layers.fully_connected(
+ inputs=decoder_state,
+ num_outputs=self._num_units,
+ activation_fn=None,
+ biases_initializer=None)
+ decoder_state_expand = tf.tile(
+ tf.expand_dims(
+ input=decoder_state_proj, axis=1),
+ [1, tf.shape(encoder_proj)[1], 1])
+ concated = tf.concat([decoder_state_expand, encoder_proj], axis=2)
+ # need reduce the first dimension
+ attention_weights = tf.contrib.layers.fully_connected(
+ inputs=tf.reshape(
+ concated, shape=[-1, self._num_units * 2]),
+ num_outputs=1,
+ activation_fn=tf.nn.tanh,
+ biases_initializer=None)
+ attention_weights_reshaped = tf.reshape(
+ attention_weights, shape=[tf.shape(encoder_vec)[0], -1, 1])
+ # normalize the attention weights using softmax
+ attention_weights_normed = tf.nn.softmax(
+ attention_weights_reshaped, dim=1)
+ scaled = tf.multiply(attention_weights_normed, encoder_vec)
+ context = tf.reduce_sum(scaled, axis=1)
+ return context
+
+ def _reset_padding(self,
+ memory,
+ memory_sequence_length,
+ check_inner_dims_defined=True):
+ """Reset the padding part for encoder inputs.
+ This funtion comes from tensorflow's `_prepare_memory` function.
+ """
+ memory = nest.map_structure(
+ lambda m: ops.convert_to_tensor(m, name="memory"), memory)
+ if memory_sequence_length is not None:
+ memory_sequence_length = ops.convert_to_tensor(
+ memory_sequence_length, name="memory_sequence_length")
+ if check_inner_dims_defined:
+
+ def _check_dims(m):
+ if not m.get_shape()[2:].is_fully_defined():
+ raise ValueError(
+ "Expected memory %s to have fully defined inner dims, "
+ "but saw shape: %s" % (m.name, m.get_shape()))
+
+ nest.map_structure(_check_dims, memory)
+ if memory_sequence_length is None:
+ seq_len_mask = None
+ else:
+ seq_len_mask = array_ops.sequence_mask(
+ memory_sequence_length,
+ maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
+ dtype=nest.flatten(memory)[0].dtype)
+ seq_len_batch_size = (memory_sequence_length.shape[0].value or
+ array_ops.shape(memory_sequence_length)[0])
+
+ def _maybe_mask(m, seq_len_mask):
+ rank = m.get_shape().ndims
+ rank = rank if rank is not None else array_ops.rank(m)
+ extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
+ m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
+ if memory_sequence_length is not None:
+ message = ("memory_sequence_length and memory tensor "
+ "batch sizes do not match.")
+ with ops.control_dependencies([
+ check_ops.assert_equal(
+ seq_len_batch_size, m_batch_size, message=message)
+ ]):
+ seq_len_mask = array_ops.reshape(
+ seq_len_mask,
+ array_ops.concat(
+ (array_ops.shape(seq_len_mask), extra_ones), 0))
+ return m * seq_len_mask
+ else:
+ return m
+
+ return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask),
+ memory)
+
+
+def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
+ target_dict_dim, is_generating, beam_size,
+ max_generation_length):
+ src_word_idx = tf.placeholder(tf.int32, shape=[None, None])
+ src_sequence_length = tf.placeholder(tf.int32, shape=[None, ])
+
+ src_embedding_weights = tf.get_variable("source_word_embeddings",
+ [source_dict_dim, embedding_dim])
+ src_embedding = tf.nn.embedding_lookup(src_embedding_weights, src_word_idx)
+
+ src_forward_cell = tf.nn.rnn_cell.BasicLSTMCell(encoder_size)
+ src_reversed_cell = tf.nn.rnn_cell.BasicLSTMCell(encoder_size)
+ # no peephole
+ encoder_outputs, _ = tf.nn.bidirectional_dynamic_rnn(
+ cell_fw=src_forward_cell,
+ cell_bw=src_reversed_cell,
+ inputs=src_embedding,
+ sequence_length=src_sequence_length,
+ dtype=tf.float32)
+
+ # concat the forward outputs and backward outputs
+ encoded_vec = tf.concat(encoder_outputs, axis=2)
+
+ # project the encoder outputs to size of decoder lstm
+ encoded_proj = tf.contrib.layers.fully_connected(
+ inputs=tf.reshape(
+ encoded_vec, shape=[-1, embedding_dim * 2]),
+ num_outputs=decoder_size,
+ activation_fn=None,
+ biases_initializer=None)
+ encoded_proj_reshape = tf.reshape(
+ encoded_proj, shape=[-1, tf.shape(encoded_vec)[1], decoder_size])
+
+ # get init state for decoder lstm's H
+ backword_first = tf.slice(encoder_outputs[1], [0, 0, 0], [-1, 1, -1])
+ decoder_boot = tf.contrib.layers.fully_connected(
+ inputs=tf.reshape(
+ backword_first, shape=[-1, embedding_dim]),
+ num_outputs=decoder_size,
+ activation_fn=tf.nn.tanh,
+ biases_initializer=None)
+
+ # prepare the initial state for decoder lstm
+ cell_init = tf.zeros(tf.shape(decoder_boot), tf.float32)
+ initial_state = LSTMStateTuple(cell_init, decoder_boot)
+
+ # create decoder lstm cell
+ decoder_cell = LSTMCellWithSimpleAttention(
+ decoder_size,
+ encoded_vec
+ if not is_generating else seq2seq.tile_batch(encoded_vec, beam_size),
+ encoded_proj_reshape if not is_generating else
+ seq2seq.tile_batch(encoded_proj_reshape, beam_size),
+ src_sequence_length if not is_generating else
+ seq2seq.tile_batch(src_sequence_length, beam_size),
+ forget_bias=0.0)
+
+ output_layer = Dense(target_dict_dim, name='output_projection')
+
+ if not is_generating:
+ trg_word_idx = tf.placeholder(tf.int32, shape=[None, None])
+ trg_sequence_length = tf.placeholder(tf.int32, shape=[None, ])
+ trg_embedding_weights = tf.get_variable(
+ "target_word_embeddings", [target_dict_dim, embedding_dim])
+ trg_embedding = tf.nn.embedding_lookup(trg_embedding_weights,
+ trg_word_idx)
+
+ training_helper = seq2seq.TrainingHelper(
+ inputs=trg_embedding,
+ sequence_length=trg_sequence_length,
+ time_major=False,
+ name='training_helper')
+
+ training_decoder = seq2seq.BasicDecoder(
+ cell=decoder_cell,
+ helper=training_helper,
+ initial_state=initial_state,
+ output_layer=output_layer)
+
+ # get the max length of target sequence
+ max_decoder_length = tf.reduce_max(trg_sequence_length)
+
+ decoder_outputs_train, _, _ = seq2seq.dynamic_decode(
+ decoder=training_decoder,
+ output_time_major=False,
+ impute_finished=True,
+ maximum_iterations=max_decoder_length)
+
+ decoder_logits_train = tf.identity(decoder_outputs_train.rnn_output)
+ decoder_pred_train = tf.argmax(
+ decoder_logits_train, axis=-1, name='decoder_pred_train')
+ masks = tf.sequence_mask(
+ lengths=trg_sequence_length,
+ maxlen=max_decoder_length,
+ dtype=tf.float32,
+ name='masks')
+
+ # place holder of label sequence
+ lbl_word_idx = tf.placeholder(tf.int32, shape=[None, None])
+
+ # compute the loss
+ loss = seq2seq.sequence_loss(
+ logits=decoder_logits_train,
+ targets=lbl_word_idx,
+ weights=masks,
+ average_across_timesteps=True,
+ average_across_batch=True)
+
+ # return feeding list and loss operator
+ return {
+ 'src_word_idx': src_word_idx,
+ 'src_sequence_length': src_sequence_length,
+ 'trg_word_idx': trg_word_idx,
+ 'trg_sequence_length': trg_sequence_length,
+ 'lbl_word_idx': lbl_word_idx
+ }, loss
+ else:
+ start_tokens = tf.ones([tf.shape(src_word_idx)[0], ],
+ tf.int32) * START_TOKEN_IDX
+ # share the same embedding weights with target word
+ trg_embedding_weights = tf.get_variable(
+ "target_word_embeddings", [target_dict_dim, embedding_dim])
+
+ inference_decoder = beam_search_decoder.BeamSearchDecoder(
+ cell=decoder_cell,
+ embedding=lambda tokens: tf.nn.embedding_lookup(trg_embedding_weights, tokens),
+ start_tokens=start_tokens,
+ end_token=END_TOKEN_IDX,
+ initial_state=tf.nn.rnn_cell.LSTMStateTuple(
+ tf.contrib.seq2seq.tile_batch(initial_state[0], beam_size),
+ tf.contrib.seq2seq.tile_batch(initial_state[1], beam_size)),
+ beam_width=beam_size,
+ output_layer=output_layer)
+
+ decoder_outputs_decode, _, _ = seq2seq.dynamic_decode(
+ decoder=inference_decoder,
+ output_time_major=False,
+ #impute_finished=True,# error occurs
+ maximum_iterations=max_generation_length)
+
+ predicted_ids = decoder_outputs_decode.predicted_ids
+
+ return {
+ 'src_word_idx': src_word_idx,
+ 'src_sequence_length': src_sequence_length
+ }, predicted_ids
+
+
+def print_arguments(args):
+ print('----------- Configuration Arguments -----------')
+ for arg, value in vars(args).iteritems():
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def padding_data(data, padding_size, value):
+ data = data + [value] * padding_size
+ return data[:padding_size]
+
+
+def save(sess, path, var_list=None, global_step=None):
+ saver = tf.train.Saver(var_list)
+ save_path = saver.save(sess, save_path=path, global_step=global_step)
+ print('Model save at %s' % save_path)
+
+
+def restore(sess, path, var_list=None):
+ # var_list = None returns the list of all saveable variables
+ saver = tf.train.Saver(var_list)
+ saver.restore(sess, save_path=path)
+ print('model restored from %s' % path)
+
+
+def adapt_batch_data(data):
+ src_seq = map(lambda x: x[0], data)
+ trg_seq = map(lambda x: x[1], data)
+ lbl_seq = map(lambda x: x[2], data)
+
+ src_sequence_length = np.array(
+ [len(seq) for seq in src_seq]).astype('int32')
+ src_seq_maxlen = np.max(src_sequence_length)
+
+ trg_sequence_length = np.array(
+ [len(seq) for seq in trg_seq]).astype('int32')
+ trg_seq_maxlen = np.max(trg_sequence_length)
+
+ src_seq = np.array(
+ [padding_data(seq, src_seq_maxlen, END_TOKEN_IDX)
+ for seq in src_seq]).astype('int32')
+
+ trg_seq = np.array(
+ [padding_data(seq, trg_seq_maxlen, END_TOKEN_IDX)
+ for seq in trg_seq]).astype('int32')
+
+ lbl_seq = np.array(
+ [padding_data(seq, trg_seq_maxlen, END_TOKEN_IDX)
+ for seq in lbl_seq]).astype('int32')
+
+ return {
+ 'src_word_idx': src_seq,
+ 'src_sequence_length': src_sequence_length,
+ 'trg_word_idx': trg_seq,
+ 'trg_sequence_length': trg_sequence_length,
+ 'lbl_word_idx': lbl_seq
+ }
+
+
+def train():
+ feeding_dict, loss = seq_to_seq_net(
+ embedding_dim=args.embedding_dim,
+ encoder_size=args.encoder_size,
+ decoder_size=args.decoder_size,
+ source_dict_dim=args.dict_size,
+ target_dict_dim=args.dict_size,
+ is_generating=False,
+ beam_size=args.beam_size,
+ max_generation_length=args.max_generation_length)
+
+ global_step = tf.Variable(0, trainable=False, name='global_step')
+ trainable_params = tf.trainable_variables()
+ optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
+
+ gradients = tf.gradients(loss, trainable_params)
+ # may clip the parameters
+ clip_gradients, _ = tf.clip_by_global_norm(gradients, 1.0)
+
+ updates = optimizer.apply_gradients(
+ zip(gradients, trainable_params), global_step=global_step)
+
+ src_dict, trg_dict = paddle.dataset.wmt14.get_dict(args.dict_size)
+
+ train_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ test_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ def do_validataion():
+ total_loss = 0.0
+ count = 0
+ for batch_id, data in enumerate(test_batch_generator()):
+ adapted_batch_data = adapt_batch_data(data)
+ outputs = sess.run([loss],
+ feed_dict={
+ item[1]: adapted_batch_data[item[0]]
+ for item in feeding_dict.items()
+ })
+ total_loss += outputs[0]
+ count += 1
+ return total_loss / count
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ config.gpu_options.allow_growth = True
+
+ with tf.Session(config=config) as sess:
+ init_g = tf.global_variables_initializer()
+ init_l = tf.local_variables_initializer()
+ sess.run(init_l)
+ sess.run(init_g)
+ for pass_id in xrange(args.pass_num):
+ pass_start_time = time.time()
+ words_seen = 0
+ for batch_id, data in enumerate(train_batch_generator()):
+ adapted_batch_data = adapt_batch_data(data)
+ words_seen += np.sum(adapted_batch_data['src_sequence_length'])
+ words_seen += np.sum(adapted_batch_data['trg_sequence_length'])
+ outputs = sess.run([updates, loss],
+ feed_dict={
+ item[1]: adapted_batch_data[item[0]]
+ for item in feeding_dict.items()
+ })
+ print("pass_id=%d, batch_id=%d, train_loss: %f" %
+ (pass_id, batch_id, outputs[1]))
+ pass_end_time = time.time()
+ test_loss = do_validataion()
+ time_consumed = pass_end_time - pass_start_time
+ words_per_sec = words_seen / time_consumed
+ print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
+ (pass_id, test_loss, words_per_sec, time_consumed))
+
+
+def infer():
+ feeding_dict, predicted_ids = seq_to_seq_net(
+ embedding_dim=args.embedding_dim,
+ encoder_size=args.encoder_size,
+ decoder_size=args.decoder_size,
+ source_dict_dim=args.dict_size,
+ target_dict_dim=args.dict_size,
+ is_generating=True,
+ beam_size=args.beam_size,
+ max_generation_length=args.max_generation_length)
+
+ src_dict, trg_dict = paddle.dataset.wmt14.get_dict(args.dict_size)
+ test_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ with tf.Session(config=config) as sess:
+ restore(sess, './checkpoint/tf_seq2seq-1500')
+ for batch_id, data in enumerate(test_batch_generator()):
+ src_seq = map(lambda x: x[0], data)
+
+ source_language_seq = [
+ src_dict[item] for seq in src_seq for item in seq
+ ]
+
+ src_sequence_length = np.array(
+ [len(seq) for seq in src_seq]).astype('int32')
+ src_seq_maxlen = np.max(src_sequence_length)
+ src_seq = np.array([
+ padding_data(seq, src_seq_maxlen, END_TOKEN_IDX)
+ for seq in src_seq
+ ]).astype('int32')
+
+ outputs = sess.run([predicted_ids],
+ feed_dict={
+ feeding_dict['src_word_idx']: src_seq,
+ feeding_dict['src_sequence_length']:
+ src_sequence_length
+ })
+
+ print("\nDecoder result comparison: ")
+ source_language_seq = ' '.join(source_language_seq).lstrip(
+ '').rstrip('').strip()
+ inference_seq = ''
+ print(" --> source: " + source_language_seq)
+ for item in outputs[0][0]:
+ if item[0] == END_TOKEN_IDX: break
+ inference_seq += ' ' + trg_dict.get(item[0], '')
+ print(" --> inference: " + inference_seq)
+
+
+if __name__ == '__main__':
+ args = parser.parse_args()
+ print_arguments(args)
+ if args.infer_only:
+ infer()
+ else:
+ train()
diff --git a/benchmark/tensorflow/mnist.py b/benchmark/tensorflow/mnist.py
new file mode 100644
index 0000000000000000000000000000000000000000..7140eed6eaff49b5c65f9ccb2e38f113a4cdbdbf
--- /dev/null
+++ b/benchmark/tensorflow/mnist.py
@@ -0,0 +1,180 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import time
+import numpy as np
+
+import tensorflow as tf
+import paddle.v2 as paddle
+
+DTYPE = tf.float32
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("mnist model benchmark.")
+ parser.add_argument(
+ '--batch_size', type=int, default=128, help='The minibatch size.')
+ parser.add_argument(
+ '--iterations', type=int, default=35, help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=5, help='The number of passes.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ args = parser.parse_args()
+ return args
+
+
+def run_benchmark(args):
+ def weight_variable(dtype, shape):
+ initial = tf.truncated_normal(shape, stddev=0.1, dtype=dtype)
+ return tf.Variable(initial)
+
+ def bias_variable(dtype, shape):
+ initial = tf.constant(0.1, shape=shape, dtype=dtype)
+ return tf.Variable(initial)
+
+ device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
+ with tf.device(device):
+ images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1))
+ labels = tf.placeholder(tf.int64, shape=(None, ))
+
+ # conv1, relu, pool1
+ conv1_weights = weight_variable(DTYPE, [5, 5, 1, 20])
+ conv1_bias = bias_variable(DTYPE, [20])
+ conv1 = tf.nn.conv2d(
+ images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID")
+ relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
+ pool1 = tf.nn.max_pool(
+ relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
+
+ # conv2, relu, pool2
+ conv2_weights = weight_variable(DTYPE, [5, 5, 20, 50])
+ conv2_bias = bias_variable(DTYPE, [50])
+ conv2 = tf.nn.conv2d(
+ pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID")
+ relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
+ pool2 = tf.nn.max_pool(
+ relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
+
+ # FC
+ pool_shape = pool2.get_shape().as_list()
+ hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1)
+ reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim))
+ fc_weights = weight_variable(DTYPE, [hidden_dim, 10])
+ fc_bias = bias_variable(DTYPE, [10])
+ logits = tf.matmul(reshape, fc_weights) + fc_bias
+
+ # Get prediction
+ prediction = tf.nn.softmax(logits)
+
+ # Loss
+ one_hot_labels = tf.one_hot(labels, depth=10)
+ cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1])
+ avg_cost = tf.reduce_mean(cost)
+
+ # Get accuracy
+ correct = tf.equal(tf.argmax(prediction, 1), labels)
+ accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
+
+ # metrics, g_accuracy
+ with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
+ g_accuracy = tf.metrics.accuracy(
+ labels, tf.argmax(
+ prediction, axis=1))
+ vars = tf.contrib.framework.get_variables(
+ scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
+ g_accuracy_reset_op = tf.variables_initializer(vars)
+
+ # Optimizer
+ opt = tf.train.AdamOptimizer(
+ learning_rate=0.001, beta1=0.9, beta2=0.999)
+ train_op = opt.minimize(avg_cost)
+ # train_op = tf.train.AdamOptimizer(1e-4).minimize(avg_cost)
+
+ train_reader = paddle.batch(
+ paddle.dataset.mnist.train(), batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.mnist.test(), batch_size=args.batch_size)
+
+ def eval_test():
+ sess.run(g_accuracy_reset_op)
+ for batch_id, data in enumerate(test_reader()):
+ images_data = np.array(
+ map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
+ labels_data = np.array(map(lambda x: x[1], data)).astype("int64")
+
+ loss, acc, g_acc = sess.run(
+ [avg_cost, accuracy, g_accuracy],
+ feed_dict={images: images_data,
+ labels: labels_data})
+ return g_acc[1]
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ config.gpu_options.allow_growth = True
+
+ with tf.Session(config=config) as sess:
+ init_g = tf.global_variables_initializer()
+ init_l = tf.local_variables_initializer()
+ sess.run(init_g)
+ sess.run(init_l)
+ for pass_id in range(args.pass_num):
+ sess.run(g_accuracy_reset_op)
+
+ pass_start = time.time()
+ for batch_id, data in enumerate(train_reader()):
+ images_data = np.array(
+ map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
+ labels_data = np.array(map(lambda x: x[1], data)).astype(
+ "int64")
+
+ start = time.time()
+ _, loss, acc, g_acc = sess.run(
+ [train_op, avg_cost, accuracy, g_accuracy],
+ feed_dict={images: images_data,
+ labels: labels_data})
+ end = time.time()
+
+ print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
+ (pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
+
+ pass_end = time.time()
+ test_avg_acc = eval_test()
+
+ print(
+ "pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f"
+ % (pass_id, g_acc[1], test_avg_acc,
+ (pass_end - pass_start) / 1000))
+
+
+def print_arguments(args):
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+ run_benchmark(args)
diff --git a/benchmark/tensorflow/resnet.py b/benchmark/tensorflow/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..c432fa8d59571e128b9ff9e3ffa1949b792ef3a4
--- /dev/null
+++ b/benchmark/tensorflow/resnet.py
@@ -0,0 +1,504 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+based on https://github.com/tensorflow/models/blob/master/official/resnet/resnet_model.py
+
+Get help: python resnet.py --help
+See performance on flowers: python resnet.py
+Train on cifar10: python resnet.py --data=cifar10 --with_test
+"""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import time
+import numpy as np
+
+import paddle.v2 as paddle
+import tensorflow as tf
+
+DTYPE = tf.float32
+
+
+def parse_args():
+ parser = argparse.ArgumentParser('Convolution model benchmark.')
+ parser.add_argument(
+ '--model',
+ type=str,
+ choices=['resnet'],
+ default='resnet',
+ help='The model architecture.')
+ parser.add_argument(
+ '--batch_size', type=int, default=32, help='The minibatch size.')
+ parser.add_argument(
+ '--use_fake_data',
+ action='store_true',
+ help='use real data or fake data')
+ parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test'
+ )
+ parser.add_argument(
+ '--iterations',
+ type=int,
+ default=105,
+ help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=300, help='The number of passes.')
+ parser.add_argument(
+ '--order',
+ type=str,
+ default='NHWC',
+ choices=['NCHW', 'NHWC'],
+ help='The data order, now only support NCHW.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--data',
+ type=str,
+ default='flowers102',
+ choices=['flowers102', 'cifar10'],
+ help='The kinds of data.')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ parser.add_argument(
+ '--use_cprof', action='store_true', help='If set, use cProfile.')
+ parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+ parser.add_argument(
+ '--use_nvprof',
+ action='store_true',
+ help='If set, use nvprof for CUDA.')
+ args = parser.parse_args()
+ return args
+
+
+def print_arguments(args):
+ vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
+ vars(args)['device'] == 'GPU')
+ vars(args)['iterations'] = vars(args)['pass_num'] * 1000 if vars(args)[
+ 'with_test'] else vars(args)['iterations']
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def fixed_padding(inputs, kernel_size, data_format):
+ """Pads the input along the spatial dimensions independently of input size.
+ Args:
+ inputs: A tensor of size [batch, channels, height_in, width_in] or
+ [batch, height_in, width_in, channels] depending on data_format.
+ kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
+ Should be a positive integer.
+ data_format: The input format ('channels_last' or 'channels_first').
+ Returns:
+ A tensor with the same format as the input with the data either intact
+ (if kernel_size == 1) or padded (if kernel_size > 1).
+ """
+ pad_total = kernel_size - 1
+ pad_beg = pad_total // 2
+ pad_end = pad_total - pad_beg
+
+ if data_format == 'channels_first':
+ padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end],
+ [pad_beg, pad_end]])
+ else:
+ padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
+ [pad_beg, pad_end], [0, 0]])
+ return padded_inputs
+
+
+def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
+ """Strided 2-D convolution with explicit padding."""
+ # The padding is consistent and is based only on `kernel_size`, not on the
+ # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
+ # This is consistent with PaddlePaddle.
+ # In addition, the calculation for output size in TensorFlow can refer:
+ # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/common_shape_fns.cc
+ if strides > 1:
+ inputs = fixed_padding(inputs, kernel_size, data_format)
+
+ return tf.layers.conv2d(
+ inputs=inputs,
+ filters=filters,
+ kernel_size=kernel_size,
+ strides=strides,
+ padding=('SAME' if strides == 1 else 'VALID'),
+ use_bias=False,
+ kernel_initializer=tf.variance_scaling_initializer(),
+ data_format=data_format)
+
+
+def conv_bn(inputs,
+ filters,
+ kernel_size,
+ strides,
+ is_training,
+ data_format,
+ act=True):
+ # def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
+ # set fused=True for a significant performance boost. See
+ # https://www.tensorflow.org/performance/performance_guide#common_fused_ops
+ inputs = conv2d_fixed_padding(
+ inputs=inputs,
+ filters=filters,
+ kernel_size=kernel_size,
+ strides=strides,
+ data_format=data_format)
+ inputs = tf.layers.batch_normalization(
+ inputs=inputs,
+ axis=1 if data_format == 'channels_first' else 3,
+ momentum=0.9,
+ epsilon=1e-05,
+ center=True,
+ scale=True,
+ training=is_training,
+ fused=True)
+ if act:
+ inputs = tf.nn.relu(inputs)
+ return inputs
+
+
+def basicblock(inputs, filters, is_training, projection_shortcut, strides,
+ data_format):
+ shortcut = inputs
+ if projection_shortcut is not None:
+ shortcut = projection_shortcut(inputs)
+ inputs = conv_bn(inputs, filters, 3, strides, is_training, data_format)
+ inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
+ inputs = inputs + shortcut
+ inputs = tf.nn.relu(inputs)
+ return inputs
+
+
+def bottleneck(inputs, filters, is_training, projection_shortcut, strides,
+ data_format):
+ shortcut = inputs
+ if projection_shortcut is not None:
+ shortcut = projection_shortcut(inputs)
+ inputs = conv_bn(inputs, filters, 1, strides, is_training, data_format)
+ inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
+ inputs = conv_bn(
+ inputs, filters * 4, 1, 1, is_training, data_format, act=False)
+ inputs = inputs + shortcut
+ inputs = tf.nn.relu(inputs)
+ return inputs
+
+
+def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
+ data_format):
+ # Bottleneck blocks end with 4x the number of filters as they start with
+ filters_out = 4 * filters if block_fn is bottleneck else filters
+
+ def projection_shortcut(inputs):
+ return conv2d_fixed_padding(
+ inputs=inputs,
+ filters=filters_out,
+ kernel_size=1,
+ strides=strides,
+ data_format=data_format)
+
+ # Only the first block per block_layer uses projection_shortcut and strides
+ inputs = block_fn(inputs, filters, is_training, projection_shortcut,
+ strides, data_format)
+
+ for _ in range(1, blocks):
+ inputs = block_fn(inputs, filters, is_training, None, 1, data_format)
+
+ return tf.identity(inputs, name)
+
+
+def resnet_imagenet(depth, class_dim, data_format):
+ """Returns the ResNet model for a given size and number of output classes."""
