Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
98522dcb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98522dcb
编写于
3月 05, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimizer wmt14 dataset
上级
a4bd4147
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
174 addition
and
264 deletion
+174
-264
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+95
-66
demo/seqToseq/seqToseq_net_v2.py
demo/seqToseq/seqToseq_net_v2.py
+0
-92
python/paddle/v2/dataset/wmt14.py
python/paddle/v2/dataset/wmt14.py
+79
-106
未找到文件。
demo/seqToseq/api_train_v2.py
浏览文件 @
98522dcb
import
os
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
from
seqToseq_net_v2
import
seqToseq_net_v2
# Data Definiation.
# TODO:This code should be merged to dataset package.
data_dir
=
"./data/pre-wmt14"
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
'src.dict'
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
'trg.dict'
)
source_dict_dim
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
target_dict_dim
=
len
(
open
(
trg_lang_dict
,
"r"
).
readlines
())
def
read_to_dict
(
dict_path
):
with
open
(
dict_path
,
"r"
)
as
fin
:
out_dict
=
{
line
.
strip
():
line_count
for
line_count
,
line
in
enumerate
(
fin
)
}
return
out_dict
src_dict
=
read_to_dict
(
src_lang_dict
)
trg_dict
=
read_to_dict
(
trg_lang_dict
)
train_list
=
os
.
path
.
join
(
data_dir
,
'train.list'
)
test_list
=
os
.
path
.
join
(
data_dir
,
'test.list'
)
UNK_IDX
=
2
START
=
"<s>"
END
=
"<e>"
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
):
def
_get_ids
(
s
,
dictionary
):
### Network Architecture
words
=
s
.
strip
().
split
()
word_vector_dim
=
512
# dimension of word vector
return
[
dictionary
[
START
]]
+
\
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
[
dictionary
.
get
(
w
,
UNK_IDX
)
for
w
in
words
]
+
\
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
[
dictionary
[
END
]]
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
def
train_reader
(
file_name
):
name
=
'source_language_word'
,
def
reader
():
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
with
open
(
file_name
,
'r'
)
as
f
:
src_embedding
=
paddle
.
layer
.
embedding
(
for
line_count
,
line
in
enumerate
(
f
):
input
=
src_word_id
,
line_split
=
line
.
strip
().
split
(
'
\t
'
)
size
=
word_vector_dim
,
if
len
(
line_split
)
!=
2
:
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
continue
src_forward
=
paddle
.
networks
.
simple_gru
(
src_seq
=
line_split
[
0
]
# one source sequence
input
=
src_embedding
,
size
=
encoder_size
)
src_ids
=
_get_ids
(
src_seq
,
src_dict
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
trg_seq
=
line_split
[
1
]
# one target sequence
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
#### Decoder
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
# remove sequence whose length > 80 in training mode
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
input
=
encoded_vector
)
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
with
paddle
.
layer
.
mixed
(
yield
src_ids
,
trg_ids
,
trg_ids_next
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
return
reader
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
def
main
():
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# source and target dict dim.
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
# define network topology
# define network topology
cost
=
seqToseq_net
_v2
(
source_dict_dim
,
target_dict_dim
)
cost
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
# define optimize method and trainer
# define optimize method and trainer
...
@@ -85,10 +115,9 @@ def main():
...
@@ -85,10 +115,9 @@ def main():
'target_language_word'
:
1
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
'target_language_next_word'
:
2
}
}
wmt14_reader
=
paddle
.
reader
.
batched
(
wmt14_reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
train_reader
(
"data/pre-wmt14/train/train"
),
buf_size
=
8192
),
paddle
.
dataset
.
wmt14
.
train
(
dict_size
=
dict_size
),
buf_size
=
8192
),
batch_size
=
5
)
batch_size
=
5
)
# define event_handler callback
# define event_handler callback
...
...
demo/seqToseq/seqToseq_net_v2.py
已删除
100644 → 0
浏览文件 @
a4bd4147
import
paddle.v2
as
paddle
def
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
python/paddle/v2/dataset/wmt14.py
浏览文件 @
98522dcb
...
@@ -14,129 +14,102 @@
...