+
+ def resnet_generator(block_fn,
+ layers,
+ num_classes,
+ data_format='channels_last'):
+ if data_format is None:
+ data_format = ('channels_first'
+ if tf.test.is_built_with_cuda() else 'channels_last')
+
+ def model(inputs, is_training):
+ """Constructs the ResNet model given the inputs."""
+ if data_format == 'channels_first':
+ # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
+ # This provides a large performance boost on GPU. See
+ # https://www.tensorflow.org/performance/performance_guide#data_formats
+ inputs = tf.transpose(inputs, [0, 3, 1, 2])
+
+ inputs = conv_bn(inputs, 64, 7, 2, is_training, data_format)
+ inputs = tf.identity(inputs, 'initial_conv')
+ inputs = tf.layers.max_pooling2d(
+ inputs=inputs,
+ pool_size=3,
+ strides=2,
+ padding='SAME',
+ data_format=data_format)
+ inputs = tf.identity(inputs, 'initial_max_pool')
+ inputs = block_layer(inputs, 64, block_fn, layers[0], 1,
+ is_training, 'block_layer1', data_format)
+ inputs = block_layer(inputs, 128, block_fn, layers[1], 2,
+ is_training, 'block_layer2', data_format)
+ inputs = block_layer(inputs, 256, block_fn, layers[2], 2,
+ is_training, 'block_layer3', data_format)
+ inputs = block_layer(inputs, 512, block_fn, layers[3], 2,
+ is_training, 'block_layer4', data_format)
+ inputs = tf.layers.average_pooling2d(
+ inputs=inputs,
+ pool_size=7,
+ strides=1,
+ padding='VALID',
+ data_format=data_format)
+ inputs = tf.identity(inputs, 'final_avg_pool')
+ inputs = tf.reshape(inputs,
+ [-1, 512 if block_fn is basicblock else 2048])
+ inputs = tf.layers.dense(inputs=inputs, units=num_classes)
+ inputs = tf.identity(inputs, 'final_dense')
+ return inputs
+
+ return model
+
+ model_params = {
+ 18: {
+ 'block': basicblock,
+ 'layers': [2, 2, 2, 2]
+ },
+ 34: {
+ 'block': basicblock,
+ 'layers': [3, 4, 6, 3]
+ },
+ 50: {
+ 'block': bottleneck,
+ 'layers': [3, 4, 6, 3]
+ },
+ 101: {
+ 'block': bottleneck,
+ 'layers': [3, 4, 23, 3]
+ },
+ 152: {
+ 'block': bottleneck,
+ 'layers': [3, 8, 36, 3]
+ },
+ 200: {
+ 'block': bottleneck,
+ 'layers': [3, 24, 36, 3]
+ }
+ }
+ if depth not in model_params:
+ raise ValueError('Not a valid depth:', depth)
+ params = model_params[depth]
+ return resnet_generator(params['block'], params['layers'], class_dim,
+ data_format)
+
+
+def resnet_cifar10(depth, num_classes, data_format):
+ if depth % 6 != 2:
+ raise ValueError('depth must be 6n + 2:', depth)
+
+ num_blocks = (depth - 2) // 6
+
+ if data_format is None:
+ data_format = ('channels_first'
+ if tf.test.is_built_with_cuda() else 'channels_last')
+
+ def model(inputs, is_training):
+ inputs = conv_bn(inputs, 16, 3, 1, is_training, data_format)
+ inputs = tf.identity(inputs, 'initial_conv')
+ inputs = block_layer(inputs, 16, basicblock, num_blocks, 1, is_training,
+ 'block_layer1', data_format)
+ inputs = block_layer(inputs, 32, basicblock, num_blocks, 2, is_training,
+ 'block_layer2', data_format)
+ inputs = block_layer(inputs, 64, basicblock, num_blocks, 2, is_training,
+ 'block_layer3', data_format)
+ inputs = tf.layers.average_pooling2d(
+ inputs=inputs,
+ pool_size=8,
+ strides=1,
+ padding='VALID',
+ data_format=data_format)
+ inputs = tf.identity(inputs, 'final_avg_pool')
+ inputs = tf.reshape(inputs, [-1, 64])
+ inputs = tf.layers.dense(inputs=inputs, units=num_classes)
+ inputs = tf.identity(inputs, 'final_dense')
+ return inputs
+
+ return model
+
+
+def run_benchmark(args, data_format='channels_last', device='/cpu:0'):
+ """Our model_fn for ResNet to be used with our Estimator."""
+
+ class_dim = 1000
+ dshape = (None, 224, 224, 3)
+
+ pdshape = (3, 224, 224)
+ if args.data == 'flowers102':
+ class_dim = 102
+ dshape = (None, 224, 224, 3)
+ pdshape = (3, 224, 224)
+ elif args.data == 'cifar10':
+ class_dim = 10
+ dshape = (None, 32, 32, 3)
+ pdshape = (3, 32, 32)
+
+ with tf.device(device):
+ images = tf.placeholder(DTYPE, shape=dshape)
+ labels = tf.placeholder(tf.int64, shape=(None, ))
+ is_training = tf.placeholder('bool')
+ onehot_labels = tf.one_hot(labels, depth=class_dim)
+
+ network = resnet_cifar10(
+ 32, class_dim,
+ data_format) if args.data == 'cifar10' else resnet_imagenet(
+ 50, class_dim, data_format)
+
+ logits = network(inputs=images, is_training=is_training)
+
+ cross_entropy = tf.losses.softmax_cross_entropy(
+ logits=logits, onehot_labels=onehot_labels)
+ avg_cost = tf.reduce_mean(cross_entropy)
+
+ correct = tf.equal(tf.argmax(logits, 1), labels)
+ accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
+
+ lr = 0.1 if args.data == 'cifar10' else 0.01
+ optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9)
+
+ # Batch norm requires update_ops to be added as a train_op dependency.
+ update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
+ with tf.control_dependencies(update_ops):
+ train_op = optimizer.minimize(avg_cost)
+
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.cifar.test10()
+ if args.data == 'cifar10' else paddle.dataset.flowers.test(),
+ batch_size=100)
+
+ def test():
+ test_accs = []
+ for batch_id, data in enumerate(test_reader()):
+ test_images = np.array(
+ map(lambda x: np.transpose(x[0].reshape(pdshape),
+ axes=[1, 2, 0]), data)).astype("float32")
+ test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
+ test_accs.append(
+ accuracy.eval(feed_dict={
+ images: test_images,
+ labels: test_labels,
+ is_training: False
+ }))
+ print("Pass = %d, Train performance = %f imgs/s, Test accuracy = %f\n" %
+ (pass_id, num_samples / train_elapsed, np.mean(test_accs)))
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ config.gpu_options.allow_growth = True
+
+ with tf.Session(config=config) as sess:
+ init_g = tf.global_variables_initializer()
+ init_l = tf.local_variables_initializer()
+ sess.run(init_g)
+ sess.run(init_l)
+
+ if args.use_fake_data:
+ data = train_reader().next()
+ images_data = np.array(
+ map(lambda x: np.transpose(x[0].reshape(pdshape),
+ axes=[1, 2, 0]), data)).astype("float32")
+ labels_data = np.array(map(lambda x: x[1], data)).astype('int64')
+ iters, num_samples, start_time = 0, 0, 0.0
+ for pass_id in range(args.pass_num):
+ if iters == args.iterations:
+ break
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ if not args.use_fake_data:
+ images_data = np.array(
+ map(lambda x: np.transpose(x[0].reshape(pdshape),
+ axes=[1, 2, 0]), data)).astype("float32")
+ labels_data = np.array(map(lambda x: x[1], data)).astype(
+ 'int64')
+ _, loss, acc = sess.run([train_op, avg_cost, accuracy],
+ feed_dict={
+ images: images_data,
+ labels: labels_data,
+ is_training: True
+ })
+ iters += 1
+ train_accs.append(acc)
+ train_losses.append(loss)
+ num_samples += len(data)
+ print("Pass=%d, Iter=%d, Loss=%f, Accuray=%f\n" %
+ (pass_id, iters, loss, acc))
+
+ train_elapsed = time.time() - start_time
+ print("Pass=%d, Loss=%f, Accuray=%f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+
+ # evaluation
+ if args.with_test:
+ test()
+
+ if not args.with_test:
+ duration = time.time() - start_time
+ examples_per_sec = num_samples / duration
+ sec_per_batch = duration / (iters - args.skip_batch_num)
+
+ print('Total examples: %d, total time: %.5f' %
+ (num_samples, duration))
+ print('%.5f examples/sec, %.5f sec/batch' %
+ (examples_per_sec, sec_per_batch))
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+ if tf.test.is_built_with_cuda():
+ device = '/device:GPU:0'
+ if args.order == 'NHWC':
+ data_format = 'channels_last'
+ else:
+ data_format = 'channels_first'
+ else:
+ device = '/cpu:0'
+ if args.order == 'NHWC':
+ data_format = 'channels_last'
+ else:
+ raise ValueError('Only support NHWC order in CPU mode')
+
+ run_benchmark(args, data_format, device)
diff --git a/benchmark/tensorflow/stacked_dynamic_lstm.py b/benchmark/tensorflow/stacked_dynamic_lstm.py
new file mode 100644
index 0000000000000000000000000000000000000000..5285033005044d907d0b7e91eb66ee7281c4f27a
--- /dev/null
+++ b/benchmark/tensorflow/stacked_dynamic_lstm.py
@@ -0,0 +1,220 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import argparse
+import time
+import tensorflow as tf
+
+import paddle.v2 as paddle
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("LSTM model benchmark.")
+ parser.add_argument(
+ '--batch_size',
+ type=int,
+ default=32,
+ help='The sequence number of a batch data. (default: %(default)d)')
+ parser.add_argument(
+ '--stacked_num',
+ type=int,
+ default=5,
+ help='Number of lstm layers to stack. (default: %(default)d)')
+ parser.add_argument(
+ '--embedding_dim',
+ type=int,
+ default=512,
+ help='Dimension of embedding table. (default: %(default)d)')
+ parser.add_argument(
+ '--hidden_dim',
+ type=int,
+ default=512,
+ help='Hidden size of lstm unit. (default: %(default)d)')
+ parser.add_argument(
+ '--pass_num',
+ type=int,
+ default=10,
+ help='Epoch number to train. (default: %(default)d)')
+ parser.add_argument(
+ '--learning_rate',
+ type=float,
+ default=0.0002,
+ help='Learning rate used to train. (default: %(default)f)')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ args = parser.parse_args()
+ return args
+
+
+def print_arguments(args):
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def dynamic_lstm_model(dict_size,
+ embedding_dim,
+ hidden_dim,
+ stacked_num,
+ class_num=2,
+ is_train=True):
+ word_idx = tf.placeholder(tf.int64, shape=[None, None])
+ sequence_length = tf.placeholder(tf.int64, shape=[None, ])
+
+ embedding_weights = tf.get_variable('word_embeddings',
+ [dict_size, embedding_dim])
+ embedding = tf.nn.embedding_lookup(embedding_weights, word_idx)
+
+ lstm_cell = tf.nn.rnn_cell.LSTMCell(
+ num_units=hidden_dim, use_peepholes=False)
+ stacked_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * stacked_num)
+
+ # final_state [LSTMTuple(c, h), LSTMTuple(c, h) ...] total stacked_num LSTMTuples
+ _, final_state = tf.nn.dynamic_rnn(
+ cell=stacked_cell,
+ inputs=embedding,
+ dtype=tf.float32,
+ sequence_length=sequence_length)
+
+ w = tf.Variable(
+ tf.truncated_normal([hidden_dim, class_num]), dtype=tf.float32)
+ bias = tf.Variable(
+ tf.constant(
+ value=0.0, shape=[class_num], dtype=tf.float32))
+ prediction = tf.matmul(final_state[-1][1], w) + bias
+
+ if not is_train:
+ return (word_idx, sequence_length), tf.nn.softmax(prediction)
+
+ label = tf.placeholder(tf.int64, shape=[None, ])
+ loss = tf.nn.softmax_cross_entropy_with_logits(
+ labels=tf.one_hot(label, 2), logits=prediction)
+ avg_loss = tf.reduce_mean(loss)
+
+ correct_count = tf.equal(tf.argmax(prediction, 1), label)
+ acc = tf.reduce_mean(tf.cast(correct_count, tf.float32))
+
+ with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
+ g_acc = tf.metrics.accuracy(label, tf.argmax(prediction, axis=1))
+ vars = tf.contrib.framework.get_variables(
+ scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
+ reset_op = tf.variables_initializer(vars)
+
+ return (word_idx, sequence_length, label), avg_loss, acc, g_acc, reset_op
+
+
+def padding_data(data, padding_size, value):
+ data = data + [value] * padding_size
+ return data[:padding_size]
+
+
+def train(args):
+ word_dict = paddle.dataset.imdb.word_dict()
+ dict_size = len(word_dict)
+
+ feeding_list, avg_loss, acc, g_acc, reset_op = dynamic_lstm_model(
+ dict_size, args.embedding_dim, args.hidden_dim, args.stacked_num)
+
+ adam_optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
+ train_op = adam_optimizer.minimize(avg_loss)
+
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.imdb.train(word_dict), buf_size=25000),
+ batch_size=args.batch_size)
+
+ test_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.imdb.test(word_dict), buf_size=25000),
+ batch_size=args.batch_size)
+
+ def do_validation(sess):
+ sess.run(reset_op)
+ for batch_id, data in enumerate(test_reader()):
+ word_idx = map(lambda x: x[0], data)
+ sequence_length = np.array(
+ [len(seq) for seq in word_idx]).astype('int64')
+ maxlen = np.max(sequence_length)
+ word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
+ word_idx = np.array(word_idx).astype('int64')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+
+ _, loss, fetch_acc, fetch_g_acc = sess.run(
+ [train_op, avg_loss, acc, g_acc],
+ feed_dict={
+ feeding_list[0]: word_idx,
+ feeding_list[1]: sequence_length,
+ feeding_list[2]: label
+ })
+
+ return fetch_g_acc[1]
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ config.gpu_options.allow_growth = True
+ with tf.Session(config=config) as sess:
+ init_g = tf.global_variables_initializer()
+ init_l = tf.local_variables_initializer()
+ sess.run(init_l)
+ sess.run(init_g)
+
+ for pass_id in xrange(args.pass_num):
+ # clear accuracy local variable
+ sess.run(reset_op)
+ pass_start_time = time.time()
+ words_seen = 0
+
+ for batch_id, data in enumerate(train_reader()):
+ word_idx = map(lambda x: x[0], data)
+ sequence_length = np.array(
+ [len(seq) for seq in word_idx]).astype('int64')
+ words_seen += np.sum(sequence_length)
+ maxlen = np.max(sequence_length)
+ word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
+ word_idx = np.array(word_idx).astype('int64')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+
+ _, loss, fetch_acc, fetch_g_acc = sess.run(
+ [train_op, avg_loss, acc, g_acc],
+ feed_dict={
+ feeding_list[0]: word_idx,
+ feeding_list[1]: sequence_length,
+ feeding_list[2]: label
+ })
+
+ print("pass_id=%d, batch_id=%d, loss: %f, acc: %f, avg_acc: %f"
+ % (pass_id, batch_id, loss, fetch_acc, fetch_g_acc[1]))
+
+ pass_end_time = time.time()
+ time_consumed = pass_end_time - pass_start_time
+ words_per_sec = words_seen / time_consumed
+ test_acc = do_validation(sess)
+ print("pass_id=%d, test_acc: %f, words/s: %f, sec/pass: %f" %
+ (pass_id, test_acc, words_per_sec, time_consumed))
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+
+ if args.infer_only:
+ pass
+ else:
+ train(args)
diff --git a/benchmark/tensorflow/vgg.py b/benchmark/tensorflow/vgg.py
new file mode 100644
index 0000000000000000000000000000000000000000..fba5ec71a46b3ac8b2e1244424c39fd5192e5458
--- /dev/null
+++ b/benchmark/tensorflow/vgg.py
@@ -0,0 +1,324 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""VGG16 benchmark in TensorFlow"""
+import tensorflow as tf
+import paddle.v2 as paddle
+import numpy as np
+import argparse
+import time
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ '--batch_size', type=int, default=128, help="Batch size for training.")
+parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test')
+parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+parser.add_argument(
+ '--learning_rate',
+ type=float,
+ default=1e-3,
+ help="Learning rate for training.")
+parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
+parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help="The device type.")
+parser.add_argument(
+ '--data_format',
+ type=str,
+ default='NHWC',
+ choices=['NCHW', 'NHWC'],
+ help='The data order, NCHW=[batch, channels, height, width].'
+ 'Only support NHWC right now.')
+parser.add_argument(
+ '--data_set',
+ type=str,
+ default='cifar10',
+ choices=['cifar10', 'flowers'],
+ help='Optional dataset for benchmark.')
+args = parser.parse_args()
+
+
+class VGG16Model(object):
+ def __init__(self):
+ self.parameters = []
+
+ def batch_norm_relu(self, inputs, is_training):
+ """Performs a batch normalization followed by a ReLU."""
+ # We set fused=True for a significant speed boost. See
+ # https://www.tensorflow.org/speed/speed_guide#common_fused_ops
+ inputs = tf.layers.batch_normalization(
+ inputs=inputs,
+ axis=1 if args.data_format == 'NCHW' else -1,
+ momentum=0.9,
+ epsilon=1e-05,
+ center=True,
+ scale=True,
+ training=is_training,
+ fused=True)
+ inputs = tf.nn.relu(inputs)
+ return inputs
+
+ def conv_bn_layer(self,
+ name,
+ images,
+ kernel_shape,
+ is_training,
+ drop_rate=0.0):
+ with tf.name_scope(name) as scope:
+ kernel = tf.Variable(
+ tf.truncated_normal(
+ kernel_shape, dtype=tf.float32, stddev=1e-1),
+ name='weights')
+ conv = tf.nn.conv2d(
+ images,
+ kernel, [1, 1, 1, 1],
+ data_format=args.data_format,
+ padding='SAME')
+ biases = tf.Variable(
+ tf.constant(
+ 0.0, shape=[kernel_shape[-1]], dtype=tf.float32),
+ trainable=True,
+ name='biases')
+ out = tf.nn.bias_add(conv, biases)
+ out = self.batch_norm_relu(out, is_training)
+ out = tf.layers.dropout(out, rate=drop_rate, training=is_training)
+ return out
+
+ def fc_layer(self, name, inputs, shape):
+ with tf.name_scope(name) as scope:
+ fc_w = tf.Variable(
+ tf.truncated_normal(
+ shape, dtype=tf.float32, stddev=1e-1),
+ name='weights')
+ fc_b = tf.Variable(
+ tf.constant(
+ 0.0, shape=[shape[-1]], dtype=tf.float32),
+ trainable=True,
+ name='biases')
+ out = tf.nn.bias_add(tf.matmul(inputs, fc_w), fc_b)
+ return out
+
+ def network(self, images, class_dim, is_training):
+ """ VGG16 model structure.
+
+ TODO(kuke): enable this network to support the 'NCHW' data format
+ """
+
+ # conv1
+ conv1_1 = self.conv_bn_layer(
+ 'conv1_1', images, [3, 3, 3, 64], is_training, drop_rate=0.3)
+ conv1_2 = self.conv_bn_layer(
+ 'conv1_2', conv1_1, [3, 3, 64, 64], is_training, drop_rate=0.0)
+ # pool1
+ pool1 = tf.nn.max_pool(
+ conv1_2,
+ ksize=[1, 2, 2, 1],
+ strides=[1, 2, 2, 1],
+ padding='SAME',
+ name='pool1')
+ # conv2
+ conv2_1 = self.conv_bn_layer(
+ 'conv2_1', pool1, [3, 3, 64, 128], is_training, drop_rate=0.4)
+ conv2_2 = self.conv_bn_layer(
+ 'conv2_2', conv2_1, [3, 3, 128, 128], is_training, drop_rate=0.0)
+ # pool2
+ pool2 = tf.nn.max_pool(
+ conv2_2,
+ ksize=[1, 2, 2, 1],
+ strides=[1, 2, 2, 1],
+ padding='SAME',
+ name='pool2')
+ # conv3
+ conv3_1 = self.conv_bn_layer(
+ 'conv3_1', pool2, [3, 3, 128, 256], is_training, drop_rate=0.4)
+ conv3_2 = self.conv_bn_layer(
+ 'conv3_2', conv3_1, [3, 3, 256, 256], is_training, drop_rate=0.4)
+ conv3_3 = self.conv_bn_layer(
+ 'conv3_3', conv3_2, [3, 3, 256, 256], is_training, drop_rate=0.0)
+ # pool3
+ pool3 = tf.nn.max_pool(
+ conv3_3,
+ ksize=[1, 2, 2, 1],
+ strides=[1, 2, 2, 1],
+ padding='SAME',
+ name='pool3')
+ # conv4
+ conv4_1 = self.conv_bn_layer(
+ 'conv4_1', pool3, [3, 3, 256, 512], is_training, drop_rate=0.4)
+ conv4_2 = self.conv_bn_layer(
+ 'conv4_2', conv4_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
+ conv4_3 = self.conv_bn_layer(
+ 'conv4_3', conv4_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
+ # pool4
+ pool4 = tf.nn.max_pool(
+ conv4_3,
+ ksize=[1, 2, 2, 1],
+ strides=[1, 2, 2, 1],
+ padding='SAME',
+ name='pool4')
+ # conv5
+ conv5_1 = self.conv_bn_layer(
+ 'conv5_1', pool4, [3, 3, 512, 512], is_training, drop_rate=0.4)
+ conv5_2 = self.conv_bn_layer(
+ 'conv5_2', conv5_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
+ conv5_3 = self.conv_bn_layer(
+ 'conv5_3', conv5_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
+ # pool5
+ pool5 = tf.nn.max_pool(
+ conv5_3,
+ ksize=[1, 2, 2, 1],
+ strides=[1, 2, 2, 1],
+ padding='SAME',
+ name='pool4')
+ # flatten
+ shape = int(np.prod(pool5.get_shape()[1:]))
+ pool5_flat = tf.reshape(pool5, [-1, shape])
+ # fc1
+ drop = tf.layers.dropout(pool5_flat, rate=0.5, training=is_training)
+ fc1 = self.fc_layer('fc1', drop, [shape, 512])
+ # fc2
+ bn = self.batch_norm_relu(fc1, is_training)
+ drop = tf.layers.dropout(bn, rate=0.5, training=is_training)
+ fc2 = self.fc_layer('fc2', drop, [512, 512])
+
+ fc3 = self.fc_layer('fc3', fc2, [512, class_dim])
+
+ return fc3
+
+
+def run_benchmark():
+ """Run benchmark on cifar10 or flowers."""
+
+ if args.data_set == "cifar10":
+ class_dim = 10
+ raw_shape = (3, 32, 32)
+ dat_shape = (None, 32, 32, 3) if args.data_format == 'NHWC' else (
+ None, 3, 32, 32)
+ else:
+ class_dim = 102
+ raw_shape = (3, 224, 224)
+ dat_shape = (None, 224, 224, 3) if args.data_format == 'NHWC' else (
+ None, 3, 224, 224)
+
+ device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
+
+ with tf.device(device):
+ images = tf.placeholder(tf.float32, shape=dat_shape)
+ labels = tf.placeholder(tf.int64, shape=(None, ))
+ is_training = tf.placeholder('bool')
+ onehot_labels = tf.one_hot(labels, depth=class_dim)
+
+ vgg16 = VGG16Model()
+ logits = vgg16.network(images, class_dim, is_training)
+ loss = tf.losses.softmax_cross_entropy(
+ onehot_labels=onehot_labels, logits=logits)
+ avg_loss = tf.reduce_mean(loss)
+
+ correct = tf.equal(tf.argmax(logits, 1), labels)
+ accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
+
+ optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
+ update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
+ with tf.control_dependencies(update_ops):
+ train_op = optimizer.minimize(avg_loss)
+
+ # data reader
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.test10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+
+ # test
+ def test():
+ test_accs = []
+ for batch_id, data in enumerate(test_reader()):
+ test_images = np.array(
+ map(lambda x: np.transpose(x[0].reshape(raw_shape),
+ axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
+ test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
+ test_accs.append(
+ accuracy.eval(feed_dict={
+ images: test_images,
+ labels: test_labels,
+ is_training: False
+ }))
+ return np.mean(test_accs)
+
+ config = tf.ConfigProto(
+ intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
+ config.gpu_options.allow_growth = True
+
+ with tf.Session(config=config) as sess:
+ init_g = tf.global_variables_initializer()
+ init_l = tf.local_variables_initializer()
+ sess.run(init_g)
+ sess.run(init_l)
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in range(args.num_passes):
+ # train
+ num_samples = 0
+ start_time = time.time()
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ train_images = np.array(
+ map(lambda x: np.transpose(x[0].reshape(raw_shape),
+ axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
+ train_labels = np.array(map(lambda x: x[1], data)).astype(
+ 'int64')
+ _, loss, acc = sess.run([train_op, avg_loss, accuracy],
+ feed_dict={
+ images: train_images,
+ labels: train_labels,
+ is_training: True
+ })
+ iters += 1
+ num_samples += len(data)
+ print("Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" %
+ (pass_id, iters, loss, acc))
+ train_elapsed = time.time() - start_time
+ # test
+ pass_test_acc = test()
+ print("Pass = %d, Train speed = %f imgs/s, Test accuracy = %f\n" %
+ (pass_id, num_samples / train_elapsed, pass_test_acc))
+
+
+def print_arguments():
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == '__main__':
+ print_arguments()
+ run_benchmark()
diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake
index a25cff5fc567f22d4573625487f31bd4192bb172..5759e5c489724332793bf103b7aacf7ffb068611 100644
--- a/cmake/external/mkldnn.cmake
+++ b/cmake/external/mkldnn.cmake
@@ -36,7 +36,8 @@ MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
-INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
+INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) # For MKLDNN code to include internal headers.
+INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include mkldnn.h
IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake
index df3f0c7f0c31efaa127515bb98e5668b8f9df199..796bcf28a1dfb308ccb7a2f839742c5c2fcf2002 100644
--- a/cmake/external/mklml.cmake
+++ b/cmake/external/mklml.cmake
@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
-SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
+SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
diff --git a/cmake/external/snappystream.cmake b/cmake/external/snappystream.cmake
index 5377a0b046a796cd6f0bb1fb466e1cd0b4b678bf..8f7a3bf8eeaef75c8840f4ea318b484d33249bb7 100644
--- a/cmake/external/snappystream.cmake
+++ b/cmake/external/snappystream.cmake
@@ -54,5 +54,7 @@ add_library(snappystream STATIC IMPORTED GLOBAL)
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION
"${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
-include_directories(${SNAPPYSTREAM_INCLUDE_DIR})
+include_directories(${SNAPPYSTREAM_INCLUDE_DIR}) # For snappysteam to include its own headers.
+include_directories(${THIRD_PARTY_PATH}/install) # For Paddle to include snappy stream headers.
+
add_dependencies(snappystream extern_snappystream)
diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake
index 9a9a20f897e09b823dfb19ff841c3f2aeb3f9fe6..a631ad14b18310598f7eea3a51839d61a9e456ff 100644
--- a/cmake/external/warpctc.cmake
+++ b/cmake/external/warpctc.cmake
@@ -62,7 +62,8 @@ ExternalProject_Add(
)
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
-INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
+INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) # For warpctc code to include its headers.
+INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include warpctc headers.
ADD_LIBRARY(warpctc SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake
index 20b8506e678af4db6ccb65bef99d28e085a67bf2..c3d73235453c8c9fd2859c3ab142888e8bda2dbe 100644
--- a/cmake/external/zlib.cmake
+++ b/cmake/external/zlib.cmake
@@ -25,7 +25,8 @@ ELSE(WIN32)
SET(ZLIB_LIBRARIES "${ZLIB_INSTALL_DIR}/lib/libz.a" CACHE FILEPATH "zlib library." FORCE)
ENDIF(WIN32)
-INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR})
+INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR}) # For zlib code to include its own headers.
+INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include zlib.h.
ExternalProject_Add(
extern_zlib
diff --git a/cmake/generic.cmake b/cmake/generic.cmake
index 3fe750f47efc149bb1af6086841bffd5dd8e85fd..c4c9f77df8d57fe162616d2250bd4dfe5b7754e7 100644
--- a/cmake/generic.cmake
+++ b/cmake/generic.cmake
@@ -244,14 +244,14 @@ function(cc_test TARGET_NAME)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS)
- target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
+ target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
if("${cc_test_DEPS}" MATCHES "ARCHIVE_START")
list(REMOVE_ITEM cc_test_DEPS ARCHIVE_START ARCHIVE_END)
endif()
- add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
+ add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
- WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction(cc_test)
@@ -311,8 +311,8 @@ function(nv_test TARGET_NAME)
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
- target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
- add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
+ target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
+ add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME})
endif()
endfunction(nv_test)
@@ -387,8 +387,8 @@ function(hip_test TARGET_NAME)
endif()
add_executable(${TARGET_NAME} ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
- target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
- add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
+ target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main memory gtest gflags)
+ add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main memory gtest gflags)
add_test(${TARGET_NAME} ${TARGET_NAME})
endif()
endfunction(hip_test)
@@ -561,9 +561,9 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
- COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python ${py_test_ENVS}
+ COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
- WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction()
diff --git a/doc/design/file_manager/README.md b/doc/design/file_manager/README.md
deleted file mode 100644
index 3df10d801e568834729f902aace483d033340e2d..0000000000000000000000000000000000000000
--- a/doc/design/file_manager/README.md
+++ /dev/null
@@ -1,87 +0,0 @@
-# FileManager设计文档
-## 目标
-在本文档中,我们设计说明了名为FileManager系统,方便用户上传自己的训练数据以进行分布式训练
-
-主要功能包括:
-
-- 提供常用的命令行管理命令管理文件和目录
-- 支持大文件的断点上传、下载
-
-## 名词解释
-- PFS:是`Paddlepaddle cloud File System`的缩写,是对用户文件存储空间的抽象,与之相对的是local filesystem。目前我们用CephFS来搭建。
-- [CephFS](http://docs.ceph.com/docs/master/cephfs/):一个POSIX兼容的文件系统。
-- Chunk:逻辑划上文件分块的单位。
-
-## 模块
-### 架构图
-
-
-### PFSClient
-- 功能: 详细设计[link](./pfs/pfsclient.md)
- - 提供用户管理文件的命令
- - 需要可以跨平台执行
-
-- 双向验证
- PFSClient需要和Ingress之间做双向验证[tls](#tls),所以用户需要首先在`cloud.paddlepaddle.org`上注册一下,申请用户空间,并且把系统生成的CA(certificate authority)、Key、CRT(CA signed certificate)下载到本地,然后才能使用PFSClient。
-
-### [Ingress](https://kubernetes.io/docs/concepts/services-networking/ingress/)
-- 功能:
- 提供七层协议的反向代理、基于粘性会话的负载均衡功能。
-
-- 透传用户身份的办法
- Ingress需要把PFSClient的身份信息传给PFSServer,配置的方法参考[link](http://www.integralist.co.uk/posts/clientcertauth.html#3)
-
-### PFSServer
-PFSServer提供RESTful API接口,接收处理PFSClient端的文件管理请求,并且把结果返回PFSClient端。
-
-RESTful API
-
-- /api/v1/files
- - `GET /api/v1/files`: Get metadata of files or directories.
- - `POST /api/v1/files`: Create files or directories.
- - `PATCH /api/v1/files`: Update files or directories.
- - `DELETE /api/v1/files`: Delete files or directories.
-
-- /api/v1/file/chunks
- - `GET /api/v1/storage/file/chunks`: Get chunks's metadata of a file.
-
-- /api/v1/storage/files
- - `GET /api/v1/storage/files`: Download files or directories.
- - `POST /api/v1/storage/files`: Upload files or directories.
-
-- /api/v1/storage/file/chunks
- - `GET /api/v1/storage/file/chunks`: Download chunks's data.
- - `POST /api/v1/storage/file/chunks`: Upload chunks's data.
-
-## 文件传输优化
-
-### 分块文件传输
-用户文件可能是比较大的,上传到Cloud或者下载到本地的时间可能比较长,而且在传输的过程中也可能出现网络不稳定的情况。为了应对以上的问题,我们提出了Chunk的概念,一个Chunk由所在的文件偏移、数据、数据长度及校验值组成。文件的上传和下载都是通过对Chunk的操作来实现的。由于Chunk比较小(默认256K),完成一个传输动作完成的时间也比较短,不容易出错。PFSClient需要在传输完毕最后一个Chunk的时候检查destination文件的MD5值是否和source文件一致。
-
-一个典型的Chunk如下所示:
-
-```
-type Chunk struct {
- fileOffset int64
- checksum uint32
- len uint32
- data []byte
-}
-```
-
-### 生成sparse文件
-当destination文件不存在或者大小和source文件不一致时,可以用[Fallocate](https://Go.org/pkg/syscall/#Fallocate)生成sparse文件,然后就可以并发写入多个Chunk。
-
-### 覆盖不一致的部分
-文件传输的的关键在于需要PFSClient端对比source和destination的文件Chunks的checksum是否保持一致,不一致的由PFSClient下载或者传输Chunk完成。这样已经传输成功的部分就不用重新传输了。
-
-## 用户使用流程
-参考[link](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/cluster_train/data_dispatch.md)
-
-## 框架生成
-用[swagger](https://github.com/swagger-api/swagger-codegen)生成PFSClient和PFSServer的框架部分,以便我们可以把更多的精力放到逻辑本身上。
-
-## 参考文档
-- [TLS complete guide](https://github.com/k8sp/tls/blob/master/tls.md)
-- [aws.s3](http://docs.aws.amazon.com/cli/latest/reference/s3/)
-- [linux man document](https://linux.die.net/man/)
diff --git a/doc/design/file_manager/pfs/pfsclient.md b/doc/design/file_manager/pfs/pfsclient.md
deleted file mode 100644
index 56bc70c54bbc92b78d66e04fb495b1300cf8ebe0..0000000000000000000000000000000000000000
--- a/doc/design/file_manager/pfs/pfsclient.md
+++ /dev/null
@@ -1,129 +0,0 @@
-# PFSClient
-
-## Description
-The `pfs` command is a Command Line Interface to manage your files on PaddlePaddle Cloud
-
-## Synopsis
-```
-paddle [options] pfs [parameters]
-```
-
-## Options
-```
---profile (string)
- Use a specific profile from your credential file.
-
---help (string)
- Display more information about command
-
---version
- Output version information and exit
-
---debug
- Show detailed debugging log
-
---only-show-errors (boolean)
- Only errors and warnings are displayed. All other output is suppressed.
-```
-
-## Path Arguments
-When using a command, we need to specify path arguments. There are two path argument type: `localpath` and `pfspath`.
-
-A `pfspath` begin with `/pfs`, eg: `/pfs/$DATACENTER/home/$USER/folder`.
-
-[Here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/cluster_train/data_dispatch.md#上传训练文件) is how to config datacenters.
-
-## order of Path Arguments
-Commonly, if there are two path arguments, the first is the source, and the second is the destination.
-
-## Subcommonds
-- rm - remove files or directories
-
-```
-Synopsis:
- rm [-r] [-v] ...
-
-Options:
- -r
- Remove directories and their contents recursively
- -v
- Cause rm to be verbose, showing files after they are removed.
-
-Examples:
- paddle pfs rm /pfs/$DATACENTER/home/$USER/file
- paddle pfs rm -r /pfs/$DATACENTER/home/$USER/folder
-```
-- mv - move (rename) files
-
-```
-Synopsis:
- mv [-f | -n] [-v]
- mv [-f | -n] [-v] ...
- mv [-f | -n] [-v]
- mv [-f | -n] [-v] ...
- mv [-f | -n] [-v]
- mv [-f | -n] [-v] ...
-
-Options:
- -f
- Do not prompt for confirmation before overwriting the destination path. (The -f option overrides previous -n options.)
- -n
- Do not overwrite an existing file. (The -n option overrides previous -f options.)
- -v
- Cause mv to be verbose, showing files after they are moved.
-
-Examples:
- paddle pfs mv ./text1.txt /pfs/$DATACENTER/home/$USER/text1.txt
-```
-- cp - copy files or directories
-
-```
-Synopsis:
- cp [-r] [-f | -n] [-v] [--preserve--links]
- cp [-r] [-f | -n] [-v] [--preserve--links] ...
- cp [-r] [-f | -n] [-v] [--preserve--links]
- cp [-r] [-f | -n] [-v] [--preserve--links] ...
- cp [-r] [-f | -n] [-v] [--preserve--links]
- cp [-r] [-f | -n] [-v] [--preserve--links] ...
-
-Options:
- -r
- Copy directories recursively
- -f
- Do not prompt for confirmation before overwriting the destination path. (The -f option overrides previous -n options.)
- -n
- Do not overwrite an existing file. (The -n option overrides previous -f options.)
- -v
- Cause cp to be verbose, showing files after they are copied.
- --preserve--links
- Reserve links when copy links
-
-Examples:
- paddle pfs cp ./file /pfs/$DATACENTER/home/$USER/file
- paddle pfs cp /pfs/$DATACENTER/home/$USER/file ./file
-```
-- ls- list files
-
-```
-Synopsis:
- ls [-r] ...
-
-Options:
- -R
- List directory(ies) recursively
-
-Examples:
- paddle pfs ls /pfs/$DATACENTER/home/$USER/file
- paddle pfs ls /pfs/$DATACENTER/home/$USER/folder
-```
-
-- mkdir - mkdir directory(ies)
-Create intermediate directory(ies) as required.
-
-```
-Synopsis:
- mkdir ...
-
-Examples:
- paddle pfs mkdir /pfs/$DATACENTER/home/$USER/folder
-```
diff --git a/doc/design/file_manager/src/filemanager.graffle b/doc/design/file_manager/src/filemanager.graffle
deleted file mode 100644
index 7861a33072bc1908f69d12b37c20491dd8663103..0000000000000000000000000000000000000000
Binary files a/doc/design/file_manager/src/filemanager.graffle and /dev/null differ
diff --git a/doc/design/file_manager/src/filemanager.png b/doc/design/file_manager/src/filemanager.png
deleted file mode 100644
index 8139a19f5722f56d3c211f3ab0d3982f751134b9..0000000000000000000000000000000000000000
Binary files a/doc/design/file_manager/src/filemanager.png and /dev/null differ
diff --git a/doc/fluid/CMakeLists.txt b/doc/fluid/CMakeLists.txt
index 9fe79323ef9377a459d8405cfa74c88c52ce9346..8086507bb4b7e870ad6d6091945ed07a00b5100b 100644
--- a/doc/fluid/CMakeLists.txt
+++ b/doc/fluid/CMakeLists.txt
@@ -27,7 +27,7 @@ sphinx_add_target(paddle_fluid_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_fluid_docs gen_proto_py)
+add_dependencies(paddle_fluid_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -50,6 +50,6 @@ sphinx_add_target(paddle_fluid_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
-add_dependencies(paddle_fluid_docs_cn gen_proto_py)
+add_dependencies(paddle_fluid_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
diff --git a/doc/fluid/api/CMakeLists.txt b/doc/fluid/api/CMakeLists.txt
index ca40dfb9644cea69329be0ec231378506c138bc0..48b396f0786adad1ba6cd41f72497f853e54bc38 100644
--- a/doc/fluid/api/CMakeLists.txt
+++ b/doc/fluid/api/CMakeLists.txt
@@ -19,4 +19,4 @@ sphinx_add_target(paddle_fluid_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind)
+add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst
index ae35d8c53476b34cb18331364267dd7c8b94dd64..22e6fb13d7320986a60bc1ef5530187e0970c767 100644
--- a/doc/fluid/api/layers.rst
+++ b/doc/fluid/api/layers.rst
@@ -494,6 +494,12 @@ reshape
.. autofunction:: paddle.fluid.layers.reshape
:noindex:
+pad
+---
+
+.. autofunction:: paddle.fluid.layers.pad
+ :noindex:
+
scale
-----
diff --git a/doc/fluid/design/algorithm/parameter_average.md b/doc/fluid/design/algorithm/parameter_average.md
index 2c4edee9fe31d502ea62b9fe5c8757c0a4c5e79f..940d37fb31dcd0c50ea6c4c42b052d7cb23a9c47 100644
--- a/doc/fluid/design/algorithm/parameter_average.md
+++ b/doc/fluid/design/algorithm/parameter_average.md
@@ -5,9 +5,11 @@ In a large scale machine learning setup where the size of the training data is h
Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset.
-Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for
. The averaging is done as follows:
+Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for
. The averaging is done as follows:
-
+
+
+
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
diff --git a/doc/fluid/design/concepts/README.md b/doc/fluid/design/concepts/README.md
index ed3f5aab2882c16ca6ac1446b4c4d4d27a373af7..8ded0ad22f4013a521bf3bee260565dc5cf855ae 100644
--- a/doc/fluid/design/concepts/README.md
+++ b/doc/fluid/design/concepts/README.md
@@ -6,11 +6,33 @@ Here are some initial thoughts. Your comments are welcome!
I think we need only the following few CMake functions to make a project description mean and clean:
-| C++ | CUDA C++ | Go |
-|---|---|---|
-| cc_library | nv_library | go_library |
-| cc_binary | nv_binary | go_binary |
-| cc_test | nv_test | go_test |
+
+
+
+C++ |
+CUDA C++ |
+Go |
+
+
+
+
+cc_library |
+nv_library |
+go_library |
+
+
+cc_binary |
+nv_binary |
+go_binary |
+
+
+ cc_test |
+ nv_test |
+ go_test |
+
+
+
+
- The `_library` functions generate .a files from source code.
- The `_binary` functions generate executable binary files.
diff --git a/doc/fluid/design/concepts/block.md b/doc/fluid/design/concepts/block.md
index 907a2def557fd472ac4d679c73447bd9107d1190..3b626bd89cd83a9428997abccfeeebbbbdbb3d38 100644
--- a/doc/fluid/design/concepts/block.md
+++ b/doc/fluid/design/concepts/block.md
@@ -14,11 +14,29 @@ In programming languages, a block is a pair of curly braces that includes local
Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
-| programming languages | PaddlePaddle |
-|-----------------------|-----------------------|
-| for, while loop | RNN, WhileOp |
-| if, if-else, switch | IfElseOp, SwitchOp |
-| sequential execution | a sequence of layers |
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+for, while loop |
+RNN, WhileOp |
+
+
+if, if-else, switch |
+IfElseOp, SwitchOp |
+
+
+sequential execution |
+a sequence of layers |
+
+
+
+
A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
@@ -26,12 +44,33 @@ A key difference is that a C++ program describes a one pass computation, whereas
The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs:
-| programming languages | PaddlePaddle |
-|-----------------------|---------------------------------|
-| stack | scope hierarchy |
-| stack frame | scope |
-| push at entering block| push at entering block |
-| pop at leaving block | destroy when minibatch completes|
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+stack |
+scope hierarchy |
+
+
+stack frame |
+scope |
+
+
+push at entering block |
+push at entering block |
+
+
+pop at leaving block |
+destroy when minibatch completes |
+
+
+
+
1. In traditional programs:
diff --git a/doc/fluid/design/concepts/functions_operators_layers.md b/doc/fluid/design/concepts/functions_operators_layers.md
index 984b59f4c6971dfb6f46dfe342f2751f392c0e88..30bc488a18a28d349645d9d2502aae6691a69931 100644
--- a/doc/fluid/design/concepts/functions_operators_layers.md
+++ b/doc/fluid/design/concepts/functions_operators_layers.md
@@ -86,12 +86,40 @@ def layer.fc(X):
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
-
-| C++ functions/functors | mul | add | | |
-|------------------------|--------------|--------------|-------------|----------|
-| C++ operator class | mulOp | addOp | FCOp | |
-| Python binding | operator.mul | operator.add | operator.fc | |
-| Python function | | | | layer.fc |
+
+
+
+C++ functions/functors |
+mul |
+add |
+ |
+ |
+
+
+
+
+C++ operator class |
+mulOp |
+addOp |
+FCOp |
+ |
+
+
+Python binding |
+operator.mul |
+ operator.add |
+operator.fc |
+ |
+
+
+Python function |
+ |
+ |
+ |
+layer.fc |
+
+
+
This is how we differentiate layer and operators in PaddlePaddle:
diff --git a/doc/design/images/parallel_executor_overview.dot b/doc/fluid/design/concepts/images/parallel_executor_overview.dot
similarity index 100%
rename from doc/design/images/parallel_executor_overview.dot
rename to doc/fluid/design/concepts/images/parallel_executor_overview.dot
diff --git a/doc/design/images/parallel_executor_overview.png b/doc/fluid/design/concepts/images/parallel_executor_overview.png
similarity index 100%
rename from doc/design/images/parallel_executor_overview.png
rename to doc/fluid/design/concepts/images/parallel_executor_overview.png
diff --git a/doc/fluid/design/concepts/index_cn.rst b/doc/fluid/design/concepts/index_cn.rst
index eec8a2f14ca9e8b3bf0d0acbbb6004972790d795..dcdc894937ff328e6002623275ca3c65e87b2bb0 100644
--- a/doc/fluid/design/concepts/index_cn.rst
+++ b/doc/fluid/design/concepts/index_cn.rst
@@ -16,3 +16,4 @@
block.md
scope.md
executor.md
+ parallel_executor.md
diff --git a/doc/fluid/design/concepts/index_en.rst b/doc/fluid/design/concepts/index_en.rst
index 036e1da2550cf520f5c40ecd9657f71603755adc..b85a3055746facaa642e8fc899976b58435f1ef2 100644
--- a/doc/fluid/design/concepts/index_en.rst
+++ b/doc/fluid/design/concepts/index_en.rst
@@ -16,3 +16,4 @@ Core Concepts
block.md
scope.md
executor.md
+ parallel_executor.md
diff --git a/doc/fluid/design/concepts/lod_tensor.md b/doc/fluid/design/concepts/lod_tensor.md
index 10a8a7867fbf072f585fe3bfb1243e4e6bef4ec8..a88292e7888d0ebc64ee89ca315dfea38a12c71d 100644
--- a/doc/fluid/design/concepts/lod_tensor.md
+++ b/doc/fluid/design/concepts/lod_tensor.md
@@ -2,12 +2,38 @@
Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros.
-| | TensorFlow | PaddlePaddle |
-|-----------------------|------------|--------------|
-| RNN | Support | Support |
-| recursive RNN | Support | Support |
-| padding zeros | Must | No need |
-| blob data type | Tensor | LoDTensor |
+
+
+
+ |
+TensorFlow |
+PaddlePaddle |
+
+
+
+
+RNN |
+Support |
+Support |
+
+
+recursive RNN |
+Support |
+Support |
+
+
+padding zeros |
+ Must |
+No need |
+
+
+ blob data type |
+ Tensor |
+ LoDTensor |
+
+
+
+
PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor.
diff --git a/doc/design/parallel_executor.md b/doc/fluid/design/concepts/parallel_executor.md
similarity index 100%
rename from doc/design/parallel_executor.md
rename to doc/fluid/design/concepts/parallel_executor.md
diff --git a/doc/fluid/design/concepts/var_desc.md b/doc/fluid/design/concepts/var_desc.md
index fcba08c07f40177d54a91048cb616198402a9d5d..6750323c0167bf1efbde6ef4fd670e88a5aa502a 100644
--- a/doc/fluid/design/concepts/var_desc.md
+++ b/doc/fluid/design/concepts/var_desc.md
@@ -10,10 +10,27 @@ PaddlePaddle uses proto message to describe compile time program because :
The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below.
-| |compile time|runtime|
-|---|---|---|
-|Data|VarDesc(proto)|Variable(cpp)|
-|Operation|OpDesc(proto)|Operator(cpp)|
+
+
+
+ |
+compile time |
+runtime |
+
+
+
+
+Data |
+VarDesc(proto) |
+Variable(cpp) |
+
+
+Operation |
+OpDesc(proto) |
+Operator(cpp) |
+
+
+
## Definition of VarType
diff --git a/doc/fluid/design/concurrent/channel.md b/doc/fluid/design/concurrent/channel.md
index a00a3325e7b49381f0f82ebbf32b74683f02de5f..df67438bcc741ac521b00ee962fc13c93db21182 100644
--- a/doc/fluid/design/concurrent/channel.md
+++ b/doc/fluid/design/concurrent/channel.md
@@ -2,7 +2,7 @@
## Introduction
-A Channel is a data structure that allows for synchronous interprocess
+A Channel is a data structure that allows for synchronous interprocess
communication via message passing. It is a fundemental component of CSP
(communicating sequential processes), and allows for users to pass data
between threads without having to worry about synchronization.
@@ -18,7 +18,7 @@ Creates a new channel that takes in variables of a specific dtype.
- **fluid.make_channel(dtype, capacity=0)**
- **dtype**: The data type of variables being sent/received through channel
- - **capacity**: The capacity of the channel. A capacity of 0 represents
+ - **capacity**: The capacity of the channel. A capacity of 0 represents
an unbuffered channel. Capacity > 0 represents a buffered channel
```
@@ -40,8 +40,8 @@ fluid.channel_close(ch)
### Send data to a channel
-Sends a variable to a channel. Currently, variables of dtype `LoDTensor`,
-`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and
+Sends a variable to a channel. Currently, variables of dtype `LoDTensor`,
+`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and
`ChannelHolder` are supported.
By default, the data of the Variable is moved from the sender to the receiver,
@@ -52,7 +52,7 @@ however the user can optionally copy the data before performing the send.
- **variable**: The variable to send to the channel
- **is_copy**: If set to True, channel_send will perform a variable assign
to copy the source variable to a new variable to be sent.
-
+
```
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=100)
@@ -68,7 +68,7 @@ receiving variable.
- **channel**: The channel to receive the variable from
- **return_variable**: The destination variable used to store the data of the
variable received from the channel
-
+
```
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=-1)
@@ -84,9 +84,9 @@ internal queues, locks, and conditional variables.
### QueueMessage
QueueMessage encapsulates the state of the channel send/receive operation to be
-put in the **sendq/recvq**. It contains a condition variable used to lock the
+put in the **sendq/recvq**. It contains a condition variable used to lock the
thread (when there are no available sends/receives). In addition, it contains
-a callback function to notify a thread when the QueueMessage is being
+a callback function to notify a thread when the QueueMessage is being
processed by the channel.
### Queues
@@ -108,21 +108,21 @@ channel_recv operation will put a new QueueMessage on the recvq and block the
current thread under two conditions:
1. The channel is buffered and there is no data on the buff_
2. The channel is unbuffered and does not have a sender
-
+
### State diagram
#### Channel Send
-
+
-
+
#### Channel Receive
-
+
-
+
## Limitations and Considerations
### Variable Copy
@@ -135,5 +135,5 @@ be sent before it is sent.
Please note that this is acheived by adding an **assign** operator and creating
a temporary variable that is sent in place of the original variable. Please
-note that **assign** operator has limited support for only certain variables
+note that **assign** operator has limited support for only certain variables
datatypes.
diff --git a/doc/fluid/design/concurrent/concurrent_programming.md b/doc/fluid/design/concurrent/concurrent_programming.md
index f022e67fd3a048cd7e53c91d9a1fd0506487b665..1859f983e9133674e69ecd506d7683ea926b2b8f 100644
--- a/doc/fluid/design/concurrent/concurrent_programming.md
+++ b/doc/fluid/design/concurrent/concurrent_programming.md
@@ -10,12 +10,42 @@ The answer relies on the fact that a `ProgramDesc` is similar to an abstract syn
The following table compares concepts in Fluid and Go
-| Go | Fluid |
-|----|-------|
-|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid) |
-| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) |
-| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) |
-| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) |
+
+
## An Example Concurrent Program
@@ -77,11 +107,11 @@ message ProgramDesc {
read(output = X)
kube_get_workers_addrs(output = L)
Y = tensor_array(len(L))
- parallel_for(input = X, output = Y,
+ parallel_for(input = X, output = Y,
attrs = {L, block_id(1)}) # referring to block 1
]
}
-
+
block[1] = Block {
parent = 0,
vars = [x, y, index],
@@ -102,7 +132,7 @@ func main() { //// block 0
X = fluid.read(...)
L = fluid.k8s.get_worker_addrs()
Y = fluid.tensor_array(len(L))
- fluid.parallel_for(X, L,
+ fluid.parallel_for(X, L,
func(index int) { //// block 1
x = X[index]
fluid.send(L[index], x)
@@ -116,7 +146,7 @@ An explanation of the above program:
- `fluid.k8s` is a package that provides access to Kubernetes API.
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).
-- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
+- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread
diff --git a/doc/fluid/design/concurrent/csp.md b/doc/fluid/design/concurrent/csp.md
index 10d936860fab7e09241e968a63526c7d86d3e568..66d19f44baf861c7847e81ca83f61024ec877faf 100644
--- a/doc/fluid/design/concurrent/csp.md
+++ b/doc/fluid/design/concurrent/csp.md
@@ -13,14 +13,41 @@ Most DL systems, including TensorFlow, Caffe2, and MxNet, can asynchronously exe
There were many concurrent programming models, implemented in various forms:
-| concurrent programming model | implementation |
-|-----|-----|
-| mutex | types and functions in standard libraries |
-| semaphore | types and functions in standard libraries |
-| communicating sequential processes (CSP) | Go programming language |
-| actor model | Erlang programming language |
-| message passing | MPI |
-| bulk synchronous parallel (BSP) | Pregel distributed programming framework |
+
+
+
+concurrent programming model |
+implementation |
+
+
+
+
+mutex |
+types and functions in standard libraries |
+
+
+semaphore |
+ types and functions in standard libraries |
+
+
+ communicating sequential processes (CSP) |
+ Go programming language |
+
+
+ actor model |
+ Erlang programming language |
+
+
+ message passing |
+ MPI |
+
+
+ bulk synchronous parallel (BSP) |
+ Pregel distributed programming framework |
+
+
+
+
Since Fluid was designed to be a programming language, we would like to implement CSP in Fluid.
@@ -118,9 +145,9 @@ There are four types of actions with a channel:
```go
close(ch)
```
-
+
Please be aware that a closed channel is not a nil channel, which is `var ch chan int`.
-
+
There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms):
1. A send to a nil channel blocks forever
diff --git a/doc/fluid/design/concurrent/select_op.md b/doc/fluid/design/concurrent/select_op.md
index 52c226bc94a4e8bfc5588705d7f65328840e91cc..4fcae57cc7932cdaebe549486e7f7cebf0bd038a 100644
--- a/doc/fluid/design/concurrent/select_op.md
+++ b/doc/fluid/design/concurrent/select_op.md
@@ -2,13 +2,13 @@
## Introduction
-In golang, the [**select**](https://golang.org/ref/spec#Select_statements)
-statement lets a goroutine wait on multiple communication operations at the
-same time. The **select** blocks until one of its cases can run, then
-executes the case. If multiple cases are ready to run, then one case is
+In golang, the [**select**](https://golang.org/ref/spec#Select_statements)
+statement lets a goroutine wait on multiple communication operations at the
+same time. The **select** blocks until one of its cases can run, then
+executes the case. If multiple cases are ready to run, then one case is
choosen at random to be executed.
-With the introduction of CSP for Paddle, we mimic this behavior by
+With the introduction of CSP for Paddle, we mimic this behavior by
creating a ***select_op***.
## How to use it
@@ -17,11 +17,11 @@ The **select_op** is available as a c++ operator. However most users
will prefer to use the much simplier Python API.
- **fluid.Select()**: Creates a select operator and adds it to the current
-block within the main program. Also creates a sub block and adds it to the
-main program. This sub block is used to hold all variables and operators
+block within the main program. Also creates a sub block and adds it to the
+main program. This sub block is used to hold all variables and operators
used by the case statements.
-
-Within the select block, users can add cases by
+
+Within the select block, users can add cases by
calling **select.case** or **select.default** method.
- **fluid.Select.case(channel_action, channel, result_variable)**: Represents
@@ -37,13 +37,13 @@ execute.
```
ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
-
+
x = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
y = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=1)
-
+
while_cond = fill_constant(shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True)
while_op = While(cond=while_cond)
-
+
with while_op.block():
with fluid.Select() as select:
with select.case(fluid.channel_send, channel, x):
@@ -99,17 +99,17 @@ blocks {
}
}
// Create "select" operator.
- // inputs:
+ // inputs:
// X: All input variables used by operators within the select block
// case_to_execute: Variable filled in by select_op when it determines
// which case to execute.
//
// outputs:
- // Out: All output variables referenced by operators within select block.
- //
+ // Out: All output variables referenced by operators within select block.
+ //
// attrs:
// sub_block: The block id containing the select "cases"
- // cases: Serialized list of all cases in the select op.
+ // cases: Serialized list of all cases in the select op.
// Each case is serialized as: ',,,'
// where type is 0 for default, 1 for send, and 2 for receive.
// No channel and values are needed for default cases.
@@ -150,7 +150,7 @@ into **X**. It will also create a temp variable called **case_to_execute**. Th
filled in by the select_op after it has completed processing the case statements.
If there are no available cases to execute (ie: all cases are blocked on channel operations, and
-there is no default statement), then the select_op will block the current thread. The thread will
+there is no default statement), then the select_op will block the current thread. The thread will
unblock once there is a channel operation affecting one of the case statements, at which point, the
**select_op** will set the **case_to_execute** variable to the index of the case to execute.
@@ -247,17 +247,17 @@ blocks {
```
-Cases are represented by a **conditional_block operator**, whose's condition is set as the output of
-equal(**case_to_execute**, **case_index**). Since each case index is unique in this sub-block,
+Cases are represented by a **conditional_block operator**, whose's condition is set as the output of
+equal(**case_to_execute**, **case_index**). Since each case index is unique in this sub-block,
only one case will be executed.
### select_op flow
-
+
-The select algorithm is inspired by golang's select routine. Please refer to
+The select algorithm is inspired by golang's select routine. Please refer to
http://www.tapirgames.com/blog/golang-concurrent-select-implementation for more information.
## Backward Pass
diff --git a/doc/fluid/design/dist_train/distributed_architecture.md b/doc/fluid/design/dist_train/distributed_architecture.md
index a405cb6aaf80b9d2e8a1a9c774ca85cc7e62bbab..229cb47c17d633be6848bb35e58d33ec9b47ec3b 100644
--- a/doc/fluid/design/dist_train/distributed_architecture.md
+++ b/doc/fluid/design/dist_train/distributed_architecture.md
@@ -40,11 +40,11 @@ computation is only specified in Python code which sits outside of PaddlePaddle,
Similar to how a compiler uses an intermediate representation (IR) so that the programmer does not need to manually optimize their code for most of the cases, we can have an intermediate representation in PaddlePaddle as well. The compiler optimizes the IR as follows:
-
+
PaddlePaddle can support model parallelism by converting the IR so that the user no longer needs to manually perform the computation and operations in the Python component:
-
+
The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the computation dependency graph and the variables used in the computation.
@@ -60,7 +60,7 @@ For a detailed explanation, refer to this document -
The revamped distributed training architecture can address the above discussed limitations. Below is the illustration of how it does so:
-
+
The major components are: *Python API*, *Distribute Transpiler* and *Remote Executor*.
@@ -152,7 +152,7 @@ for data in train_reader():
`JobDesc` object describe the distributed job resource specification to run on
Cluster environment.
-
+
`RemoteExecutor.run` sends the `ProgramDesc` and
[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/unreleased-tpr/doc/autoscale/README.md#training-job-resource)
@@ -171,7 +171,7 @@ In the future, a more general placement algorithm should be implemented, which m
The local training architecture will be the same as the distributed training architecture, the difference is that everything runs locally, and there is just one PaddlePaddle runtime:
-
+
### Training Data
diff --git a/doc/fluid/design/dist_train/multi_cpu.md b/doc/fluid/design/dist_train/multi_cpu.md
index a8d8ee0422acc84835170a44eb83f9b5f0c6bb40..38222d083084ebfca3099ce96b47868c42d55101 100644
--- a/doc/fluid/design/dist_train/multi_cpu.md
+++ b/doc/fluid/design/dist_train/multi_cpu.md
@@ -8,11 +8,11 @@ Op graph to a multi-CPU Op graph, and run `ParallelDo` Op to run the graph.
## Transpiler
-
+
After converted:
-
+
## Implement
diff --git a/doc/fluid/design/dist_train/parameter_server.md b/doc/fluid/design/dist_train/parameter_server.md
index 6ce48dfbfce8b094684b412ebfda7e505ddc30ae..73c85da5e89eee0ac7857a0b808bc64ae673fdad 100644
--- a/doc/fluid/design/dist_train/parameter_server.md
+++ b/doc/fluid/design/dist_train/parameter_server.md
@@ -41,11 +41,11 @@ We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*.
Below is an example of converting the user defined graph to the
subgraphs for the trainer and the parameter server:
-
+
After converting:
-
+
1. The parameter variable W and its optimizer program are placed on the parameter server.
1. Operators are added to the program.
@@ -69,8 +69,7 @@ In Fluid, we introduce [SelectedRows](../selected_rows.md) to represent a list o
non-zero gradient data. So when we do parameter optimization both locally and remotely,
we only need to send those non-zero rows to the optimizer operators:
-
-
+
### Benefits
- Model parallelism becomes easier to implement: it is an extension to
diff --git a/doc/fluid/design/dynamic_rnn/rnn.md b/doc/fluid/design/dynamic_rnn/rnn.md
index 6f414e5549b149bc88fb252085ff56dbb06730f8..7b61b050f640814d6949cf6847b431da53d59581 100644
--- a/doc/fluid/design/dynamic_rnn/rnn.md
+++ b/doc/fluid/design/dynamic_rnn/rnn.md
@@ -5,7 +5,7 @@ This document describes the RNN (Recurrent Neural Network) operator and how it i
## RNN Algorithm Implementation
-
+
The above diagram shows an RNN unrolled into a full network.
@@ -22,7 +22,7 @@ There are several important concepts here:
There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
-
+
Figure 2 illustrates the RNN's data flow
@@ -93,7 +93,7 @@ For example, we could have a 2-level RNN, where the top level corresponds to par
The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
-
+
```python
@@ -149,5 +149,5 @@ If the `output_all_steps` is set to False, it will only output the final time st
-
+
diff --git a/doc/fluid/design/modules/batch_norm_op.md b/doc/fluid/design/modules/batch_norm_op.md
index d1392619c42d9206bf4bddcd33ad11b033e6cbdb..e451ffcc73b5de2b911e1c6de54b42a5d1d54c37 100644
--- a/doc/fluid/design/modules/batch_norm_op.md
+++ b/doc/fluid/design/modules/batch_norm_op.md
@@ -2,7 +2,7 @@
## What is batch normalization
-Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training.
+Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training.
The principle of batch normalization can be summarized into a simple function:
@@ -66,7 +66,7 @@ As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attribu
The following graph showes the training computational process of `batch_norm_op`:
-
+
cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel.
@@ -74,13 +74,13 @@ cudnn provides APIs to finish the whole series of computation, we can use them i
`batch_norm_op` is warpped as a layer in Python:
-```python
-def batch_norm_layer(net,
+```python
+def batch_norm_layer(net,
input,
- output,
- scale,
- bias,
- use_global_est = False,
+ output,
+ scale,
+ bias,
+ use_global_est = False,
epsilon = 1e-6,
momentum = 0.99):
mean_cache = scope.new_var(name = 'estimated_mean', trainable = False)
@@ -119,15 +119,15 @@ for pass_id in range(PASS_NUM):
if pass_id % 100 == 0:
net.infer(test_image) # run inferencing model
# ...
-```
+```
`is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`:
-
+
-Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate.
+Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate.
When the net runs in training mode, the end of the left branch will be set as the running target, so the dependency tracking process will ignore right branch automatically. When the net runs in inferencing mode, the process is reversed.
diff --git a/doc/fluid/design/modules/python_api.md b/doc/fluid/design/modules/python_api.md
index 73f6d7b90c7dca0d48109cf3d28d5f7cd56b5c0b..f83ad3b6a4e8b4d82d8fe8d4154a2739a9b9628b 100644
--- a/doc/fluid/design/modules/python_api.md
+++ b/doc/fluid/design/modules/python_api.md
@@ -2,12 +2,33 @@
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
-| Python classes | Protobuf messages |
-| --- | --- |
-| Program | ProgramDesc |
-| Block | BlockDesc |
-| Operator | OpDesc |
-| Variable | VarDesc |
+
+
+
+Python classes |
+Protobuf messages |
+
+
+
+
+Program |
+ProgramDesc |
+
+
+Block |
+BlockDesc |
+
+
+Operator |
+OpDesc |
+
+
+Variable |
+VarDesc |
+
+
+
+
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.
diff --git a/doc/fluid/design/modules/regularization.md b/doc/fluid/design/modules/regularization.md
index 21280ac898feb4dd5e5a5d9e88d121e856850f0b..8cd5ff71d193f03e1ac923724b52f28c6057d25d 100644
--- a/doc/fluid/design/modules/regularization.md
+++ b/doc/fluid/design/modules/regularization.md
@@ -6,23 +6,23 @@ A central problem in machine learning is how to design an algorithm that will pe
### Parameter Norm Penalties
Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows:
-
+
The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`.
The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows:
##### L2 Regularization:
-
+
##### L1 Regularization
-
+
A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html).
## Regularization Survey
-A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey).
+A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey).
## Proposal for Regularization in PaddlePaddle
@@ -32,41 +32,35 @@ In the new design, we propose to create new operations for regularization. For n
- L2_regularization_op
- L1_regularization_op
-These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.
+These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.
-The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
+The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
### Computation Graph
Below is an example of a really simple feed forward neural network.
-
+
The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows:
-
+
### Python API implementation for Regularization
-Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions.
+Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions.
#### Creation of Regularization ops
There are two possibilities for creating the regularization ops:
-1. We create these ops immediately while building the computation graph.
-2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added.
+1. We create these ops immediately while building the computation graph.
+2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added.
-The proposal is to add these ops in a lazy manner just before the backward pass.
+The proposal is to add these ops in a lazy manner just before the backward pass.
#### Storage of Regularization attributes
-Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters.
+Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters.
#### High-level API
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers).
-
-
-
-
-
-
diff --git a/doc/fluid/design/motivation/fluid.md b/doc/fluid/design/motivation/fluid.md
index 110b7d78bf12ac8328fb3a913e4386e75d63c995..5e147f8263e685a4665b5793f7127178cbc3cfdd 100644
--- a/doc/fluid/design/motivation/fluid.md
+++ b/doc/fluid/design/motivation/fluid.md
@@ -10,11 +10,37 @@ Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
-| Existed since | model as sequence of layers | model as graph of operators | No model |
-|--|--|--|--|
-| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
-| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
-| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+Existed since |
+model as sequence of layers |
+model as graph of operators |
+No model |
+
+
+
+
+2013 |
+Caffe, Theano, Torch, PaddlePaddle |
+ |
+ |
+
+
+2015 |
+ |
+TensorFlow, MxNet, Caffe2, ONNX, n-graph |
+ |
+
+
+2016 |
+ |
+ |
+ PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
diff --git a/doc/fluid/design/motivation/refactorization.md b/doc/fluid/design/motivation/refactorization.md
index 7c39fabcc6df76afdb6a77b4cbc2edf0bf3ef780..f199cc892f5e84f0a12abe3b8e5cace9849e7fa8 100644
--- a/doc/fluid/design/motivation/refactorization.md
+++ b/doc/fluid/design/motivation/refactorization.md
@@ -36,11 +36,37 @@ At compile time, the Python program generates a protobuf message representation
At runtime, the C++ program realizes the graph and runs it.
-| | Representation (protobuf messages) | Realization (C++ class objects) |
-|---|---|---|
-|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)|
-|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)|
-|Block|BlockDesc|Block|
+
+
+
+ |
+Representation (protobuf messages) |
+Realization (C++ class objects) |
+
+
+
+
+Data |
+
+VarDesc |
+
+Variable |
+
+
+Operation |
+
+OpDesc |
+
+Operator |
+
+
+Block |
+BlockDesc |
+Block |
+
+
+
+
The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`).
diff --git a/doc/fluid/design/muti_devices/kernel_hint_design.md b/doc/fluid/design/muti_devices/kernel_hint_design.md
index 728c8f0b964c02c1efa019945f7427fa879d3aa1..58e44b64169d8c942174de86986403570b271641 100644
--- a/doc/fluid/design/muti_devices/kernel_hint_design.md
+++ b/doc/fluid/design/muti_devices/kernel_hint_design.md
@@ -1,4 +1,6 @@
-# Problem
+# Kernel Hint Design
+
+## Problem
In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this.
In the current design, we use KernelType to describe one kernel.
diff --git a/doc/fluid/design/muti_devices/kernel_selection.md b/doc/fluid/design/muti_devices/kernel_selection.md
index 39ea2b00090a864f95610d6d2846ca5e5c904e78..967317d5d2eeb818ab14faabca342cc8c4ed717e 100644
--- a/doc/fluid/design/muti_devices/kernel_selection.md
+++ b/doc/fluid/design/muti_devices/kernel_selection.md
@@ -1,4 +1,6 @@
-# Background
+# Kernel Selection
+
+## Background
Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold.
The `OpKernelType ` is as follows:
diff --git a/doc/fluid/design/network/deep_speech_2.md b/doc/fluid/design/network/deep_speech_2.md
index af0c6ef36feba9e0239e7a5f81a8dc9108b2471a..f32a5b7e8a4d820319a666dab4c3129360e2c924 100644
--- a/doc/fluid/design/network/deep_speech_2.md
+++ b/doc/fluid/design/network/deep_speech_2.md
@@ -1,4 +1,4 @@
-# DeepSpeech2 on PaddlePaddle: Design Doc
+# DeepSpeech2 on PaddlePaddle: Design Doc
We are planning to build Deep Speech 2 (DS2) \[[1](#references)\], a powerful Automatic Speech Recognition (ASR) engine, on PaddlePaddle. For the first-stage plan, we have the following short-term goals:
@@ -68,11 +68,33 @@ We roughly break down the project into 14 tasks:
Tasks parallelizable within phases:
-Roadmap | Description | Parallelizable Tasks
------------ | :------------------------------------ | :--------------------
-Phase I | Simplified model & components | *Task 1* ~ *Task 8*
-Phase II | Standard model & benchmarking & profiling | *Task 9* ~ *Task 12*
-Phase III | Documentations | *Task13* ~ *Task14*
+
+
+
+Roadmap |
+Description |
+ Parallelizable Tasks |
+
+
+
+
+Phase I |
+Simplified model & components |
+Task 1 ~ Task 8 |
+
+
+Phase II |
+ Standard model & benchmarking & profiling |
+Task 9 ~ Task 12 |
+
+
+Phase III |
+ Documentations |
+ Task13 ~ Task14 |
+
+
+
+
Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed!
@@ -94,7 +116,7 @@ The classical DS2 network contains 15 layers (from bottom to top):
- **One** CTC-loss layer
-
+
Figure 1. Archetecture of Deep Speech 2 Network.
@@ -102,37 +124,82 @@ We don't have to persist on this 2-3-7-1-1-1 depth \[[2](#references)\]. Similar
Key ingredients about the layers:
-- **Data Layers**:
+- **Data Layers**:
- Frame sequences data of audio **spectrogram** (with FFT).
- - Token sequences data of **transcription** text (labels).
+ - Token sequences data of **transcription** text (labels).
- These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required.
-- **2D Convolution Layers**:
+- **2D Convolution Layers**:
- Not only temporal convolution, but also **frequency convolution**. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension).
- With striding for only the first convlution layer.
- No pooling for all convolution layers.
-- **Uni-directional RNNs**
+- **Uni-directional RNNs**
- Uni-directional + row convolution: for low-latency inference.
- Bi-direcitional + without row convolution: if we don't care about the inference latency.
- **Row convolution**:
- For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs.
- - Not nessesary if with bi-direcitional RNNs.
+ - Not nessesary if with bi-direcitional RNNs.
- "**Row**" means convolutions are done within each frequency dimension (row), and no convolution kernels shared across.
- **Batch Normalization Layers**:
- Added to all above layers (except for data and loss layer).
- Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration.
-
-
-Required Components | PaddlePaddle Support | Need to Develop
-:------------------------------------- | :-------------------------------------- | :-----------------------
-Data Layer I (Spectrogram) | Not supported yet. | TBD (Task 3)
-Data Layer II (Transcription) | `paddle.data_type.integer_value_sequence` | -
-2D Convolution Layer | `paddle.layer.image_conv_layer` | -
-DataType Converter (vec2seq) | `paddle.layer.block_expand` | -
-Bi-/Uni-directional RNNs | `paddle.layer.recurrent_group` | -
-Row Convolution Layer | Not supported yet. | TBD (Task 4)
-CTC-loss Layer | `paddle.layer.warp_ctc` | -
-Batch Normalization Layer | `paddle.layer.batch_norm` | -
-CTC-Beam search | Not supported yet. | TBD (Task 6)
+
+
+
+
+Required Components |
+ PaddlePaddle Support |
+ Need to Develop |
+
+
+
+
+Data Layer I (Spectrogram) |
+Not supported yet. |
+TBD (Task 3) |
+
+
+Data Layer II (Transcription) |
+ paddle.data_type.integer_value_sequence |
+ - |
+
+
+2D Convolution Layer |
+ paddle.layer.image_conv_layer |
+ - |
+
+
+DataType Converter (vec2seq) |
+ paddle.layer.block_expand |
+ - |
+
+
+Bi-/Uni-directional RNNs |
+paddle.layer.recurrent_group |
+ - |
+
+
+Row Convolution Layer |
+Not supported yet. |
+TBD (Task 4) |
+
+
+CTC-loss Layer |
+paddle.layer.warp_ctc |
+ - |
+
+
+Batch Normalization Layer |
+paddle.layer.batch_norm |
+ - |
+
+
+CTC-Beam search |
+Not supported yet. |
+ TBD (Task 6) |
+
+
+
+
### Row Convolution
@@ -141,18 +208,18 @@ TODO by Assignees
### Beam Search with CTC and LM
-
+
Figure 2. Algorithm for CTC Beam Search Decoder.
-- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
- - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
+- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
+ - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
- 2) the if condition ```if l^+ not in A_prev then``` after probabilities' computation is deprecated for it is hard to understand and seems unnecessary.
- An **external scorer** would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding.
- Such external scorer consists of language model, word count or any other custom scorers.
- The **language model** is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7)
-- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
-
+- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
+
## Future Work
diff --git a/doc/fluid/design/network/sequence_decoder.md b/doc/fluid/design/network/sequence_decoder.md
index c4a9bbeeefca0e05c335dd60233691e8bac33015..f13d30ca9fe09c9525c711436f605bb280e11000 100644
--- a/doc/fluid/design/network/sequence_decoder.md
+++ b/doc/fluid/design/network/sequence_decoder.md
@@ -199,7 +199,7 @@ Packing the `selected_generation_scores` will get a `LoDTensor`, and each tail i
## LoD and shape changes during decoding
-
+
According to the image above, the only phase that changes the LoD is beam search.
diff --git a/doc/fluid/design/others/gan_api.md b/doc/fluid/design/others/gan_api.md
index fb41df8615f73d9fd4c32995eab265833eac1a55..7167470088766985fa5ad31657410309330fd725 100644
--- a/doc/fluid/design/others/gan_api.md
+++ b/doc/fluid/design/others/gan_api.md
@@ -1,24 +1,24 @@
# Design for GAN
-GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
+GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.
In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.
-
+
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.
The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.
-
+
Figure 2. Photo borrowed from the original DC-GAN paper.
-## The Conditional-GAN might be a class.
+## The Conditional-GAN might be a class.
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
@@ -29,7 +29,7 @@ This design we adopt the popular open source design in https://github.com/carped
Returns a generated image.
- discriminator(image):
-Given an image, decide if it is from a real source or a fake one.
+Given an image, decide if it is from a real source or a fake one.
Returns a 0/1 binary label.
- build_model(self):
@@ -47,7 +47,7 @@ To be more detailed, we introduce our design of DCGAN as following:
```python
class DCGAN(object):
def __init__(self, y_dim=None):
-
+
# hyper parameters
self.y_dim = y_dim # conditional gan or not
self.batch_size = 100
@@ -82,18 +82,18 @@ class DCGAN(object):
# input z: the random noise
# input y: input data label (optional)
# output G_im: generated fake images
-
+
if not self.y_dim:
z = pd.layer.concat(1, [z, y])
-
+
G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
G_h0_bn = pd.layer.batch_norm(G_h0)
G_h0_relu = pd.layer.relu(G_h0_bn)
-
+
G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
G_h1_bn = pd.layer.batch_norm(G_h1)
G_h1_relu = pd.layer.relu(G_h1_bn)
-
+
G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
G_im = pd.layer.tanh(G_im)
return G_im
@@ -111,11 +111,11 @@ class DCGAN(object):
D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
D_h0_bn = pd.layer.batchnorm(h0)
D_h0_relu = pd.layer.lrelu(h0_bn)
-
+
D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
D_h1_bn = pd.layer.batchnorm(D_h1)
D_h1_relu = pd.layer.lrelu(D_h1_bn)
-
+
D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
return D_h2
```
@@ -123,7 +123,7 @@ class DCGAN(object):
### Class member function: Build the model
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
-- Define two training losses for discriminator and generator, respectively.
+- Define two training losses for discriminator and generator, respectively.