@@ -14,129 +14,102 @@
"""
"""
wmt14 dataset
wmt14 dataset
"""
"""
import
paddle.v2.dataset.common
import
os
import
tarfile
import
os.path
import
os.path
import
itertools
import
tarfile
import
paddle.v2.dataset.common
from
wmt14_util
import
SeqToSeqDatasetCreater
__all__
=
[
'train'
,
'test'
,
'build_dict'
]
__all__
=
[
'train'
,
'test'
,
'build_dict'
]
URL_DEV_TEST
=
'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
URL_DEV_TEST
=
'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
URL_TRAIN
=
'http://localhost:8000/train.tgz'
URL_TRAIN
=
'http://localhost:8989/wmt14.tgz'
MD5_TRAIN
=
'72de99da2830ea5a3a2c4eb36092bbc7'
MD5_TRAIN
=
'7373473f86016f1f48037c9c340a2d5b'
START
=
"<s>"
def
word_count
(
f
,
word_freq
=
None
):
END
=
"<e>"
add
=
paddle
.
v2
.
dataset
.
common
.
dict_add
UNK
=
"<unk>"
if
word_freq
==
None
:
UNK_IDX
=
2
word_freq
=
{}
DEFAULT_DATA_DIR
=
"./data"
for
l
in
f
:
ORIGIN_DATA_DIR
=
"wmt14"
for
w
in
l
.
strip
().
split
():
INNER_DATA_DIR
=
"pre-wmt14"
add
(
word_freq
,
w
)
SRC_DICT
=
INNER_DATA_DIR
+
"/src.dict"
add
(
word_freq
,
'<s>'
)
TRG_DICT
=
INNER_DATA_DIR
+
"/trg.dict"
add
(
word_freq
,
'<e>'
)
TRAIN_FILE
=
INNER_DATA_DIR
+
"/train/train"
return
word_freq
def
__process_data__
(
data_path
,
dict_size
=
None
):
downloaded_data
=
os
.
path
.
join
(
data_path
,
ORIGIN_DATA_DIR
)
def
get_word_dix
(
word_freq
):
if
not
os
.
path
.
exists
(
downloaded_data
):
TYPO_FREQ
=
50
# 1. download and extract tgz.
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
TYPO_FREQ
,
word_freq
.
items
())
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
def
get_word_freq
(
train
,
dev
):
word_freq
=
word_count
(
train
,
word_count
(
dev
))
if
'<unk>'
in
word_freq
:
# remove <unk> for now, since we will set it as last index
del
word_freq
[
'<unk>'
]
return
word_freq
def
build_dict
():
base_dir
=
'./wmt14-data'
train_en_filename
=
base_dir
+
'/train/train.en'
train_fr_filename
=
base_dir
+
'/train/train.fr'
dev_en_filename
=
base_dir
+
'/dev/ntst1213.en'
dev_fr_filename
=
base_dir
+
'/dev/ntst1213.fr'
if
not
os
.
path
.
exists
(
train_en_filename
)
or
not
os
.
path
.
exists
(
train_fr_filename
):
with
tarfile
.
open
(
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
))
as
tf
:
MD5_TRAIN
))
as
tf
:
tf
.
extractall
(
base_dir
)
tf
.
extractall
(
data_path
)
if
not
os
.
path
.
exists
(
dev_en_filename
)
or
not
os
.
path
.
exists
(
# 2. process data file to intermediate format.
dev_fr_filename
):
processed_data
=
os
.
path
.
join
(
data_path
,
INNER_DATA_DIR
)
with
tarfile
.
open
(
if
not
os
.
path
.
exists
(
processed_data
):
paddle
.
v2
.
dataset
.
common
.
download
(
URL_DEV_TEST
,
'wmt14'
,
dict_size
=
dict_size
or
-
1
MD5_DEV_TEST
))
as
tf
:
data_creator
=
SeqToSeqDatasetCreater
(
downloaded_data
,
processed_data
)
tf
.
extractall
(
base_dir
)
data_creator
.
create_dataset
(
dict_size
,
mergeDict
=
False
)
f_en
=
open
(
train_en_filename
)
f_fr
=
open
(
train_fr_filename
)
def
__read_to_dict__
(
dict_path
,
count
):
f_en_dev
=
open
(
dev_en_filename
)
with
open
(
dict_path
,
"r"
)
as
fin
:
f_fr_dev
=
open
(
dev_fr_filename
)
out_dict
=
dict
()
for
line_count
,
line
in
enumerate
(
fin
):
word_freq_en
=
get_word_freq
(
f_en
,
f_en_dev
)
if
line_count
<=
count
:
word_freq_fr
=
get_word_freq
(
f_fr
,
f_fr_dev
)
out_dict
[
line
.
strip
()]
=
line_count
else
:
f_en
.
close
()
break
f_fr
.
close
()
return
out_dict
f_en_dev
.
close
()
f_fr_dev
.
close
()
def
__reader__
(
file_name
,
src_dict
,
trg_dict
):
return
get_word_dix
(
word_freq_en
),
get_word_dix
(
word_freq_fr
)
with
open
(
file_name
,
'r'
)
as
f
:
for
line_count
,
line
in
enumerate
(
f
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
def
reader_creator
(
directory
,
path_en
,
path_fr
,
URL
,
MD5
,
dict_en
,
dict_fr
):
if
len
(
line_split
)
!=
2
:
def
reader
():
continue
if
not
os
.
path
.
exists
(
path_en
)
or
not
os
.
path
.
exists
(
path_fr
):
src_seq
=
line_split
[
0
]
# one source sequence
with
tarfile
.
open
(
src_words
=
src_seq
.
split
()
paddle
.
v2
.
dataset
.
common
.
download
(
URL
,
'wmt14'
,
MD5
))
as
tf
:
src_ids
=
[
tf
.
extractall
(
directory
)
src_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
[
START
]
+
src_words
+
[
END
]
f_en
=
open
(
path_en
)
f_fr
=
open
(
path_fr
)
UNK_en
=
dict_en
[
'<unk>'
]
UNK_fr
=
dict_fr
[
'<unk>'
]
for
en
,
fr
in
itertools
.
izip
(
f_en
,
f_fr
):
src_ids
=
[
dict_en
.
get
(
w
,
UNK_en
)
for
w
in
en
.
strip
().
split
()]
tar_ids
=
[
dict_fr
.
get
(
w
,
UNK_fr
)
for
w
in
[
'<s>'
]
+
fr
.
strip
().
split
()
+
[
'<e>'
]
]
]
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
==
0
or
len
(
tar_ids
)
<=
1
or
len
(
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
src_ids
)
>
80
or
len
(
tar_ids
)
>
80
:
continue
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
yield
src_ids
,
tar_ids
[:
-
1
],
tar_ids
[
1
:]
f_en
.
close
()
def
train
(
data_dir
=
None
,
dict_size
=
None
):
f_fr
.
close
()
data_dir
=
data_dir
or
DEFAULT_DATA_DIR
__process_data__
(
data_dir
,
dict_size
)
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
SRC_DICT
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
TRG_DICT
)
train_file_name
=
os
.
path
.
join
(
data_dir
,
TRAIN_FILE
)
return
reader
default_dict_size
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
if
dict_size
>
default_dict_size
:
raise
ValueError
(
"dict_dim should not be larger then the "
"length of word dict"
)
def
train
(
dict_en
,
dict_fr
):
real_dict_dim
=
dict_size
or
default_dict_size
directory
=
'./wmt14-data'
return
reader_creator
(
directory
,
directory
+
'/train/train.en'
,
directory
+
'/train/train.fr'
,
URL_TRAIN
,
MD5_TRAIN
,
dict_en
,
dict_fr
)
src_dict
=
__read_to_dict__
(
src_lang_dict
,
real_dict_dim
)
trg_dict
=
__read_to_dict__
(
trg_lang_dict
,
real_dict_dim
)
def
test
(
dict_en
,
dict_fr
):
return
lambda
:
__reader__
(
train_file_name
,
src_dict
,
trg_dict
)
directory
=
'./wmt14-data'
return
reader_creator
(
directory
,
directory
+
'/dev/ntst1213.en'
,
directory
+
'/dev/ntst1213.fr'
,
URL_DEV_TEST
,
MD5_DEV_TEST
,
dict_en
,
dict_fr
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录