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
```python
class DCGAN(object):
@@ -133,7 +133,7 @@ class DCGAN(object):
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.z = pd.data(tf.float32, [None, self.z_size])
-
+
# step 1: generate images by generator, classify real/fake images with discriminator
if self.y_dim: # if conditional GAN, includes label
self.G = self.generator(self.z, self.y)
@@ -147,12 +147,12 @@ class DCGAN(object):
# generate fake images
self.sampled = self.sampler(self.z)
self.D_f = self.discriminator(self.images)
-
+
# step 2: define the two losses
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
self.d_loss = self.d_loss_real + self.d_loss_fake
-
+
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
```
@@ -176,7 +176,7 @@ class DCGAN(object):
self.G = self.generator(self.z)
self.D_g = self.discriminator(self.G, self.y)
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
-
+
with pd.default_block().d_block():
if self.y_dim: # if conditional GAN, includes label
self.D_t = self.discriminator(self.images, self.y)
@@ -217,7 +217,7 @@ if __name__ == "__main__":
# load mnist data
data_X, data_y = self.load_mnist()
-
+
# Two subgraphs required!!!
with pd.block().d_block():
d_optim = pd.train.Adam(lr = .001, beta= .1)
@@ -228,7 +228,7 @@ if __name__ == "__main__":
# executor
sess = pd.executor()
-
+
# training
for epoch in xrange(10000):
for batch_id in range(N / batch_size):
@@ -239,7 +239,7 @@ if __name__ == "__main__":
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
if batch_id % 2 == 0:
- sess.run(d_step,
+ sess.run(d_step,
feed_dict = {dcgan.images: batch_im,
dcgan.y: batch_label,
dcgan.z: batch_z})
diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst
index e70bf5dff3849f2ff82315f7eba4a92c93539843..b123b756e2251c38f319e1aefa2cb04fd7a36b03 100644
--- a/doc/fluid/dev/index_cn.rst
+++ b/doc/fluid/dev/index_cn.rst
@@ -4,10 +4,10 @@
.. toctree::
:maxdepth: 1
- new_op_en.md
- new_op_kernel_en.md
- use_eigen_en.md
+ new_op_cn.md
+ new_op_kernel.md
+ use_eigen_cn.md
name_convention.md
support_new_device.md
- releasing_process.md
+ releasing_process_cn.md
op_markdown_format.md
diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst
index f0e9afcfcc9edfb9a91f58375cd415ea414f8f82..98988fc22dcedecdbcd67fb3bf761377bf046337 100644
--- a/doc/fluid/dev/index_en.rst
+++ b/doc/fluid/dev/index_en.rst
@@ -5,9 +5,9 @@ Development
:maxdepth: 1
new_op_en.md
- new_op_kernel_en.md
+ new_op_kernel.md
use_eigen_en.md
name_convention.md
support_new_device.md
- releasing_process.md
+ releasing_process_en.md
op_markdown_format.md
diff --git a/doc/fluid/dev/new_op_cn.md b/doc/fluid/dev/new_op_cn.md
index 92996585674b46f45549b972b9f295503b1c7f8c..0c3f88d9c31e05bec399c64bf6ade56e62e01f68 100644
--- a/doc/fluid/dev/new_op_cn.md
+++ b/doc/fluid/dev/new_op_cn.md
@@ -26,13 +26,32 @@
依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
-
- 内容 | 定义位置
--------------- | :----------------------
-OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake
-Op定义 | `.cc`文件
-Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。
-注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中
+
+
+
+内容 |
+定义位置 |
+
+
+
+
+OpProtoMake定义 |
+`.cc`文件,Backward Op不需要定义OpProtoMake |
+
+
+Op定义 |
+ `.cc`文件 |
+
+
+Kernel实现 |
+ CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 |
+
+
+注册Op |
+ Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 |
+
+
+
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
diff --git a/doc/fluid/dev/new_op_en.md b/doc/fluid/dev/new_op_en.md
index da8b1bdd1082e439456daf25e9b3a1e8eb534375..a566a09131f86251b70d5435d0a483aa2a705b35 100644
--- a/doc/fluid/dev/new_op_en.md
+++ b/doc/fluid/dev/new_op_en.md
@@ -33,6 +33,33 @@ Op definition | `.cc` files
Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
+
+
+
+Information |
+ Where is it defined |
+
+
+
+
+OpProtoMake definition |
+ `.cc`files, Backward Op does not need an OpProtoMake interface. |
+
+
+Op definition |
+ `.cc` files |
+
+
+Kernel implementation |
+ The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. |
+
+
+Registering the Op |
+ Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. |
+
+
+
+
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
@@ -279,7 +306,7 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass
def test_check_output(self):
self.check_output()
-
+
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
diff --git a/doc/fluid/dev/new_op_kernel_en.md b/doc/fluid/dev/new_op_kernel.md
similarity index 100%
rename from doc/fluid/dev/new_op_kernel_en.md
rename to doc/fluid/dev/new_op_kernel.md
diff --git a/doc/fluid/dev/releasing_process.md b/doc/fluid/dev/releasing_process_cn.md
similarity index 58%
rename from doc/fluid/dev/releasing_process.md
rename to doc/fluid/dev/releasing_process_cn.md
index b9787261092f1f27377886152cb1596d9ff54188..4c6728fba7150b0f1e180e57590f18a5b677c70d 100644
--- a/doc/fluid/dev/releasing_process.md
+++ b/doc/fluid/dev/releasing_process_cn.md
@@ -10,19 +10,10 @@ PaddlePaddle每次发新的版本,遵循以下流程:
* 使用Regression Test List作为检查列表,测试本次release的正确性。
* 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步
* 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。
- * 编译这个版本的python wheel包,并发布到pypi。
- * 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`。
- * pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`。
- * 上传方法:
- ```
- cd build/python
- pip install twine
- twine upload dist/[package to upload]
- ```
- * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步
-1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。
-1. 协同完成Release Note的书写
-
+ * 将这个版本的python wheel包发布到pypi。
+ * 更新Docker镜像(参考后面的操作细节)。
+1. 第三步完成后,将`release/版本号`分支合入master分支,将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。
+1. 协同完成Release Note的书写。
需要注意的是:
@@ -31,13 +22,18 @@ PaddlePaddle每次发新的版本,遵循以下流程:
## 发布wheel包到pypi
-使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
+1. 使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
完成自动化二进制编译,参考下图,选择需要发布的版本(通常包含一个CPU版本和一个GPU版本),点击"run"右侧的"..."按钮,可以
-弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。等待编译完成后
-可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法
-使用`twine`工具上传即可。
-
-
+弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。
+
+1. 等待编译完成后可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。
+1. 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`。
+1. 上传:
+```
+cd build/python
+pip install twine
+twine upload dist/[package to upload]
+```
* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux
发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。
@@ -48,10 +44,20 @@ PaddlePaddle每次发新的版本,遵循以下流程:
上述PaddlePaddle CI编译wheel完成后会自动将Docker镜像push到DockerHub,所以,发布Docker镜像只需要对自动push的镜像打上
版本号对应的tag即可:
-1. 进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看latest tag的更新时间是否在上述编译wheel包完成后是否最新。
-1. 执行 `docker pull paddlepaddle/paddle:[latest tag]`,latest tag可以是latest或latest-gpu等。
-1. 执行 `docker tag paddlepaddle/paddle:[latest tag] paddlepaddle/paddle:[version]`
-1. 执行 `docker push paddlepaddle/paddle:[version]`
+```
+docker pull [镜像]:latest
+docker tag [镜像]:latest [镜像]:[version]
+docker push [镜像]:[version]
+```
+
+需要更新的镜像tag包括:
+
+* `[version]`: CPU版本
+* `[version]-openblas`: openblas版本
+* `[version]-gpu`: GPU版本(CUDA 8.0 cudnn 5)
+* `[version]-gpu-[cudaver]-[cudnnver]`: 不同cuda, cudnn版本的镜像
+
+之后可进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看是否发布成功。
## PaddlePaddle 分支规范
@@ -66,7 +72,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
* 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
- * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
+ * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。
@@ -76,15 +82,118 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
### PaddlePaddle Book中所有章节
-PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
-
-| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 |
-| --- | --- | --- | --- | --- | --- | --- | --- | --- |
-| API.V2 + Docker + GPU | | | | | | | | |
-| API.V2 + Docker + CPU | | | | | | | | |
-| `paddle_trainer` + Docker + GPU | | | | | | | | |
-| `paddle_trainer` + Docker + CPU | | | | | | | | |
-| API.V2 + Ubuntu + GPU | | | | | | | | |
-| API.V2 + Ubuntu + CPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + GPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + CPU | | | | | | | | |
+PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练(V2和Fluid)模型正确性。
+
+
+
+
+ |
+新手入门章节 |
+ 识别数字 |
+ 图像分类 |
+词向量 |
+ 情感分析 |
+语意角色标注 |
+ 机器翻译 |
+个性化推荐 |
+
+
+
+
+
+API.V2 + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+API.V2 + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
diff --git a/doc/fluid/dev/releasing_process_en.md b/doc/fluid/dev/releasing_process_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..f989b964d6d1a329bbe31adc7ec10db017acaefa
--- /dev/null
+++ b/doc/fluid/dev/releasing_process_en.md
@@ -0,0 +1,210 @@
+# PaddlePaddle Releasing Process
+
+PaddlePaddle manages its branches using "git-flow branching model", and [Semantic Versioning](http://semver.org/) as it's version number semantics.
+
+Each time we release a new PaddlePaddle version, we should follow the below steps:
+
+1. Fork a new branch from `develop` named `release/[version]`, e.g. `release/0.10.0`.
+1. Push a new tag on the release branch, the tag name should be like `[version]rc.patch`. The
+ first tag should be `0.10.0rc1`, and the second should be `0.10.0.rc2` and so on.
+1. After that, we should do:
+ * Run all regression test on the Regression Test List (see PaddlePaddle TeamCity CI), to confirm
+ that this release has no major bugs.
+ * If regression test fails, we must fix those bugs and create a new `release/[version]`
+ branch from previous release branch.
+ * Modify `python/setup.py.in`, change the version number and change `ISTAGED` to `True`.
+ * Publish PaddlePaddle release wheel packages to pypi (see below instructions for detail).
+ * Update the Docker images (see below instructions for detail).
+1. After above step, merge `release/[version]` branch to master and push a tag on the master commit,
+ then merge `master` to `develop`.
+1. Update the Release Note.
+
+***NOTE:***
+
+* Do ***NOT*** merge commits from develop branch to release branches to keep the release branch contain
+ features only for current release, so that we can test on that version.
+* If we want to fix bugs on release branches, we must merge the fix to master, develop and release branch.
+
+## Publish Wheel Packages to pypi
+
+1. Use our [CI tool](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview)
+ to build all wheel packages needed to publish. As shown in the following picture, choose a build
+ version, click "..." button on the right side of "Run" button, and switch to the second tab in the
+pop-up box, choose the current release branch and click "Run Build" button. You may repeat this
+ step to start different versions of builds.
+
+1. After the build succeeds, download the outputs under "Artifacts" including capi, `cp27m` and `cp27mu`.
+1. Since pypi.python.org follows [PEP 513](https://www.python.org/dev/peps/pep-0513), before we
+ upload the package using `twine`, we need to rename the package from `linux_x86_64` to
+ `manylinux1_x86_64`.
+1. Start the upload:
+ ```
+ cd build/python
+ pip install twine
+ twine upload dist/[package to upload]
+ ```
+
+* NOTE: We use a special Docker image to build our releases to support more Linux distributions, you can
+ download it from https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/, or build it using
+ scripts under `tools/manylinux1`.
+* pypi does not allow overwrite the already uploaded version of wheel package, even if you delete the
+ old version. you must change the version number before upload a new one.
+
+## Publish Docker Images
+
+Our CI tool will push latest images to DockerHub, so we only need to push a version tag like:
+
+```
+docker pull [image]:latest
+docker tag [image]:latest [image]:[version]
+docker push [image]:[version]
+```
+
+Tags that need to be updated are:
+* `[version]`: CPU only version image
+* `[version]-openblas`: openblas version image
+* `[version]-gpu`: GPU version(using CUDA 8.0 cudnn 5)
+* `[version]-gpu-[cudaver]-[cudnnver]`: tag for different cuda, cudnn versions
+
+You can then checkout the latest pushed tags at https://hub.docker.com/r/paddlepaddle/paddle/tags/.
+
+## Branching Model
+
+We use [git-flow](http://nvie.com/posts/a-successful-git-branching-model/) as our branching model,
+with some modifications:
+
+* `master` branch is the stable branch. Each version on the master branch is tested and guaranteed.
+* `develop` branch is for development. Each commit on develop branch has passed CI unit test, but no
+ regression tests are run.
+* `release/[version]` branch is used to publish each release. Latest release version branches have
+ bugfix only for that version, but no feature updates.
+* Developer forks are not required to follow
+ [git-flow](http://nvie.com/posts/a-successful-git-branching-model/)
+ branching model, all forks is like a feature branch.
+ * Advise: developer fork's develop branch is used to sync up with main repo's develop branch.
+ * Advise: developer use it's fork's develop branch to for new branch to start developing.
+ * Use that branch on developer's fork to create pull requests and start reviews.
+ * developer can push new commits to that branch when the pull request is open.
+* Bug fixes are also started from developers forked repo. And, bug fixes branch can merge to
+ `master`, `develop` and `releases`.
+
+## PaddlePaddle Regression Test List
+
+### All Chapters of PaddlePaddle Book
+
+We need to guarantee that all the chapters of PaddlePaddle Book can run correctly. Including
+V1 (`paddle_trainer` training) and V2 training and Fluid training.
+
+
+
+
+ |
+Linear Regression |
+Recognize Digits |
+Image Classification |
+Word2Vec |
+Personalized Recommendation |
+Sentiment Analysis |
+Semantic Role Labeling |
+Machine Translation |
+
+
+
+
+
+API.V2 + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+API.V2 + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
diff --git a/doc/fluid/getstarted/concepts/save_model/model_format.md b/doc/fluid/getstarted/concepts/save_model/model_format.md
index e29129fddf775939c9f7a8b49d850d523e6e5a45..1f12ba0497369eacc6a2db7984781b5672f45ea1 100644
--- a/doc/fluid/getstarted/concepts/save_model/model_format.md
+++ b/doc/fluid/getstarted/concepts/save_model/model_format.md
@@ -4,30 +4,70 @@
A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code.
-As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
+As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
## Implementation
-The topology is saved as a plain text in a detailed self-contain protobuf file.
+The topology is saved as a plain text in a detailed self-contain protobuf file.
The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task.
-As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
+As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format.
-|field name | type | description |
-| --- | --- | --- |
-| version | uint32_t | Version of saved file. Always 0 now. |
-| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. |
-| tensor desc | void* | TensorDesc protobuf binary message |
-| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
-| lod_level | uint64_t | Level of LoD |
-| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. |
-| data of lod[0] | uint64_t* | [Optional] lod[0].data() |
-| ... | ... | ... |
-
+
+
+
+field name |
+type |
+description |
+
+
+
+
+ version |
+ uint32_t |
+ Version of saved file. Always 0 now. |
+
+
+ tensor desc length |
+ uint32_t |
+ TensorDesc(Protobuf message) length in bytes. |
+
+
+tensor desc |
+ void* |
+ TensorDesc protobuf binary message |
+
+
+ tensor data |
+ void* |
+ Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
+
+
+ lod_level |
+ uint64_t |
+ Level of LoD |
+
+
+ length of lod[0] |
+ uint64_t |
+ [Optional] length of lod[0] in bytes. |
+
+
+ data of lod[0] |
+ uint64_t* |
+ [Optional] lod[0].data() |
+
+
+... |
+ ... |
+ ... |
+
+
+
## Summary
diff --git a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
index 1b6f767869aaa800c122c8e7a06a1413e48e10e0..b99b90056b0a2e51f2668a6d27d94857bdc09c37 100644
--- a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
+++ b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
@@ -65,10 +65,10 @@ exit(1)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
-### 分布式训练
+### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
-optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
+optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python
@@ -99,15 +99,51 @@ for pass_id in range(100):
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
-| 参数名 | 值类型 | 说明 | 示例 |
-|:-------------|:------|:---------------------------------------|:-------------|
-| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
-| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
-| trainers | int | 训练节点的总个数,>0的数字 | 4 |
-| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
-| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
-
-**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
+
+
+
+参数名 |
+ 值类型 |
+说明 |
+ 示例 |
+
+
+
+
+trainer_id |
+ int |
+ 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 |
+ 0/1/2/3 |
+
+
+pservers |
+ str |
+ parameter server 列表 |
+ 127.0.0.1:6710,127.0.0.1:6711 |
+
+
+trainers |
+int |
+ 训练节点的总个数,>0的数字 |
+ 4 |
+
+
+ server_endpoint |
+ str |
+ 当前所起的服务节点的IP:PORT |
+ 127.0.0.1:8789 |
+
+
+ training_role |
+str |
+ 节点角色, TRAINER/PSERVER |
+ PSERVER |
+
+
+
+
+
+**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python
t = fluid.DistributeTranspiler()
diff --git a/doc/fluid/howto/optimization/cpu_profiling_cn.md b/doc/fluid/howto/optimization/cpu_profiling_cn.md
index 17f895573a65731db34b2addddaa22e7f32157ec..8266dec3c6125a09b90ac0ccd4aa5464f5c7db31 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_cn.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_cn.md
@@ -42,14 +42,40 @@ cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
每一列的含义是:
-| 列名 | 含义 |
-| --- | --- |
-| ncalls | 函数的调用次数 |
-| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
-| percall | tottime的每次调用平均时间 |
-| cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
-| percall | cumtime的每次调用平均时间 |
-| filename:lineno(function) | 文件名, 行号,函数名 |
+
+
+
+列名 |
+含义 |
+
+
+
+
+ ncalls |
+ 函数的调用次数 |
+
+
+tottime |
+ 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
+
+
+ percall |
+ tottime的每次调用平均时间 |
+
+
+ cumtime |
+ 函数总时间。包含这个函数调用其他函数的时间 |
+
+
+ percall |
+ cumtime的每次调用平均时间 |
+
+
+ filename:lineno(function) |
+ 文件名, 行号,函数名 |
+
+
+
### 寻找性能瓶颈
diff --git a/doc/fluid/howto/optimization/cpu_profiling_en.md b/doc/fluid/howto/optimization/cpu_profiling_en.md
index abe4493c175fb4ee57f1acf45931e2890620d9c1..e95556dd608b7ff0a3eb18873df0015a2da94e7c 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_en.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_en.md
@@ -57,14 +57,40 @@ port, we will see the output like the following:
where each line corresponds to Python function, and the meaning of
each column is as follows:
-| column | meaning |
-| --- | --- |
-| ncalls | the number of calls into a function |
-| tottime | the total execution time of the function, not including the execution time of other functions called by the function |
-| percall | tottime divided by ncalls |
-| cumtime | the total execution time of the function, including the execution time of other functions being called |
-| percall | cumtime divided by ncalls |
-| filename:lineno(function) | where the function is defined |
+
+
+
+column |
+meaning |
+
+
+
+
+ ncalls |
+ the number of calls into a function |
+
+
+tottime |
+ the total execution time of the function, not including the execution time of other functions called by the function |
+
+
+ percall |
+ tottime divided by ncalls |
+
+
+ cumtime |
+ the total execution time of the function, including the execution time of other functions being called |
+
+
+ percall |
+ cumtime divided by ncalls |
+
+
+ filename:lineno(function) |
+ where the function is define |
+
+
+
### Identify Performance Bottlenecks
diff --git a/doc/fluid/howto/performance/profiler.md b/doc/fluid/howto/performance/profiler.md
index b20b5efdc1f1f10ce7cec835adcc6fb374ed4e20..ee96e7c74ce317caddb387cbb1d4998937bd5c81 100644
--- a/doc/fluid/howto/performance/profiler.md
+++ b/doc/fluid/howto/performance/profiler.md
@@ -23,7 +23,7 @@ But how to record the time for the mixed C++ and CUDA program? There many C++ A
The overall flow is shown as the following figure.
-
+
### Event
@@ -36,10 +36,10 @@ enum EventKind {
kPopRange};
```
- kMark: only a marker without time range.
-- kPushRange: mark the starting event for time range.
+- kPushRange: mark the starting event for time range.
- kPopRange: mark the ending event for time range.
-For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece.
+For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece.
```c++
class Event {
@@ -66,11 +66,11 @@ struct EventList {
};
```
-As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler.
+As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler.
```c++
enum ProfilerState {
- kDisabled,
+ kDisabled,
kCPU,
kCUDA
};
diff --git a/doc/fluid/images/2_level_rnn.dot b/doc/fluid/images/2_level_rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..5d77865061ca7bbbfcf254dd938f09aef5553505
--- /dev/null
+++ b/doc/fluid/images/2_level_rnn.dot
@@ -0,0 +1,56 @@
+digraph G {
+
+ rnn [label="1st level RNN" shape=box]
+
+ subgraph cluster0 {
+ label = "time step 0"
+
+ sent0 [label="sentence"]
+ sent1 [label="sentence"]
+
+ rnn1 [label="2nd level RNN" shape=box]
+
+ sent0 -> rnn1
+ sent1 -> rnn1
+ }
+
+ subgraph cluster1 {
+ label = "time step 1"
+
+ sent2 [label="sentence"]
+ sent3 [label="sentence"]
+
+ rnn2 [label="2nd level RNN" shape=box]
+
+ sent2 -> rnn2
+ sent3 -> rnn2
+ }
+
+ subgraph cluster2 {
+ label = "time step 2"
+
+ sent4 [label="sentence"]
+ sent5 [label="sentence"]
+
+ rnn3 [label="2nd level RNN" shape=box]
+
+ sent4 -> rnn3
+ sent5 -> rnn3
+ }
+
+
+ para0 [label="paragraph info 0"]
+ para1 [label="paragraph info 1"]
+ para2 [label="paragraph info 2"]
+
+ rnn1 -> para0
+ rnn2 -> para1
+ rnn3 -> para2
+
+ para0 -> rnn
+ para1 -> rnn
+ para2 -> rnn
+
+ chapter [label="chapter info"]
+ rnn -> chapter
+}
diff --git a/doc/fluid/images/2_level_rnn.png b/doc/fluid/images/2_level_rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..0537a75beb175c0c284717421f7aa908da2a5038
Binary files /dev/null and b/doc/fluid/images/2_level_rnn.png differ
diff --git a/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg b/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8b0d90f7b9d8184b314b0ee4e521f53eb5f1b455
Binary files /dev/null and b/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg differ
diff --git a/doc/fluid/images/asgd.gif b/doc/fluid/images/asgd.gif
new file mode 100644
index 0000000000000000000000000000000000000000..4a0da7bf6df9326a2aab1638b77c5455c18b8c4e
Binary files /dev/null and b/doc/fluid/images/asgd.gif differ
diff --git a/doc/fluid/images/batch_norm_fork.dot b/doc/fluid/images/batch_norm_fork.dot
new file mode 100644
index 0000000000000000000000000000000000000000..4bc47713cba2cb23f1b34fffe6426ef10ac3a9df
--- /dev/null
+++ b/doc/fluid/images/batch_norm_fork.dot
@@ -0,0 +1,25 @@
+digraph ImageBatchNormForkGragh {
+ subgraph cluster_before {
+ Prev [label="...", shape=plaintext];
+ Rnn [label="rnn_op", shape=box];
+ BatchNorm [label="batch_norm_op", shape=box];
+ Fc [label="fc_op", shape=box];
+ After [label="...", shape=plaintext];
+ Prev -> Rnn -> BatchNorm -> Fc -> After;
+ label="original";
+ }
+
+ subgraph cluster_after {
+ Prev2 [label="...", shape=plaintext];
+ Rnn2 [label="rnn_op", shape=box];
+ BatchNorm2_1 [label="train_batch_norm_op", shape=box];
+ BatchNorm2_2 [label="infer_batch_norm_op", shape=box];
+ Fc2_1 [label="fc_op", shape=box];
+ Fc2_2 [label="fc_op", shape=box];
+ After2_1 [label="...", shape=plaintext];
+ After2_2 [label="...", shape=plaintext];
+ Prev2 -> Rnn2 -> BatchNorm2_1 -> Fc2_1 -> After2_1;
+ Rnn2 -> BatchNorm2_2 ->Fc2_2 ->After2_2
+ label="forked";
+ }
+}
diff --git a/doc/fluid/images/batch_norm_fork.png b/doc/fluid/images/batch_norm_fork.png
new file mode 100644
index 0000000000000000000000000000000000000000..aded62bce5bc268b7a3ef4dc96c89fe21d6ea955
Binary files /dev/null and b/doc/fluid/images/batch_norm_fork.png differ
diff --git a/doc/fluid/images/batch_norm_op_kernel.png b/doc/fluid/images/batch_norm_op_kernel.png
new file mode 100644
index 0000000000000000000000000000000000000000..a99ce81ff3bf42880ebbd6a1297de3bf038e09b2
Binary files /dev/null and b/doc/fluid/images/batch_norm_op_kernel.png differ
diff --git a/doc/fluid/images/beam_search.png b/doc/fluid/images/beam_search.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f7e35f34223162d0f7f0ed97375909c43b830ae
Binary files /dev/null and b/doc/fluid/images/beam_search.png differ
diff --git a/doc/fluid/images/ci_build_whl.png b/doc/fluid/images/ci_build_whl.png
new file mode 100644
index 0000000000000000000000000000000000000000..232762b82a9ae3e979a1f38a7beb715c87438f40
Binary files /dev/null and b/doc/fluid/images/ci_build_whl.png differ
diff --git a/doc/fluid/images/compiler.graffle b/doc/fluid/images/compiler.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..8cc678fea3c820103e7ce81f7a5d625d6c1d92de
Binary files /dev/null and b/doc/fluid/images/compiler.graffle differ
diff --git a/doc/fluid/images/compiler.png b/doc/fluid/images/compiler.png
new file mode 100644
index 0000000000000000000000000000000000000000..65d34f841afce9756def07dd8ecb9ca44e658bfe
Binary files /dev/null and b/doc/fluid/images/compiler.png differ
diff --git a/doc/fluid/images/control_flow_graph.png b/doc/fluid/images/control_flow_graph.png
new file mode 100644
index 0000000000000000000000000000000000000000..3579998e58d07abc50bd3332128d4733a391cb3b
Binary files /dev/null and b/doc/fluid/images/control_flow_graph.png differ
diff --git a/doc/fluid/images/dataflow_equations.png b/doc/fluid/images/dataflow_equations.png
new file mode 100644
index 0000000000000000000000000000000000000000..c10f7f69f4007952e5b0394edaa04efa1cfbb658
Binary files /dev/null and b/doc/fluid/images/dataflow_equations.png differ
diff --git a/doc/fluid/images/dcgan.png b/doc/fluid/images/dcgan.png
new file mode 100644
index 0000000000000000000000000000000000000000..15e8e290a111ff43900934341365cb4360d87d28
Binary files /dev/null and b/doc/fluid/images/dcgan.png differ
diff --git a/doc/fluid/images/deep_learning.png b/doc/fluid/images/deep_learning.png
new file mode 100644
index 0000000000000000000000000000000000000000..026becc4d94e01e407dacb2a5314a0e5723334ff
Binary files /dev/null and b/doc/fluid/images/deep_learning.png differ
diff --git a/doc/fluid/images/dist-graph.graffle b/doc/fluid/images/dist-graph.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..941399c6ced8d5f65b6c595522b770c88259df4b
Binary files /dev/null and b/doc/fluid/images/dist-graph.graffle differ
diff --git a/doc/fluid/images/dist-graph.png b/doc/fluid/images/dist-graph.png
new file mode 100644
index 0000000000000000000000000000000000000000..3546b09f1c2ee3e4f60f519d5e47f823f08051a7
Binary files /dev/null and b/doc/fluid/images/dist-graph.png differ
diff --git a/doc/fluid/images/distributed_architecture.graffle b/doc/fluid/images/distributed_architecture.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..d1b60141342232e06227c2d430ebc60ec349a907
Binary files /dev/null and b/doc/fluid/images/distributed_architecture.graffle differ
diff --git a/doc/fluid/images/distributed_architecture.png b/doc/fluid/images/distributed_architecture.png
new file mode 100644
index 0000000000000000000000000000000000000000..29c7b0c0783f97c6d33b1db1ed484d6a2b9dd356
Binary files /dev/null and b/doc/fluid/images/distributed_architecture.png differ
diff --git a/doc/fluid/images/ds2_network.png b/doc/fluid/images/ds2_network.png
new file mode 100644
index 0000000000000000000000000000000000000000..1a5b2184d47928cc2849d5a7c8ea2d8cf5337e11
Binary files /dev/null and b/doc/fluid/images/ds2_network.png differ
diff --git a/doc/fluid/images/feed_forward.png b/doc/fluid/images/feed_forward.png
new file mode 100644
index 0000000000000000000000000000000000000000..d312371a04c26aa6cd196e0bd1f51becb425180b
Binary files /dev/null and b/doc/fluid/images/feed_forward.png differ
diff --git a/doc/fluid/images/feed_forward_regularized.png b/doc/fluid/images/feed_forward_regularized.png
new file mode 100644
index 0000000000000000000000000000000000000000..677e99bfd9f8e72ed9fe4b27127af2ced202f447
Binary files /dev/null and b/doc/fluid/images/feed_forward_regularized.png differ
diff --git a/doc/fluid/images/fluid-compiler.graffle b/doc/fluid/images/fluid-compiler.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..c933df2cb855462c52b2d25f7f9a99b95652961d
Binary files /dev/null and b/doc/fluid/images/fluid-compiler.graffle differ
diff --git a/doc/fluid/images/fluid-compiler.png b/doc/fluid/images/fluid-compiler.png
new file mode 100644
index 0000000000000000000000000000000000000000..1b0ffed2039c91a3a00bbb719da08c91c3acf7bb
Binary files /dev/null and b/doc/fluid/images/fluid-compiler.png differ
diff --git a/doc/fluid/images/graph_construction_example.bash b/doc/fluid/images/graph_construction_example.bash
new file mode 100755
index 0000000000000000000000000000000000000000..35e6997abd17588e17a82d448918fc1b3bd7220e
--- /dev/null
+++ b/doc/fluid/images/graph_construction_example.bash
@@ -0,0 +1,11 @@
+cat ./graph_construction_example.dot | \
+ sed 's/color=red/color=red, style=invis/g' | \
+ sed 's/color=green/color=green, style=invis/g' | \
+ dot -Tpng > graph_construction_example_forward_only.png
+
+cat ./graph_construction_example.dot | \
+ sed 's/color=green/color=green, style=invis/g' | \
+ dot -Tpng > graph_construction_example_forward_backward.png
+
+cat ./graph_construction_example.dot | \
+ dot -Tpng > graph_construction_example_all.png
diff --git a/doc/fluid/images/graph_construction_example.dot b/doc/fluid/images/graph_construction_example.dot
new file mode 100644
index 0000000000000000000000000000000000000000..e115f9844bae6ad24f638c8ed4749cea8aff06a9
--- /dev/null
+++ b/doc/fluid/images/graph_construction_example.dot
@@ -0,0 +1,68 @@
+digraph ImageClassificationGraph {
+ ///////// The forward part /////////
+ FeedX [label="Feed", color=blue, shape=box];
+ FeedY [label="Feed", color=blue, shape=box];
+ InitW [label="Init", color=blue, shape=diamond];
+ Initb [label="Init", color=blue, shape=diamond];
+ FC [label="FC", color=blue, shape=box];
+ MSE [label="MSE", color=blue, shape=box];
+
+ x [label="x", color=blue, shape=oval];
+ l [label="l", color=blue, shape=oval];
+ y [label="y", color=blue, shape=oval];
+ W [label="W", color=blue, shape=doublecircle];
+ b [label="b", color=blue, shape=doublecircle];
+ cost [label="cost", color=blue, shape=oval];
+
+ FeedX -> x -> FC -> y -> MSE -> cost [color=blue];
+ FeedY -> l [color=blue];
+ InitW -> W [color=blue];
+ Initb -> b [color=blue];
+ W -> FC [color=blue];
+ b -> FC [color=blue];
+ l -> MSE [color=blue];
+
+ ////////// The backward part /////////
+ MSE_Grad [label="MSE_grad", color=red, shape=box];
+ FC_Grad [label="FC_grad", color=red, shape=box];
+
+ d_cost [label="d cost", color=red, shape=oval];
+ d_y [label="d y", color=red, shape=oval];
+ d_b [label="d b", color=red, shape=oval];
+ d_W [label="d W", color=red, shape=oval];
+
+ cost -> MSE_Grad [color=red];
+ d_cost -> MSE_Grad [color=red];
+ l -> MSE_Grad [color=red];
+ y -> MSE_Grad -> d_y [color=red];
+
+ x -> FC_Grad [color=red];
+ y -> FC_Grad [color=red];
+ d_y -> FC_Grad [color=red];
+ W -> FC_Grad -> d_W [color=red];
+ b -> FC_Grad -> d_b [color=red];
+
+ ////////// The optimizaiton part //////////
+
+ OPT_W [label="SGD", color=green, shape=box];
+ OPT_b [label="SGD", color=green, shape=box];
+
+ W -> OPT_W [color=green];
+ b -> OPT_b [color=green];
+ d_W -> OPT_W -> W [color=green];
+ d_b -> OPT_b -> b [color=green];
+
+ ////////// Groupings //////////
+
+ subgraph clusterMSE {
+ style=invis;
+ MSE;
+ MSE_Grad;
+ }
+
+ subgraph clusterFC {
+ style=invis;
+ FC;
+ FC_Grad;
+ }
+}
diff --git a/doc/fluid/images/graph_construction_example_all.png b/doc/fluid/images/graph_construction_example_all.png
new file mode 100644
index 0000000000000000000000000000000000000000..261611a5721f9aa97874f7e6d897fe48cf667db2
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_all.png differ
diff --git a/doc/fluid/images/graph_construction_example_forward_backward.png b/doc/fluid/images/graph_construction_example_forward_backward.png
new file mode 100644
index 0000000000000000000000000000000000000000..4c69687f4a6a181138f3df72ce5e8aa48487b5be
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_forward_backward.png differ
diff --git a/doc/fluid/images/graph_construction_example_forward_only.png b/doc/fluid/images/graph_construction_example_forward_only.png
new file mode 100644
index 0000000000000000000000000000000000000000..e668c16e0cac73acb4e5dc2b1827557ae77126b4
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_forward_only.png differ
diff --git a/doc/fluid/images/l1_regularization.png b/doc/fluid/images/l1_regularization.png
new file mode 100644
index 0000000000000000000000000000000000000000..e1b9c7a44f94dc027598a98da93ddb8133190972
Binary files /dev/null and b/doc/fluid/images/l1_regularization.png differ
diff --git a/doc/fluid/images/l2_regularization.png b/doc/fluid/images/l2_regularization.png
new file mode 100644
index 0000000000000000000000000000000000000000..d5c2fcbc2ccae75ad083162e5a2dceb0210be298
Binary files /dev/null and b/doc/fluid/images/l2_regularization.png differ
diff --git a/doc/fluid/images/local-graph.graffle b/doc/fluid/images/local-graph.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..19e509bd9af3c1e9a3f5e0f16ddd281457a339c5
Binary files /dev/null and b/doc/fluid/images/local-graph.graffle differ
diff --git a/doc/fluid/images/local-graph.png b/doc/fluid/images/local-graph.png
new file mode 100644
index 0000000000000000000000000000000000000000..ada51200f793a9bb18911e7d63cfdb3244b967d7
Binary files /dev/null and b/doc/fluid/images/local-graph.png differ
diff --git a/doc/fluid/images/local_architecture.graffle b/doc/fluid/images/local_architecture.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..49fcc663ebe3824aa234e3a67aadf285cb417877
Binary files /dev/null and b/doc/fluid/images/local_architecture.graffle differ
diff --git a/doc/fluid/images/local_architecture.png b/doc/fluid/images/local_architecture.png
new file mode 100644
index 0000000000000000000000000000000000000000..14adc9fd72b855bb9f74fbf2c84ac9ec0cf2b122
Binary files /dev/null and b/doc/fluid/images/local_architecture.png differ
diff --git a/doc/fluid/images/lookup_table.png b/doc/fluid/images/lookup_table.png
new file mode 100644
index 0000000000000000000000000000000000000000..72dfe3547f731d0d090338afb206b0549dff472e
Binary files /dev/null and b/doc/fluid/images/lookup_table.png differ
diff --git a/doc/fluid/images/lookup_table_training.png b/doc/fluid/images/lookup_table_training.png
new file mode 100644
index 0000000000000000000000000000000000000000..cc7cc4aeb3b885850fe2f70f19fb84d5873bed1e
Binary files /dev/null and b/doc/fluid/images/lookup_table_training.png differ
diff --git a/doc/fluid/images/loss_equation.png b/doc/fluid/images/loss_equation.png
new file mode 100644
index 0000000000000000000000000000000000000000..14212ec8d36c803de96bde8a9a4b5591bd20434e
Binary files /dev/null and b/doc/fluid/images/loss_equation.png differ
diff --git a/doc/fluid/images/multi-threads.graffle b/doc/fluid/images/multi-threads.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..e71173715fff92a0a933d0c7d83599ba948552c6
Binary files /dev/null and b/doc/fluid/images/multi-threads.graffle differ
diff --git a/doc/fluid/images/multi-threads@3x.png b/doc/fluid/images/multi-threads@3x.png
new file mode 100644
index 0000000000000000000000000000000000000000..e40a869987dbbf5019d4cb03c1dab55b74d6c9f9
Binary files /dev/null and b/doc/fluid/images/multi-threads@3x.png differ
diff --git a/doc/fluid/images/multigpu_allreduce.graffle b/doc/fluid/images/multigpu_allreduce.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..cb5bc420ceafe8ba4c87694d44ee4e5e4ad06779
Binary files /dev/null and b/doc/fluid/images/multigpu_allreduce.graffle differ
diff --git a/doc/fluid/images/multigpu_allreduce.png b/doc/fluid/images/multigpu_allreduce.png
new file mode 100644
index 0000000000000000000000000000000000000000..87a1b3e8f6dd4a713ec9df9f0037d1da04e9178a
Binary files /dev/null and b/doc/fluid/images/multigpu_allreduce.png differ
diff --git a/doc/fluid/images/multigpu_before_convert.graffle b/doc/fluid/images/multigpu_before_convert.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..6c35ab1b21fb76ceae82d3693ed0d085b5bc0855
Binary files /dev/null and b/doc/fluid/images/multigpu_before_convert.graffle differ
diff --git a/doc/fluid/images/multigpu_before_convert.png b/doc/fluid/images/multigpu_before_convert.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c8f7711165d80a2fa3911280fdee91855a401b1
Binary files /dev/null and b/doc/fluid/images/multigpu_before_convert.png differ
diff --git a/doc/fluid/images/multiple_reader.png b/doc/fluid/images/multiple_reader.png
new file mode 100644
index 0000000000000000000000000000000000000000..b22126b31db4982c13fc3a0827805e6aaf955046
Binary files /dev/null and b/doc/fluid/images/multiple_reader.png differ
diff --git a/doc/fluid/images/paddle-compile.graffle b/doc/fluid/images/paddle-compile.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..a6348cc3dbcaca923c6e794681b2edb85cb9f8f6
Binary files /dev/null and b/doc/fluid/images/paddle-compile.graffle differ
diff --git a/doc/fluid/images/paddle-compile.png b/doc/fluid/images/paddle-compile.png
new file mode 100644
index 0000000000000000000000000000000000000000..e0f13d551ac41afaec627a57dea79356464bf0bf
Binary files /dev/null and b/doc/fluid/images/paddle-compile.png differ
diff --git a/doc/fluid/images/pprof_1.png b/doc/fluid/images/pprof_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e9edbf377672d0ef40f2fc7bd39e746923550cb
Binary files /dev/null and b/doc/fluid/images/pprof_1.png differ
diff --git a/doc/fluid/images/pprof_2.png b/doc/fluid/images/pprof_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..172ba20399ba974d27f4c072425277b69b02520b
Binary files /dev/null and b/doc/fluid/images/pprof_2.png differ
diff --git a/doc/fluid/images/profiler.png b/doc/fluid/images/profiler.png
new file mode 100644
index 0000000000000000000000000000000000000000..d57b71ca88aaba5d05584a6219d84214e285a1e1
Binary files /dev/null and b/doc/fluid/images/profiler.png differ
diff --git a/doc/fluid/images/readers.png b/doc/fluid/images/readers.png
new file mode 100644
index 0000000000000000000000000000000000000000..fd59168ce16c9e2a0ef45303c28c997cfd7740be
Binary files /dev/null and b/doc/fluid/images/readers.png differ
diff --git a/doc/fluid/images/remote_executor.graffle b/doc/fluid/images/remote_executor.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..41b2067311694b56d211a4f32d1b76884eeffd2d
Binary files /dev/null and b/doc/fluid/images/remote_executor.graffle differ
diff --git a/doc/fluid/images/remote_executor.png b/doc/fluid/images/remote_executor.png
new file mode 100644
index 0000000000000000000000000000000000000000..744e2fb2e0f1bbe058e991ba7b2a09000965ee79
Binary files /dev/null and b/doc/fluid/images/remote_executor.png differ
diff --git a/doc/fluid/images/rnn.dot b/doc/fluid/images/rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..c1141cd9c981bb3cbf50d8bf7a6ed210280d79a5
--- /dev/null
+++ b/doc/fluid/images/rnn.dot
@@ -0,0 +1,87 @@
+digraph G {
+ label = "simple RNN implementation"
+
+ ranksep=2;
+
+ //graph [nodesep=1, ranksep=1];
+
+ node[nodesep=1]
+
+ subgraph cluster0 {
+ label = "global scope"
+ rankdir = TB
+ W
+ boot_memory
+ input
+ output
+ }
+
+ subgraph cluster1 {
+ label = "step-scope 0"
+ rankdir = TB
+ memory0[label="memory"]
+ prememory0[label="pre-memory"]
+ step_input0[label="step input"]
+ step_output0[label="step output"]
+ }
+
+ subgraph cluster2 {
+ label = "step-scope 1"
+ rankdir = TB
+ memory1[label="memory"]
+ prememory1[label="pre-memory"]
+ step_input1[label="step input"]
+ step_output1[label="step output"]
+ }
+
+ subgraph cluster3 {
+ label = "step-scope 2"
+ rankdir = TB
+ memory2[label="memory"]
+ prememory2[label="pre-memory"]
+ step_input2[label="step input"]
+ step_output2[label="step output"]
+ }
+
+ stepnet [shape=box]
+ stepnet0 [shape=box, style=dashed]
+ stepnet1 [shape=box, style=dashed]
+ stepnet2 [shape=box, style=dashed]
+
+
+ edge[color=blue]
+ boot_memory -> prememory0 [label="init" color="blue"]
+ memory0 -> prememory1 [label="copy/reference" color="blue"]
+ memory1 -> prememory2 [label="copy/reference" color="blue"]
+
+ edge[color=black]
+ W -> stepnet0[constraint=false, style=dashed]
+ W -> stepnet1[constraint=false, style=dashed]
+ W -> stepnet2[constraint=false, style=dashed]
+
+ memory0 -> stepnet0[style=dashed]
+ prememory0 -> stepnet0 -> step_output0[style=dashed]
+
+ memory1 -> stepnet1[style=dashed]
+ prememory1 -> stepnet1 -> step_output1[style=dashed]
+
+ memory2 -> stepnet2[style=dashed]
+ prememory2 -> stepnet2 -> step_output2[style=dashed]
+
+ input -> step_input0
+ input -> step_input1
+ input -> step_input2
+
+ step_input0 -> stepnet0 [style=dashed]
+ step_input1 -> stepnet1[style=dashed]
+ step_input2 -> stepnet2[style=dashed]
+
+ step_output0 -> output
+ step_output1 -> output
+ step_output2 -> output
+
+ stepnet0 -> stepnet[style=dashed]
+ stepnet1 -> stepnet[style=dashed]
+ stepnet2 -> stepnet[style=dashed]
+
+}
diff --git a/doc/fluid/images/rnn.jpg b/doc/fluid/images/rnn.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9867e404cf959df0dce6ded5222b466c788fb840
Binary files /dev/null and b/doc/fluid/images/rnn.jpg differ
diff --git a/doc/fluid/images/rnn.png b/doc/fluid/images/rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..e139e373fe8396782044cfd936fdde624f8c66fe
Binary files /dev/null and b/doc/fluid/images/rnn.png differ
diff --git a/doc/fluid/images/rnn_2level_data.dot b/doc/fluid/images/rnn_2level_data.dot
new file mode 100644
index 0000000000000000000000000000000000000000..1d85ae2617a915ad0ad8288d848b607cc37ad297
--- /dev/null
+++ b/doc/fluid/images/rnn_2level_data.dot
@@ -0,0 +1,75 @@
+digraph G {
+ chapter [label="chapter"]
+
+ subgraph cluster0 {
+ label = "paragraph 0"
+
+ top_rnn0[label="top rnn step 0" shape=box]
+
+ p0 [label="paragraph 0"]
+ p1 [label="paragraph 1"]
+ }
+
+ subgraph cluster1{
+ label = "paragraph 1"
+
+ top_rnn1[label="top rnn step 1" shape=box]
+
+ p2 [label="paragraph 0"]
+ p3 [label="paragraph 1"]
+ }
+
+ subgraph cluster_p0 {
+ label = "sentence 0"
+
+ low_rnn0 [label="low rnn step 0" shape=box]
+ s00 [label="sentence 0"]
+ s01 [label="sentence 1"]
+
+ low_rnn0 -> s00
+ low_rnn0 -> s01
+ }
+
+ subgraph cluster_p1 {
+ label = "sentence 1"
+ low_rnn1 [label="low rnn step 1" shape=box]
+ s10 [label="sentence 0"]
+ s11 [label="sentence 1"]
+ low_rnn1 -> s10
+ low_rnn1 -> s11
+ }
+
+ subgraph cluster_p2 {
+ label = "sentence 1"
+ low_rnn2 [label="low rnn step 0" shape=box]
+ s20 [label="sentence 0"]
+ s21 [label="sentence 1"]
+ low_rnn2 -> s20
+ low_rnn2 -> s21
+ }
+
+ subgraph cluster_p3 {
+ label = "sentence 1"
+ low_rnn3 [label="low rnn step 1" shape=box]
+ s30 [label="sentence 0"]
+ s31 [label="sentence 1"]
+ low_rnn3 -> s30
+ low_rnn3 -> s31
+ }
+
+
+ chapter -> top_rnn0
+ chapter -> top_rnn1
+
+ top_rnn0 -> p0
+ top_rnn0 -> p1
+ top_rnn1 -> p2
+ top_rnn1 -> p3
+
+
+ p0 -> low_rnn0
+ p1 -> low_rnn1
+ p2 -> low_rnn2
+ p3 -> low_rnn3
+
+}
diff --git a/doc/fluid/images/rnn_2level_data.png b/doc/fluid/images/rnn_2level_data.png
new file mode 100644
index 0000000000000000000000000000000000000000..4be81b2430717a6a506342a09fc26899568574c6
Binary files /dev/null and b/doc/fluid/images/rnn_2level_data.png differ
diff --git a/doc/fluid/images/single-thread@3x.png b/doc/fluid/images/single-thread@3x.png
new file mode 100644
index 0000000000000000000000000000000000000000..4083aebfdd45af5fbac25fa2c4176bc08c3cb44a
Binary files /dev/null and b/doc/fluid/images/single-thread@3x.png differ
diff --git a/doc/fluid/images/sparse_update.graffle b/doc/fluid/images/sparse_update.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..08d689a58f83698d8c1158ee3990ed8abf3a7a9a
Binary files /dev/null and b/doc/fluid/images/sparse_update.graffle differ
diff --git a/doc/fluid/images/sparse_update.png b/doc/fluid/images/sparse_update.png
new file mode 100644
index 0000000000000000000000000000000000000000..8c872e6ac479f7d1b818a4a207956c43155d0ad7
Binary files /dev/null and b/doc/fluid/images/sparse_update.png differ
diff --git a/doc/fluid/images/test.dot b/doc/fluid/images/test.dot
new file mode 100644
index 0000000000000000000000000000000000000000..62c69b8fc8010a26a54a6ee8ef1488aad94d747a
--- /dev/null
+++ b/doc/fluid/images/test.dot
@@ -0,0 +1,35 @@
+
+digraph Test {
+ z -> generator -> G_img;
+ G_img -> discriminator -> D_f -> d_loss_f;
+ label0 -> d_loss_f -> d_loss;
+
+ img -> discriminator -> D_t -> d_loss_t;
+ label1 -> d_loss_t -> d_loss;
+
+ d_loss -> d_loss_t[color=red, style=dashed];
+ d_loss -> d_loss_f[color=red, style=dashed];
+ d_loss_t -> D_t[color=red, style=dashed];
+ d_loss_f -> D_f[color=red, style=dashed];
+ D_t -> discriminator[color=red, style=dashed];
+ D_f -> discriminator[color=red, style=dashed];
+
+ D_f -> g_loss;
+ label2 -> g_loss;
+
+ g_loss -> D_f[color=green, style=dashed];
+ D_f -> discriminator[color=green, style=dashed];
+ discriminator -> G_img[color=green, style=dashed];
+ G_img -> generator[color=green, style=dashed];
+
+ discriminator [color=red, shape=box];
+ generator [color=green, shape=box];
+ z [shape=diamond];
+ img [shape=diamond];
+ label0 [shape=diamond];
+ label1 [shape=diamond];
+ label2 [shape=diamond];
+
+ d_loss [color=red];
+ g_loss [color=green];
+}
diff --git a/doc/fluid/images/test.dot.png b/doc/fluid/images/test.dot.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e121a40b9f7b2232d7cdda315bad15926446f55
Binary files /dev/null and b/doc/fluid/images/test.dot.png differ
diff --git a/doc/fluid/images/theta_star.gif b/doc/fluid/images/theta_star.gif
new file mode 100644
index 0000000000000000000000000000000000000000..dd24d33e124396be3fc410c9b12f33148f64efe2
Binary files /dev/null and b/doc/fluid/images/theta_star.gif differ
diff --git a/doc/fluid/images/timeline.jpeg b/doc/fluid/images/timeline.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..38ec3f80c982857531f30a8bb0fa26ea5bf05385
Binary files /dev/null and b/doc/fluid/images/timeline.jpeg differ
diff --git a/doc/fluid/images/tracing.jpeg b/doc/fluid/images/tracing.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..3a49fc4f8a401a9463b0157e2f38c164ca02dcc5
Binary files /dev/null and b/doc/fluid/images/tracing.jpeg differ
diff --git a/doc/templates/conf.py.cn.in b/doc/templates/conf.py.cn.in
index 260b6c9fd1b364433cae098bacea77aa7fe9e266..76b82fd97f1ed642696c4414676b694ebda9ad81 100644
--- a/doc/templates/conf.py.cn.in
+++ b/doc/templates/conf.py.cn.in
@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
-sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
+sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
diff --git a/doc/templates/conf.py.en.in b/doc/templates/conf.py.en.in
index e5757b86b43001bc6090d8edd0aaa5ff4fc476ee..5aa5c1381fa3fad4ebc181c7868da03ae0138016 100644
--- a/doc/templates/conf.py.en.in
+++ b/doc/templates/conf.py.en.in
@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
-sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
+sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
diff --git a/doc/v2/CMakeLists.txt b/doc/v2/CMakeLists.txt
index 82de7a3a3e1ca7724e1eda877d53454a4fa4129a..be957d37b14c618e9346251b3bd3dbaf1541773f 100644
--- a/doc/v2/CMakeLists.txt
+++ b/doc/v2/CMakeLists.txt
@@ -27,7 +27,7 @@ sphinx_add_target(paddle_v2_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_v2_docs gen_proto_py)
+add_dependencies(paddle_v2_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -50,6 +50,6 @@ sphinx_add_target(paddle_v2_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
-add_dependencies(paddle_v2_docs_cn gen_proto_py)
+add_dependencies(paddle_v2_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
diff --git a/doc/v2/api/CMakeLists.txt b/doc/v2/api/CMakeLists.txt
index da1eafc02ed8cd155d4f0f1fbadcb7b237b6fcc1..2670a21a227546ffcee4f10f395feef3c58df9b4 100644
--- a/doc/v2/api/CMakeLists.txt
+++ b/doc/v2/api/CMakeLists.txt
@@ -19,4 +19,4 @@ sphinx_add_target(paddle_v2_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind)
+add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
diff --git a/doc/v2/build_and_install/index_en.rst b/doc/v2/build_and_install/index_en.rst
index 7e0ca5bcbdbad0a3c97c0045bb57b51137668161..5b3de0f8c3e5496060646b5ddb080d0d338a8bfa 100644
--- a/doc/v2/build_and_install/index_en.rst
+++ b/doc/v2/build_and_install/index_en.rst
@@ -1,32 +1,56 @@
-Install and Build
-=================
+install and Compile
+==========
.. _install_steps:
-Install Steps
-++++++++
+PaddlePaddle provides various methods of installation for many different users
-You can choose either pip or Docker to complete your install:
+Focus on Deep Learning Model Development
+-----------------
+
+PaddlePaddle provides lots of packages of python wheel , that pip can install:
.. toctree::
- :maxdepth: 1
+ :maxdepth: 1
- pip_install_en.rst
- docker_install_en.rst
+ pip_install_en.rst
-Build from Source
------------------
+This is the most convenient way of installation. Please choose the right installation package with machine configure and system.
+
+Follow the Bottom Frame
+----------
+
+PaddlePaddle also supports installation using Docker. Please refer to the tutorial below:
+
+.. toctree::
+ :maxdepth: 1
+
+ docker_install_en.rst
-.. warning::
+We recommend running PaddlePaddle in Docker. This method has the following advantages:
- We recommend to directly install via above installation steps, you'll only need to build PaddlePaddle from source when you need a modifed binary.
+- Does not require installation of third-party dependencies.
+- Easy to share runtime environment.
-.. toctree::
+Lastly, users can also compile and install PaddlePaddle from source code. The instructions are below:
+
+.. toctree::
:maxdepth: 1
- build_from_source_en.md
+ build_from_source_en.rst
+
+.. warning::
+
+ One caveat with this approach is that developers will have to download, compile and install all third-party dependencies. Thus this process of installation is more time consuming.
+
FAQ
-++++++++++
+-----------
+
+For any problems during installation, please refer to the page below for answers:
+
+:ref:`常见问题解答 `
+
+If the problem still persists, you are welcome to seek assistance from the PaddlePaddle community:
-`FAQ `_
+`创建issue `_
diff --git a/doc/v2/faq/build_and_install/index_en.rst b/doc/v2/faq/build_and_install/index_en.rst
index 614db457d715665073cec1a495d4d7df6887532f..7488ed8137d57785f36b9f1e1ed1269f864960bc 100644
--- a/doc/v2/faq/build_and_install/index_en.rst
+++ b/doc/v2/faq/build_and_install/index_en.rst
@@ -1,5 +1,143 @@
-############################
-Install, Build and Unit test
-############################
+.. _install_faq:
-TBD
+###############################
+Compile, Install, and Unit Test
+###############################
+
+.. contents::
+
+1. Insufficient CUDA driver version
+----------------------------------------------------------------
+
+Many users usually face issues like `Cuda Error: CUDA driver version is insufficient for CUDA runtime version` when running the PaddlePaddle GPU Docker image. The cause is that you may not map the local CUDA driver to a container directory.
+You can solve the issue by running the following commands:
+
+.. code-block:: bash
+
+ $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
+ $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
+ $ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
+
+For more infomation about Docker's installation and usage, please refer to `PaddlePaddle Docker documentation `_ .
+
+
+2. Version mismatch between PythonLibs and PythonInterpreter
+----------------------------------------------------------------
+
+It is a common bug when CMake looks up Python. If you install multiple versions of Python, Cmake may find the version mismatch between PythonLibs and PythonInterpreter . You are forced to specify a Python version, as follows.
+
+ .. code-block:: bash
+
+ cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR=
+
+You should specify ````, ````, ```` to your local paths.
+
+3. PaddlePaddle version is 0.0.0
+------------------------------------------------
+This issue would happen when you run the code `paddle version` or `cmake ..`
+
+.. code-block:: bash
+
+ CMake Warning at cmake/version.cmake:20 (message):
+ Cannot add paddle version from git tag
+
+You should pull all remote branches to your local machine with the command :code:`git fetch upstream` and then run :code:`cmake`
+
+4. paddlepaddle\*.whl is not a supported wheel on this platform.
+------------------------------------------------------------------------
+
+The primary cause for this issue is that it can not find the correct PaddlePaddle installation package that matches your current system.The latest PaddlePaddle Python installation package supports Linux x86_64 and MacOS 10.12 os including Python2.7 and Pip 9.0.1.
+
+You can upgrade Pip with the following command\:
+
+.. code-block:: bash
+
+ pip install --upgrade pip
+
+If it does not work for you, you can run the command :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` to get the suffix of Python package which your system may support and then compare it with the suffix of your installation.
+
+If the system supports :code:`linux_x86_64` and the installation package is :code:`manylinux1_x86_64`, you should upgrade pip to the latest
+
+if the system supports :code:`manylinux_x86_64` and the local installation package is :code:`linux1_x86_64`, you can rename the whl package to :code:`manylinux1_x86_64` and then try again.
+
+
+5. ImportError: No module named v2
+----------------------------------
+Please uninstall Paddle V1 if you have installed it before.
+
+.. code-block:: bash
+
+ pip uninstall py_paddle paddle
+
+Then install Python for PaddlePaddle , enter the build directory and run the following commands
+
+pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
+
+6. Illegal instruction
+-----------------------
+This issue may be caused by the wrong usage of PaddlePaddle binary version which uses avx SIMD instructions to increase the performance of cpu. Please choose the correct version.
+
+7. Python unittest fails
+--------------------------------
+
+If the following python unittest testcases fail:
+
+.. code-block:: bash
+
+ 24 - test_PyDataProvider (Failed)
+ 26 - test_RecurrentGradientMachine (Failed)
+ 27 - test_NetworkCompare (Failed)
+ 28 - test_PyDataProvider2 (Failed)
+ 32 - test_Prediction (Failed)
+ 33 - test_Compare (Failed)
+ 34 - test_Trainer (Failed)
+ 35 - test_TrainerOnePass (Failed)
+ 36 - test_CompareTwoNets (Failed)
+ 37 - test_CompareTwoOpts (Failed)
+ 38 - test_CompareSparse (Failed)
+ 39 - test_recurrent_machine_generation (Failed)
+ 40 - test_PyDataProviderWrapper (Failed)
+ 41 - test_config_parser (Failed)
+ 42 - test_swig_api (Failed)
+ 43 - layers_test (Failed)
+
+Please check the PaddlePaddle unittest logs which may suggest the following:
+
+.. code-block:: bash
+
+ paddle package is already in your PYTHONPATH. But unittest need a clean environment.
+ Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'.
+
+The solution is:
+
+* Remove old PaddlePaddle to make a clean environment for the unit tests. If PaddlePaddle package is already in Python's site-packages, unit tests would refer Python package in site-packages instead of Python package in the :code:`/python` directory of the source directory. Setting :code:`PYTHONPATH` to :code:`/python` is also useless because Python's search path would give the priority to the installed Python package.
+
+
+8. Failed to download the MKLML library
+----------------------------------------------
+
+.. code-block:: bash
+
+ make[2]: *** [third_party/mklml/src/extern_mklml-stamp/extern_mklml-download] error 4
+ make[1]: *** [CMakeFiles/extern_mklml.dir/all] error 2
+ make[1]: *** waiting for the unfinished jobs....
+
+Cause: The network speed or SSL link causes the MKLML library to download unsuccessfully.
+
+The solution is: manually download and install, the specific steps are as follows.
+
+.. code-block:: bash
+
+ // 1. enter the directory
+ cd build/third_party/mklml/src/extern_mklml
+
+ // 2. check the size of the package, normally 75M, if less than 75M, the download fails
+ du -sh mklml_lnx_2018.0.1.20171007.tgz
+
+ // 3. manually download and unzip and make the download success tag:
+ wget --no-check-certificate https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz -c -O mklml_lnx_2018.0.1.20171007.tgz
+ tar zxf mklml_lnx_2018.0.1.20171007.tgz
+ touch ../extern_mklml-stamp/extern_mklml-download
+
+ // 4. then compile
+
diff --git a/doc/v2/howto/capi/compile_paddle_lib_en.md b/doc/v2/howto/capi/compile_paddle_lib_en.md
index 11d69b9b79c1a41898d3060d3fe25a31330334a3..6212a3081116d988630706e83d2349dd200b73ab 100644
--- a/doc/v2/howto/capi/compile_paddle_lib_en.md
+++ b/doc/v2/howto/capi/compile_paddle_lib_en.md
@@ -1,3 +1,175 @@
## Install and Build
-TBD
+### Download & Install
+
+ Download the latest C-API development package from CI system and install. You can find the required version in the table below:
+
+
+### From source
+
+ Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options:
+
+
+
+
+Options |
+Value |
+
+
+
+
+WITH_C_API |
+ON |
+
+
+WITH_PYTHON |
+OFF(recommended) |
+
+
+WITH_SWIG_PY |
+OFF(recommended) |
+
+
+WITH_GOLANG |
+OFF(recommended) |
+
+
+WITH_GPU |
+ON/OFF |
+
+
+WITH_MKL |
+ON/OFF |
+
+
+It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need.
+
+Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library):
+
+```shell
+PADDLE_ROOT=/path/of/capi
+git clone https://github.com/PaddlePaddle/Paddle.git
+cd Paddle
+mkdir build
+cd build
+cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
+ -DCMAKE_BUILD_TYPE=Release \
+ -DWITH_C_API=ON \
+ -DWITH_SWIG_PY=OFF \
+ -DWITH_GOLANG=OFF \
+ -DWITH_PYTHON=OFF \
+ -DWITH_MKL=OFF \
+ -DWITH_GPU=OFF \
+ ..
+```
+
+After running the above code to generate Makefile , run: `make && make install`. After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory.
+
+If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)):
+
+```text
+├── include
+│ └── paddle
+│ ├── arguments.h
+│ ├── capi.h
+│ ├── capi_private.h
+│ ├── config.h
+│ ├── error.h
+│ ├── gradient_machine.h
+│ ├── main.h
+│ ├── matrix.h
+│ ├── paddle_capi.map
+│ └── vector.h
+├── lib
+│ ├── libpaddle_capi_engine.a
+│ ├── libpaddle_capi_layers.a
+│ ├── libpaddle_capi_shared.so
+│ └── libpaddle_capi_whole.a
+└── third_party
+ ├── gflags
+ │ ├── include
+ │ │ └── gflags
+ │ │ ├── gflags_completions.h
+ │ │ ├── gflags_declare.h
+ │ │ ...
+ │ └── lib
+ │ └── libgflags.a
+ ├── glog
+ │ ├── include
+ │ │ └── glog
+ │ │ ├── config.h
+ │ │ ...
+ │ └── lib
+ │ └── libglog.a
+ ├── openblas
+ │ ├── include
+ │ │ ├── cblas.h
+ │ │ ...
+ │ └── lib
+ │ ...
+ ├── protobuf
+ │ ├── include
+ │ │ └── google
+ │ │ └── protobuf
+ │ │ ...
+ │ └── lib
+ │ └── libprotobuf-lite.a
+ └── zlib
+ ├── include
+ │ ...
+ └── lib
+ ...
+
+```
+
+### Linking Description:
+
+There are three kinds of linking methods:
+
+1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following:
+ 1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API.
+ 1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library.
+ 1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to `LD_LIBRARY_PATH` environment variable.
+
+2. Linking with static library `libpaddle_capi_whole.a`,refer to the following:
+ 1. Specify `-Wl,--whole-archive` linking options.
+ 1. Explicitly link third-party libraries such as `gflags`、`glog`、`libz`、`protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory.
+ 1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`.
+ 1. Use MKL when compiling C-API, must explicitly link MKL dynamic library.
+
+3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following:
+ 1. This linking methods is mainly used for mobile prediction.
+ 1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries.
+ 1. Specify `-Wl,--whole-archive -lpaddle_capi_layers` and `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking.
+ 1. The third-party dependencies need explicitly link same as method 2 above.
diff --git a/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md b/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md
index bc3d50b3ffd3b703a3a656caa1f96bdcf683f68b..dee1b7554f97af17989c3f7739d8feea3b6b8e3f 100644
--- a/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md
+++ b/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md
@@ -1,3 +1,372 @@
-# Kubernetes Distributed
+# Distributed Training on Kubernetes
-TBD
+We introduced how to create a PaddlePaddle Job with a single node on Kuberentes in the
+previous document.
+In this article, we will introduce how to create a PaddlePaddle job with multiple nodes
+on Kubernetes cluster.
+
+## Overall Architecture
+
+Before creating a training job, the users need to slice the training data and deploy
+the Python scripts along with it into the distributed file system
+(We can use the different type of Kuberentes Volumes to mount different distributed
+file systems). Before training starts, The program will copy the training data into the
+Container and also save the models at the same path during training. The global architecture
+is as follows:
+
+![PaddlePaddle on Kubernetes Architecture](src/k8s-paddle-arch.png)
+
+The above figure describes a distributed training architecture which contains 3 nodes, each
+Pod mounts a folder of the distributed file system to save training data and models
+by Kubernetes Volume. Kubernetes created 3 Pods for this training phase and scheduled these on
+3 nodes, each Pod has a PaddlePaddle container. After the containers car created,
+PaddlePaddle starts up the communication between PServer and Trainer and read training
+data for this training job.
+
+As the description above, we can start up a PaddlePaddle distributed training job on a
+Kubernetes ready cluster with the following steps:
+
+1. [Build PaddlePaddle Docker Image](#Build a Docker Image)
+1. [Split training data and upload to the distributed file system](#Upload Training Data)
+1. [Edit a YAML file and create a Kubernetes Job](#Create a Job)
+1. [Check the output](#Check The Output)
+
+We will introduce these steps as follows:
+
+### Build a Docker Image
+
+Training docker image needs to package the paddle pserver and paddle trainer runtimes, as well as two more processes before we can kick off the training:
+
+- Copying the training data into container.
+- Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes.
+
+Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link:
+- https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile
+
+
+```bash
+$ cd doc/howto/usage/k8s/src/k8s_train
+$ docker build -t [YOUR_REPO]/paddle:mypaddle .
+```
+
+And then upload the new Docker Image to a Docker hub:
+
+```bash
+docker push [YOUR_REPO]/paddle:mypaddle
+```
+
+**[NOTE]**, in the above command arguments, `[YOUR_REPO]` represents your Docker repository,
+you need to use your repository instead of it. We will replace it with your respository name to
+represent the Docker Image which built in this step.
+
+### Prepare Training Data
+
+We can download and split the training job by creating a Kubernetes Job, or custom your image
+by editing [k8s_train](./src/k8s_train/).
+
+Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of
+the different file system, the generated dataset would be saved on this volume.
+
+```yaml
+apiVersion: batch/v1
+kind: Job
+metadata:
+ name: paddle-data
+spec:
+ template:
+ metadata:
+ name: pi
+ spec:
+ hostNetwork: true
+ containers:
+ - name: paddle-data
+ image: paddlepaddle/paddle-tutorial:k8s_data
+ imagePullPolicy: Always
+ volumeMounts:
+ - mountPath: "/mnt"
+ name: nfs
+ env:
+ - name: OUT_DIR
+ value: /home/work/mfs/paddle-cluster-job
+ - name: SPLIT_COUNT
+ value: "3"
+ volumes:
+ - name: nfs
+ persistentVolumeClaim:
+ claimName: mfs
+ restartPolicy: Never
+```
+
+Create the Job with the following command:
+
+```bash
+> kubectl create -f xxx.yaml
+```
+
+If created successfully, you can see some information like this:
+
+```base
+[root@paddle-kubernetes-node0 nfsdir]$ tree -d
+.
+`-- paddle-cluster-job
+ |-- 0
+ | `-- data
+ |-- 1
+ | `-- data
+ |-- 2
+ | `-- data
+ |-- output
+ |-- quick_start
+```
+
+The `paddle-cluster-job` above is the job name for this training job; we need 3
+PaddlePaddle training nodes and save the split training data in `paddle-cluster-job` path,
+the folder `0`, `1` and `2` represents the `training_id` on each node, `quick_start` folder is used to store training data, `output` folder is used to store the models and logs.
+
+
+### Create a Job
+
+Kubernetes allow users to create objects with YAML files, and we can use a command-line tool
+to create it.
+
+The Job YAML file describes that which Docker Image would be used in this training job, how much nodes would be created, what's the startup arguments of `Paddle PServer/Trainer` process and what's the type of Volumes. You can find the details of the YAML filed in
+[Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job).
+The following is an example for this training job:
+
+```yaml
+apiVersion: batch/v1
+kind: Job
+metadata:
+ name: paddle-cluster-job
+spec:
+ parallelism: 3
+ completions: 3
+ template:
+ metadata:
+ name: paddle-cluster-job
+ spec:
+ volumes:
+ - name: jobpath
+ hostPath:
+ path: /home/work/mfs
+ containers:
+ - name: trainer
+ image: [YOUR_REPO]/paddle:mypaddle
+ command: ["bin/bash", "-c", "/root/start.sh"]
+ env:
+ - name: JOB_NAME
+ value: paddle-cluster-job
+ - name: JOB_PATH
+ value: /home/jobpath
+ - name: JOB_NAMESPACE
+ value: default
+ - name: TRAIN_CONFIG_DIR
+ value: recommendation
+ - name: CONF_PADDLE_NIC
+ value: eth0
+ - name: CONF_PADDLE_PORT
+ value: "7164"
+ - name: CONF_PADDLE_PORTS_NUM
+ value: "2"
+ - name: CONF_PADDLE_PORTS_NUM_SPARSE
+ value: "2"
+ - name: CONF_PADDLE_GRADIENT_NUM
+ value: "3"
+ volumeMounts:
+ - name: jobpath
+ mountPath: /home/jobpath
+ restartPolicy: Never
+```
+
+In the above YAML file:
+- `metadata.name`, The job name.
+- `parallelism`, Whether the Kubernetes Job would create `parallelism` Pods at the same time.
+- `completions`, The Job would become the success status only when the number of successful Pod(the exit code is 0)
+ is equal to `completions`.
+- `volumeMounts`, the name field `jobpath` is a key, the `mountPath` field represents
+ the path in the container, and we can define the `jobpath` in `volumes` filed, use `hostPath`
+ to configure the host path we want to mount.
+- `env`, the environment variables in the Container, we pass some startup arguments by
+ this approach, some details are as following:
+ - JOB_PATH:the mount path in the container
+ - JOB_NAME:the job name
+ - TRAIN_CONFIG_DIR:the job path in the container, we can find the training data path by
+ combine with JOB_NAME.
+ - CONF_PADDLE_NIC: the argument `--nics` of `Paddle PServer` process, the network
+ device name.
+ - CONF_PADDLE_PORT: the argument `--port` of `Paddle PServer` process.
+ - CONF_PADDLE_PORTS_NUM: the argument `--ports_num` of `Paddle PServer`, the port number
+ for dense prameter update.
+ - CONF_PADDLE_PORTS_NUM_SPARSE:the argument `--ports_num_for_sparse` of `Paddle PServer`,
+ the port number for sparse parameter update.
+ - CONF_PADDLE_GRADIENT_NUM:the number of training node, the argument
+ `--num_gradient_servers` of `Paddle PServer` and `Paddle Trainer`.
+
+You can find some details information at [here]
+(http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。
+
+We can use the command-line tool of Kubernetes to create a Job when we finish the YAML file:
+
+```bash
+kubectl create -f job.yaml
+```
+
+Upon successful creation, Kubernetes would create 3 Pods as PaddlePaddle training node,
+pull the Docker image and begin to train.
+
+
+### Checkout the Output
+
+At the process of training, we can check the logs and the output models which is stored in
+the `output` folder.
+
+**NOTE**, `node_0`, `node_1` and `node_2` represent the
+`trainer_id` of the PaddlePaddle training job rather than the node id of Kubernetes.
+
+```bash
+[root@paddle-kubernetes-node0 output]# tree -d
+.
+├── node_0
+│ ├── server.log
+│ └── train.log
+├── node_1
+│ ├── server.log
+│ └── train.log
+├── node_2
+......
+├── pass-00002
+│ ├── done
+│ ├── ___embedding_0__.w0
+│ ├── ___embedding_1__.w0
+......
+```
+
+We can checkout the status of each training Pod by viewing the logs:
+
+```bash
+[root@paddle-kubernetes-node0 node_0]# cat train.log
+I1116 09:10:17.123121 50 Util.cpp:155] commandline:
+ /usr/local/bin/../opt/paddle/bin/paddle_trainer
+ --nics=eth0 --port=7164
+ --ports_num=2 --comment=paddle_process_by_paddle
+ --pservers=192.168.129.66,192.168.223.143,192.168.129.71
+ --ports_num_for_sparse=2 --config=./trainer_config.py
+ --trainer_count=4 --num_passes=10 --use_gpu=0
+ --log_period=50 --dot_period=10 --saving_period=1
+ --local=0 --trainer_id=0
+ --save_dir=/home/jobpath/paddle-cluster-job/output
+I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
+I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
+[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
+[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
+[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__]
+I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
+I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
+I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
+I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters..
+I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done.
+I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
+I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
+I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
+I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
+I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
+I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
+```
+
+## Some Additional Details
+
+### Using Environment Variables
+
+Usually we use the environment varialbes to configurate the PaddlePaddle Job which runs in
+Kubernetes, `start_paddle.py` provides a start up script to convert the environment variable
+to the start up arguments of PaddlePaddle process:
+
+```bash
+API = "/api/v1/namespaces/"
+JOBSELECTOR = "labelSelector=job-name="
+JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME")
+JOB_PATH_OUTPUT = JOB_PATH + "/output"
+JOBNAME = os.getenv("JOB_NAME")
+NAMESPACE = os.getenv("JOB_NAMESPACE")
+PADDLE_NIC = os.getenv("CONF_PADDLE_NIC")
+PADDLE_PORT = os.getenv("CONF_PADDLE_PORT")
+PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM")
+PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE")
+PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM")
+```
+
+### Communication between Pods
+
+At the begin of `start_paddle.py`, it would initializes and parses the arguments.
+
+```python
+parser = argparse.ArgumentParser(prog="start_paddle.py",
+ description='simple tool for k8s')
+ args, train_args_list = parser.parse_known_args()
+ train_args = refine_unknown_args(train_args_list)
+ train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
+ podlist = getPodList()
+```
+
+And then query the status of all the other Pods of this Job by the function `getPodList()`, and fetch `triner_id` by the function `getIdMap(podlist)` if all the Pods status is `RUNNING`.
+
+```python
+ podlist = getPodList()
+ # need to wait until all pods are running
+ while not isPodAllRunning(podlist):
+ time.sleep(10)
+ podlist = getPodList()
+ idMap = getIdMap(podlist)
+```
+
+**NOTE**: `getPodList()` would prefetch all the Pods in the current namespace, if some
+Pods are alreay running, it may cause some error. We will use [statfulesets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets) instead of
+Kubernetes Pod or Replicaset in the future.
+
+The function `getIdMap(podlist)` fetches IPs addresses of `podlist` and then sort them
+to generate `trainer_id`.
+
+```python
+def getIdMap(podlist):
+ '''
+ generate tainer_id by ip
+ '''
+ ips = []
+ for pod in podlist["items"]:
+ ips.append(pod["status"]["podIP"])
+ ips.sort()
+ idMap = {}
+ for i in range(len(ips)):
+ idMap[ips[i]] = i
+ return idMap
+```
+
+After getting the `idMap`, we can generate the arguments of `Paddle PServer` and `Paddle Trainer`
+so that we can start up them by `startPaddle(idMap, train_args_dict)`.
+
+### Create Job
+
+The main goal of `startPaddle` is generating the arguments of `Paddle PServer` and
+`Paddle Trainer` processes. Take `Paddle Trainer` as an example, we parse the
+environment variable and then get `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM` and etc...,
+finally find `trainerId` from `idMap` according to its IP address.
+
+```python
+ program = 'paddle train'
+ args = " --nics=" + PADDLE_NIC
+ args += " --port=" + str(PADDLE_PORT)
+ args += " --ports_num=" + str(PADDLE_PORTS_NUM)
+ args += " --comment=" + "paddle_process_by_paddle"
+ ip_string = ""
+ for ip in idMap.keys():
+ ip_string += (ip + ",")
+ ip_string = ip_string.rstrip(",")
+ args += " --pservers=" + ip_string
+ args_ext = ""
+ for key, value in train_args_dict.items():
+ args_ext += (' --' + key + '=' + value)
+ localIP = socket.gethostbyname(socket.gethostname())
+ trainerId = idMap[localIP]
+ args += " " + args_ext + " --trainer_id=" + \
+ str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
+```
diff --git a/doc/v2/howto/rnn/recurrent_group_en.md b/doc/v2/howto/rnn/recurrent_group_en.md
index d264b0a9f85faffd49c1982117cb5a3ac6ffc015..de6b60f29eb97029a54609cd2194bb7faf3ffec5 100644
--- a/doc/v2/howto/rnn/recurrent_group_en.md
+++ b/doc/v2/howto/rnn/recurrent_group_en.md
@@ -1,3 +1,96 @@
# Recurrent Group Tutorial
-TBD
+## Overview
+
+Sequential data is common in natural language processing.
+
+A sentence is a sequence of words and many sentences form a paragraph further. Therefore, a paragraph can be viewed as a nested sequence with two level, where each element of the sequence is another sequence. That is to say, sequential data could be recursive. An example of two-level recursive sequential data is that an article is composed of a sequence of sentences, and each sentence a sequence of words.
+
+PaddlePaddle and PaddlePaddle v2 support two-level recursive sequential data. The two-level sequence is a very flexible data, which helps us to better describe more complex language data such as discribing paragraphs and several rounds of dialogues. Based on two-level sequence input, we can design and build a flexible, hierarchical RNN model that encodes input data from the word and sentence level. For the support of arbitrary levels, please refer to PaddlePaddle Fluid.
+
+In PaddlePaddle, `recurrent_group` is an arbitrarily complex RNN unit. The user only needs to define the calculation that the RNN will complete in one time step. PaddlePaddle is responsible for the propagation of information and error in time series.
+
+Furthermore, `recurrent_group` can also be extended to handle two-level sequence. By defining two nested `recurrent_group` operations at the clause level and the word level respectively, a hierarchical and complex RNN is finally achieved.
+
+Currently, in the PaddlePaddle, there are `recurrent_group` and some Layers that can process bidirectional sequences. For details, refer to the document: Layers for supporting double-layer sequences as input.
+
+## Related Concepts
+
+### Basic Principle
+`recurrent_group` is an arbitrarily complex RNN unit supported by PaddlePaddle. The user only needs to focus on the calculations that the RNN is designed to complete within a single time step. The PaddlePaddle is responsible for completing the propagation of information and gradients over time.
+
+In PaddlePaddle, a simple call to `recurrent_group` is as follows:
+
+``` python
+recurrent_group(step, input, reverse)
+```
+- step: A callable function that defines the calculations completed by the RNN unit within a time step
+- input: The input must be a single-layer sequence or a double-layer sequence
+- reverse: Whether to process the input sequence in reverse order
+
+The core of using `recurrent_group` is to design the logic of the step function. The step function can be freely combined with various layers supported by PaddlePaddle to complete arbitrary arithmetic logic. The input of `recurrent_group` (input) becomes the input of the step function. Since the step function only focuses on the calculation within one time step of RNN, here `recurrent_group` completes the splitting of the original input data for us.
+
+### Input
+The input sequence processed by `recurrent_group` is mainly divided into the following three types:
+
+- **Input Data**: When putting a two-level sequence into `recurrent_group`, it will be disassembled into a single-level sequence. When putting a single-level sequence into `recurrent_group`, it will be disassembled into a non-sequence and then passed to the step function. This process is completely transparent to the user. There are two possible types: 1) User input via data_layer; 2) Output from other layers.
+
+- **Read-only Memory Input**: `StaticInput` defines a read-only Memory. The input specified by `StaticInput` will not be disassembled by `recurrent_group`, and each time step of the `recurrent_group` loop will always be able to reference all inputs. It may be a non-sequence or a single-layer sequence.
+
+- **Input of Sequence Generation Task**: `GeneratedInput` is only used to specify input data in a sequence generation task.
+
+### Input Example
+
+Sequence generation tasks mostly follow the encoder-decoer architecture. The encoder and decoder can be arbitrary neural network units capable of processing sequences and RNN is the most popular choice.
+
+Given the encoder output and the current word, the decoder predicts the next most likely word each time. In this structure, the decoder accepts two inputs:
+
+- Target sequence to be generated: a input of the decoder and the basis of the decoder loop. `recurrent_group` will disassemble this input type.
+
+- Encoder output, an non-sequencce or single-sequence: a unbounded memory. Each time step in the decoder loop will reference the entire result and should not be disassembled. This type of input must be specified via `StaticInput`. For more discussion on Unbounded Memory, please refer to the paper [Neural Turning Machine](https://arxiv.org/abs/1410.5401).
+
+In a sequence generation task, the decoder RNN always refers to the word vector of the word predicted at the previous moment as the current time input. `GeneratedInput` will automate this process.
+
+### Output
+The `step` function must return the output of one or more Layers. The output of this Layer will be the final output of the entire `recurrent_group`. In the output process, `recurrent_group` will concatenate the output of each time step, which is also transparent to the user.
+
+### Memory
+Memory can only be defined and used in `recurrent_group`. Memory cannot exist independently and must point to a layer defined by PaddlePaddle. Memory is referenced to get a momentary output from this layer, so memory can be interpreted as a delay operation.
+
+The user can explicitly specify the output of a layer to initialize the memory. When not specified, memory is initialized to 0 by default.
+
+## Sequence-level RNN Introduction
+
+`recurrent_group` helps us to split the input sequence, merge the output, and loop through the sequence of computational logic.
+
+Using this feature, the two nested `recurrent_group` can handle the nested two-level sequences, implementing sequence-level RNN structures at both the word and sentence levels.
+
+- Word-level RNN: each state corresponds to a word.
+- Sequence-level RNN: a sequence-layer RNN consists of multiple word-layer RNNs. Each word-layer RNN (ie, each state of a sequence-layer RNN) has a subsequence.
+
+For convenience of description, the following takes the NLP task as an example. A paragraph containing a subsequence is defined as a two-level sequence, and a sentence containing a word is defined as a single-layer sequence. Then, the zero-level sequence is a word.
+
+## Usage of Sequence-level RNN
+
+### Usage of Training Process
+Using `recurrent_group` requires the following conventions:
+
+- **Single-input Single-output**: Both input and output are single layer sequences.
+ - If there are multiple inputs, the number of words in different input sequences must be exactly equal.
+ - A single-layer sequence is output, and the number of words in the output sequence is the same as the input sequence.
+ - memory: define memory to point to a layer in the step function, get a moment output from this layer by referencing memory to form a recurrent connection. The is_seq parameter of memory must be false. If memory is not defined, the operations within each time step are independent.
+ - boot_layer: the initial state of memory, set 0 by default. is_seq in memory must be false.
+
+- **Double-input Double-output**: Both input and output are two-level sequence.
+ - If there are multiple input sequences, the number of subsequence contained in different inputs must be strictly equal, but the number of words in the subsequence may not be equal.
+ - output a two-level sequence. The number of subsequence and the number of words are the same as the specified input sequence and the first input is default.
+ - memory: defining memory in the step function, pointing to a layer, by referring to the memory to get the output of this layer at a time, forming a recurrent connection. The memory defined in the outer `recurrent_group` step function can record the state of the previous subsequence, either as a single-level sequence (only as read-only memory) or as a word. If memory is not defined, the operations between subsequence are independent.
+ - boot_layer: the initial state of memory. It is either a single-level sequence (only as read-only memory) or a vector. The default is not set, that is, the initial state is 0.
+
+- **Double-input Single-output**: not support for now, and output the error with "In hierachical RNN, all out links should be from sequences now".
+
+### Usage of Generation Process
+Using `beam_search` need follow those conventions:
+
+- Word-level RNN: generate the next word from a word.
+- Sequence-level RNN: the single-layer RNN generated subsequence is concatenated into a new double-layer sequence. Semantically, there is no case where a subsequence generates the next subseq directly.
diff --git a/paddle/.gitignore b/paddle/.gitignore
index f921eef14156a97e4fd250f014960e306b43f35a..1c1c0c2c829f088d7e3f52ca007fcb8f33a16a36 100644
--- a/paddle/.gitignore
+++ b/paddle/.gitignore
@@ -1,3 +1,4 @@
+.timestamp
*.o
*.a
.svn
diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt
index cf84568ecdf1227b0d0ed3606a4a9a6e5186af72..06e1f5d5f0884efabfcdf917ca5c35d94ad5dce9 100644
--- a/paddle/api/CMakeLists.txt
+++ b/paddle/api/CMakeLists.txt
@@ -89,16 +89,17 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END}
)
-add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
- COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
- COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
- COMMAND ${CMAKE_COMMAND} -E touch .timestamp
+add_custom_command(OUTPUT ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so
+ COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_BINARY_DIR}/.timestamp
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle
)
# TODO(yuyang18) : make wheel name calculated by cmake
-add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
+add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
diff --git a/paddle/api/test/CMakeLists.txt b/paddle/api/test/CMakeLists.txt
index 761aeb5b174105edece8880a9f5012c13a63fd11..13cb79129cc2272d215cdb475fb146b37266699e 100644
--- a/paddle/api/test/CMakeLists.txt
+++ b/paddle/api/test/CMakeLists.txt
@@ -1,3 +1,8 @@
+add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/testTrain.py
+ COMMAND cp -r ${CMAKE_CURRENT_SOURCE_DIR}/*.py ${CMAKE_CURRENT_BINARY_DIR}
+)
+add_custom_target(copy_api_test ALL DEPENDS testTrain.py)
+
py_test(testTrain SRCS testTrain.py)
py_test(testMatrix SRCS testMatrix.py)
py_test(testVector SRCS testVector.py)
diff --git a/paddle/cuda/include/hl_cnn.h b/paddle/cuda/include/hl_cnn.h
index 63ec51564793ca2255032d0efbe2c47326f8b698..b790fa39fe863bbb00f6cd36d4c63481b7634fe1 100644
--- a/paddle/cuda/include/hl_cnn.h
+++ b/paddle/cuda/include/hl_cnn.h
@@ -370,4 +370,48 @@ extern void hl_maxout_backward(real* inGrad,
size_t featLen,
size_t groups);
+/**
+ * @brief Upsample forward.
+ * @param[in] inputData input data.
+ * @param[out] maskData the mask data from MaxPoolWithMaskLayer.
+ * @param[out] batchSize the batch size of the input.
+ * @param[in] imgSizeH image height.
+ * @param[in] imgSizeW image width.
+ * @param[in] channels the input channels.
+ * @param[in] outputH the output height.
+ * @param[in] outputW the output widht.
+ * @param[out] outputData output data.
+ */
+extern void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData);
+
+/**
+ * @brief Upsample backward.
+ * @param[in] outputGradData the output grad data.
+ * @param[out] maskData the mask data from MaxPoolWithMaskLayer.
+ * @param[out] batchSize the batch size of the input.
+ * @param[in] imgSizeH image height.
+ * @param[in] imgSizeW image width.
+ * @param[in] channels the input channels.
+ * @param[in] outputH the output height.
+ * @param[in] outputW the output widht.
+ * @param[out] inputGradData the input grad data.
+ */
+extern void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData);
+
#endif // HL_CNN_H_
diff --git a/paddle/cuda/include/stub/hl_cnn_stub.h b/paddle/cuda/include/stub/hl_cnn_stub.h
index c39bd3228d3f2ea7495cd21f5ff60bdfbbd2b51d..997eed62e07827f375c7441554b397fdd0bd6a80 100644
--- a/paddle/cuda/include/stub/hl_cnn_stub.h
+++ b/paddle/cuda/include/stub/hl_cnn_stub.h
@@ -224,4 +224,24 @@ inline void hl_maxout_backward(real* inGrad,
size_t featLen,
size_t group) {}
+inline void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData) {}
+
+inline void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData) {}
+
#endif // HL_CNN_STUB_H_
diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu
index a4459243e8a7c8be58be2255faf89e29817fbdf5..bac743a293cc97b114281e510d06367a86536452 100644
--- a/paddle/cuda/src/hl_cuda_cnn.cu
+++ b/paddle/cuda/src/hl_cuda_cnn.cu
@@ -1028,3 +1028,79 @@ void hl_maxout_backward(real* inGrad,
num_kernels, inGrad, outGrad, idData, size, featLen, groups);
CHECK_SYNC("hl_maxout_backward failed");
}
+
+__global__ void upsampleForwardCompute(real* input_data,
+ real* mask_data,
+ size_t nthreads,
+ size_t in_h,
+ size_t in_w,
+ size_t out_h,
+ size_t out_w,
+ real* output_data) {
+ int index = blockIdx.x * blockDim.x + threadIdx.x;
+ if (index < nthreads) {
+ int offset = index / (in_w * in_h) * out_h * out_w;
+ int upsample_idx = static_cast(mask_data[index]);
+ output_data[offset + upsample_idx] = input_data[index];
+ }
+}
+
+__global__ void upsampleBackwardCompute(real* out_grad,
+ real* mask_data,
+ size_t nthreads,
+ size_t in_h,
+ size_t in_w,
+ size_t out_h,
+ size_t out_w,
+ real* input_grad) {
+ int index = blockIdx.x * blockDim.x + threadIdx.x;
+ if (index < nthreads) {
+ int offset = index / (in_w * in_h) * out_h * out_w;
+ int upsample_idx = static_cast(mask_data[index]);
+ input_grad[index] = out_grad[offset + upsample_idx];
+ }
+}
+
+void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData) {
+ int num_kernels = batchSize * imgSizeH * imgSizeW * channels;
+ int blocks = (num_kernels + 1024 - 1) / 1024;
+ upsampleForwardCompute<<>>(inputData,
+ maskData,
+ num_kernels,
+ imgSizeH,
+ imgSizeW,
+ outputH,
+ outputW,
+ outputData);
+ CHECK_SYNC("hl_upsample_forward failed");
+}
+
+void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData) {
+ int num_kernels = batchSize * imgSizeH * imgSizeW * channels;
+ int blocks = (num_kernels + 1024 - 1) / 1024;
+ upsampleBackwardCompute<<>>(outputGradData,
+ maskData,
+ num_kernels,
+ imgSizeH,
+ imgSizeW,
+ outputH,
+ outputW,
+ inputGradData);
+ CHECK_SYNC("hl_upsample_backward failed");
+}
diff --git a/paddle/fluid/framework/.clang-format b/paddle/fluid/.clang-format
similarity index 100%
rename from paddle/fluid/framework/.clang-format
rename to paddle/fluid/.clang-format
diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt
index c425c71160a8fa3830a5fbdae1baaed850710877..3840bbe83b68dc2a49aa73feb57a80e9992cad5f 100644
--- a/paddle/fluid/framework/CMakeLists.txt
+++ b/paddle/fluid/framework/CMakeLists.txt
@@ -7,9 +7,9 @@ cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim)
if(WITH_GPU)
- nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place paddle_memory device_context framework_proto)
+ nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place memory device_context framework_proto)
else()
- cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place paddle_memory device_context framework_proto)
+ cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place memory device_context framework_proto)
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
@@ -21,9 +21,9 @@ endif()
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
-nv_test(mixed_vector_test SRCS mixed_vector_test.cu DEPS place paddle_memory device_context init)
+nv_test(mixed_vector_test SRCS mixed_vector_test.cu DEPS place memory device_context init)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio)
-cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor paddle_memory)
+cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor init)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
@@ -74,8 +74,8 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
- COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto
- COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto/
+ COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto
+ COMMAND cp *.py ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/
COMMENT "Copy generated python proto into directory paddle/fluid/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
diff --git a/paddle/fluid/framework/block_desc.cc b/paddle/fluid/framework/block_desc.cc
index fbe08349c37c4fde115ceea954ba2b84880088d7..b8847e4b909cbab67b2ddb6885b45b73d402de19 100644
--- a/paddle/fluid/framework/block_desc.cc
+++ b/paddle/fluid/framework/block_desc.cc
@@ -13,11 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/block_desc.h"
+#include
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
-#include
-
namespace paddle {
namespace framework {
@@ -147,52 +146,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) {
return;
}
- auto get_vars = [](std::deque>::iterator &op,
- std::vector &v) {
- auto in_names = (*op)->InputArgumentNames();
- v.insert(v.end(), in_names.begin(), in_names.end());
- auto out_names = (*op)->OutputArgumentNames();
- v.insert(v.end(), out_names.begin(), out_names.end());
- std::sort(v.begin(), v.end());
- auto last = std::unique(v.begin(), v.end());
- v.erase(last, v.end());
- };
- need_update_ = true;
-
- for (size_t i = s; i < e; i++) {
- // since remove op one by one, every time remove the first op.
- auto op = ops_.begin() + s;
-
- // collect input and output variables from current delete op
- std::vector cur_vars;
- get_vars(op, cur_vars);
-
- // remove current op
- ops_.erase(ops_.begin() + s);
-
- // collect input and output variables from other ops
- std::vector other_vars;
- for (auto it = ops_.begin(); it != ops_.end(); it++) {
- get_vars(it, other_vars);
- }
-
- // variables should be deleted
- std::vector delete_vars;
- // delete_vars = cur_vars - cur_vars ^ other_input_vars
- std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(),
- other_vars.end(),
- std::inserter(delete_vars, delete_vars.end()));
- // remove variables
- for (size_t i = 0; i < delete_vars.size(); i++) {
- auto name = delete_vars[i];
- auto it = vars_.find(name);
- PADDLE_ENFORCE(it != vars_.end(),
- "%s is not in variable list, it should not be deleted",
- name);
- vars_.erase(it);
- VLOG(3) << "deleting variable " << name;
- }
- }
+ ops_.erase(ops_.begin() + s, ops_.begin() + e);
}
std::vector BlockDesc::AllOps() const {
diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h
index 468423e0e8e7b8c9ebc14b7568c9c3bd21645ea7..873969b2a884f6d9e133fe87bf72725c36ce8b98 100644
--- a/paddle/fluid/framework/block_desc.h
+++ b/paddle/fluid/framework/block_desc.h
@@ -17,6 +17,7 @@ limitations under the License. */
#include
#include
#include
+#include
#include
#include
@@ -96,6 +97,8 @@ class BlockDesc {
*/
void RemoveOp(size_t s, size_t e);
+ void RemoveVar(const std::string &name) { vars_.erase(name); }
+
std::vector AllOps() const;
size_t OpSize() const { return ops_.size(); }
diff --git a/paddle/fluid/framework/channel.h b/paddle/fluid/framework/channel.h
index 019bea600f496a6b58579ad0aa8af836cd6134a9..722bf8e8ecba0c9cbc5e3ad737dbf73148d2873c 100644
--- a/paddle/fluid/framework/channel.h
+++ b/paddle/fluid/framework/channel.h
@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once
-#include // for size_t
-#include
+#include // for size_t
+#include // NOLINT
#include
#include "paddle/fluid/platform/enforce.h"
@@ -216,7 +216,8 @@ class ChannelHolder {
template
struct PlaceholderImpl : public Placeholder {
- PlaceholderImpl(size_t buffer_size) : type_(std::type_index(typeid(T))) {
+ explicit PlaceholderImpl(size_t buffer_size)
+ : type_(std::type_index(typeid(T))) {
channel_.reset(MakeChannel(buffer_size));
}
diff --git a/paddle/fluid/framework/channel_impl.h b/paddle/fluid/framework/channel_impl.h
index e056779ea0dd0a31191b628f82724298efaf50ff..26d454534e1ae38c4f83376c0836a45781ea9101 100644
--- a/paddle/fluid/framework/channel_impl.h
+++ b/paddle/fluid/framework/channel_impl.h
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include // for size_t
#include
-#include
+#include // NOLINT
#include
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
@@ -38,7 +38,7 @@ class ChannelImpl : public paddle::framework::Channel {
virtual void Unlock();
virtual bool IsClosed();
virtual void Close();
- ChannelImpl(size_t);
+ explicit ChannelImpl(size_t);
virtual ~ChannelImpl();
virtual void AddToSendQ(const void *referrer, T *data,
@@ -60,7 +60,7 @@ class ChannelImpl : public paddle::framework::Channel {
const void *referrer; // TODO(thuan): figure out better way to do this
std::function callback;
- QueueMessage(T *item)
+ explicit QueueMessage(T *item)
: data(item), cond(std::make_shared()) {}
QueueMessage(T *item, std::shared_ptr cond)
@@ -88,15 +88,15 @@ class ChannelImpl : public paddle::framework::Channel {
}
std::shared_ptr get_first_message(
- std::deque> &queue, ChannelAction action) {
- while (!queue.empty()) {
+ std::deque> *queue, ChannelAction action) {
+ while (!queue->empty()) {
// Check whether this message was added by Select
// If this was added by Select then execute the callback
// to check if you can execute this message. The callback
// can return false if some other case was executed in Select.
// In that case just discard this QueueMessage and process next.
- std::shared_ptr m = queue.front();
- queue.pop_front();
+ std::shared_ptr m = queue->front();
+ queue->pop_front();
if (m->callback == nullptr || m->callback(action)) return m;
}
return nullptr;
@@ -147,7 +147,7 @@ void ChannelImpl::Send(T *item) {
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
std::shared_ptr m =
- get_first_message(recvq, ChannelAction::SEND);
+ get_first_message(&recvq, ChannelAction::SEND);
if (m != nullptr) {
*(m->data) = std::move(*item);
@@ -198,7 +198,7 @@ bool ChannelImpl::Receive(T *item) {
// buffer and move front of send queue to the buffer
if (!sendq.empty()) {
std::shared_ptr m =
- get_first_message(sendq, ChannelAction::RECEIVE);
+ get_first_message(&sendq, ChannelAction::RECEIVE);
if (buf_.size() > 0) {
// Case 1 : Channel is Buffered
// Do Data transfer from front of buffer
@@ -219,8 +219,9 @@ bool ChannelImpl::Receive(T *item) {
if (m != nullptr) {
*item = std::move(*(m->data));
m->Notify();
- } else
+ } else {
return recv_return(Receive(item));
+ }
}
return recv_return(true);
}
diff --git a/paddle/fluid/framework/channel_test.cc b/paddle/fluid/framework/channel_test.cc
index 1184bfdae1940286fb72d9091ae4f23ff7f84a54..542d791f6bbdf7d68a4786998ccc0233fff6473d 100644
--- a/paddle/fluid/framework/channel_test.cc
+++ b/paddle/fluid/framework/channel_test.cc
@@ -14,8 +14,8 @@ limitations under the License. */
#include "paddle/fluid/framework/channel.h"
-#include
-#include
+#include // NOLINT
+#include // NOLINT
#include "gtest/gtest.h"
using paddle::framework::Channel;
@@ -166,9 +166,9 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
std::thread t([&]() {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
- if (i < buffer_size)
+ if (i < buffer_size) {
ch->Send(&i); // should block after 10 iterations
- else {
+ } else {
bool is_exception = false;
try {
ch->Send(&i);
@@ -212,12 +212,12 @@ TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) {
}
void ChannelCloseUnblocksReceiversTest(Channel *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -230,7 +230,7 @@ void ChannelCloseUnblocksReceiversTest(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
@@ -241,21 +241,21 @@ void ChannelCloseUnblocksReceiversTest(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -277,13 +277,13 @@ void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -294,21 +294,21 @@ void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a buffered channel also unblocks
@@ -409,13 +409,13 @@ TEST(Channel, UnbufferedMoreReceiveLessSendTest) {
// This tests that destroying a channel unblocks
// any senders waiting for channel to have write space
void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -438,14 +438,14 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -454,13 +454,13 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successful sends
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
@@ -473,18 +473,18 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
}
// Join all threads
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channel also unblocks
// any receivers waiting on the channel
void ChannelDestroyUnblockReceivers(Channel *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -498,18 +498,18 @@ void ChannelDestroyUnblockReceivers(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(Channel, BufferedChannelDestroyUnblocksReceiversTest) {
@@ -679,12 +679,12 @@ TEST(ChannelHolder, TypeMismatchReceiveTest) {
}
void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -697,7 +697,7 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
@@ -708,21 +708,21 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -744,13 +744,13 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -761,21 +761,21 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a channelholder unblocks
@@ -813,13 +813,13 @@ TEST(Channel, ChannelHolderCloseUnblocksSendersTest) {
// This tests that destroying a channelholder unblocks
// any senders waiting for channel
void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -841,14 +841,14 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -857,13 +857,13 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successfuld sends
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
@@ -876,18 +876,18 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
}
// Join all threads
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channelholder also unblocks
// any receivers waiting on the channel
void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -901,18 +901,18 @@ void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderDestroyUnblocksReceiversTest) {
@@ -945,12 +945,12 @@ TEST(ChannelHolder, ChannelHolderDestroyUnblocksSendersTest) {
// This tests that closing a channelholder many times.
void ChannelHolderManyTimesClose(ChannelHolder *ch) {
- const int num_threads = 15;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const int kNumThreads = 15;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to send data to channel.
- for (size_t i = 0; i < num_threads / 3; i++) {
+ for (size_t i = 0; i < kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *ended) {
@@ -962,7 +962,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to receive data to channel.
- for (size_t i = num_threads / 3; i < 2 * num_threads / 3; i++) {
+ for (size_t i = kNumThreads / 3; i < 2 * kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -976,7 +976,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to close the channel.
- for (size_t i = 2 * num_threads / 3; i < num_threads; i++) {
+ for (size_t i = 2 * kNumThreads / 3; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -991,13 +991,13 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
EXPECT_TRUE(ch->IsClosed());
// delete the channel
delete ch;
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderManyTimesCloseTest) {
diff --git a/paddle/fluid/framework/data_device_transform_test.cu b/paddle/fluid/framework/data_device_transform_test.cu
index e896a06162527ed0289767901f4b4a33fcd2875f..a66525303da58601f85c40c41854edaf22c3d4ea 100644
--- a/paddle/fluid/framework/data_device_transform_test.cu
+++ b/paddle/fluid/framework/data_device_transform_test.cu
@@ -105,7 +105,7 @@ static void BuildVar(const std::string& param_name,
TEST(Operator, CPUtoGPU) {
using namespace paddle::framework;
using namespace paddle::platform;
- InitDevices();
+ InitDevices(true);
paddle::framework::Scope scope;
paddle::platform::CPUPlace cpu_place;
diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt
index bf1a705ef50b663efa53393ead1f81fd6bcf8c48..89b5c6847f15b3f2a270fe1e7db9e590549e8982 100644
--- a/paddle/fluid/framework/details/CMakeLists.txt
+++ b/paddle/fluid/framework/details/CMakeLists.txt
@@ -16,6 +16,6 @@ else()
endif()
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle ${multi_devices_graph_builder_deps})
-cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph)
+cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
index a1b913a863cc1853ea3a786d22e6e8baa8c98a02..e7a0cb678ebfd8a3fe5f873e995b63b0857e5ba4 100644
--- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
@@ -21,6 +21,9 @@
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
+#include
+#include
+
namespace paddle {
namespace framework {
namespace details {
@@ -55,7 +58,12 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const {
auto graph = new SSAGraph();
SSAGraph &result = *graph;
- result.vars_.resize(places_.size());
+ std::unordered_set og_has_been_broadcast;
+
+ // We cannot invoke resize. It is a bug of GCC 4.8
+ result.vars_ = std::vector<
+ std::unordered_map>>>(
+ places_.size());
bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) {
@@ -122,9 +130,15 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
if (!is_forwarding) {
auto var_names = op->OutputArgumentNames();
+ // Currently, we assume that once gradient is generated, it can be
+ // broadcast, and each gradient is only broadcast once. But there are no
+ // other cases, for example, we need to adjust the gradient according to
+ // the input when we get the gradient, which is not considered at present.
for (auto &og : var_names) {
- if (grad_names_.count(og) != 0) { // is param grad
- // Insert NCCL AllReduce Op
+ if (grad_names_.count(og) != 0 &&
+ og_has_been_broadcast.count(og) == 0) { // is param grad
+ // Insert NCCL AllReduce Op
+ og_has_been_broadcast.insert(og);
#ifdef PADDLE_WITH_CUDA
result.ops_.emplace_back(
new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
@@ -137,15 +151,16 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
if (vars.empty()) { // This device has no data. continue.
continue;
}
- auto *prev_grad = &vars[vars.size() - 1];
- op_handle->AddInput(prev_grad);
+ auto &prev_grad = vars[vars.size() - 1];
+ op_handle->AddInput(prev_grad.get());
- auto &var = vars[vars.size()];
- var.place_ = p;
- var.name_ = og;
- var.version_ = vars.size() - 1;
+ vars.emplace_back(new VarHandle);
+ auto &var = vars.back();
+ var->place_ = p;
+ var->name_ = og;
+ var->version_ = vars.size() - 1;
- op_handle->AddOutput(&var);
+ op_handle->AddOutput(var.get());
}
#else
PADDLE_ENFORCE("Not implemented");
@@ -161,6 +176,11 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
*/
PolishGraphToSupportDataHazards(&result);
+ /*
+ * Only variables should be the leaves of graph.
+ */
+ AddOutputToLeafOps(&result);
+
if (VLOG_IS_ON(10)) {
std::ostringstream sout;
PrintGraphviz(*graph, sout);
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
index 5ddf331cfca39a4e81a42d9ff8efd5af7bcf6829..55b5f113589e090386d287e228349f22fb94a7ab 100644
--- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
@@ -76,7 +76,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
}
}
-std::string NCCLAllReduceOpHandle::Name() const { return "NCCL AllReduce"; }
+std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; }
} // namespace details
} // namespace framework
} // namespace paddle
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
index 045070bb6a97e90600cd24d9f43cd2a10a4bc1f5..ad14a3c5cb4625fa121cad2daed389c441e78771 100644
--- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
@@ -14,6 +14,9 @@
#pragma once
+#include
+#include
+
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
@@ -34,6 +37,10 @@ struct NCCLAllReduceOpHandle : public OpHandleBase {
std::string Name() const override;
+ // Delay and buffer nccl_all_reduce together can significantly increase
+ // performance. Disable this feature by returning false.
+ bool IsMultiDeviceTransfer() override { return true; };
+
protected:
void RunImpl() override;
};
diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h
index 71672fd24c65ee654fb9f703ea5808c31ee8fbb0..d7a541ac4bb83625060db337446d03a1afda3ed0 100644
--- a/paddle/fluid/framework/details/op_handle_base.h
+++ b/paddle/fluid/framework/details/op_handle_base.h
@@ -13,6 +13,8 @@
// limitations under the License.
#pragma once
+#include
+#include
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/platform/device_context.h"
@@ -53,6 +55,10 @@ class OpHandleBase {
void AddOutput(VarHandleBase *out);
+ // If the Op involves data transfer of multiple devices that
+ // will likely block other computations.
+ virtual bool IsMultiDeviceTransfer() { return false; }
+
protected:
virtual void RunImpl() = 0;
};
diff --git a/paddle/fluid/framework/details/ssa_graph.h b/paddle/fluid/framework/details/ssa_graph.h
index ac3e2d86993aee31b79f4481c4d5a47cd9cdf5b4..72684e7f97f1324d0efba960903cf9f2acb618a4 100644
--- a/paddle/fluid/framework/details/ssa_graph.h
+++ b/paddle/fluid/framework/details/ssa_graph.h
@@ -16,6 +16,8 @@
#include